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Abstract

Theories of modified gravity where light scalars with non-trivial self-interactions and

non-minimal couplings to matter—chameleon and symmetron theories—dynamically sup-

press deviations from general relativity in the solar system. On other scales, the environ-

mental nature of the screening means that such scalars may be relevant. The highly-

nonlinear nature of screening mechanisms means that they evade classical fifth-force

searches, and there has been an intense effort towards designing new and novel tests

to probe them, both in the laboratory and using astrophysical objects, and by reinter-

preting existing datasets. The results of these searches are often presented using different

parametrizations, which can make it difficult to compare constraints coming from dif-

ferent probes. The purpose of this review is to summarize the present state-of-the-art

searches for screened scalars coupled to matter, and to translate the current bounds into

a single parametrization to survey the state of the models. Presently, commonly studied

chameleon models are well-constrained but less commonly studied models have large re-

gions of parameter space that are still viable. Symmetron models are constrained well by

astrophysical and laboratory tests, but there is a desert separating the two scales where

the model is unconstrained. The coupling of chameleons to photons is tightly constrained

but the symmetron coupling has yet to be explored. We also summarize the current

bounds on fpRq models that exhibit the chameleon mechanism (Hu & Sawicki models).

The simplest of these are well constrained by astrophysical probes, but there are cur-

rently few reported bounds for theories with higher powers of R. The review ends by

discussing the future prospects for constraining screened modified gravity models further

using upcoming and planned experiments.
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1 Introduction

Since its publication in 1915, Einstein’s theory of general relativity (GR) has withstood the

barrage of observational tests that have been thrown at it over the last century. From Ed-

dington’s pioneering measurement of light bending by the Sun in 1919 to the first detection

of gravitational waves by the LIGO/VIRGO consortium in 2015 [1, 2], its predictions have

been perfectly consistent with our observations. To test the predictions of any theory requires

alternatives with differing predictions and, for this reason, alternative theories of gravity have

a history that is almost as rich and varied as that of GR itself.

The zoo of modified gravity theories is both vast and diverse (see [3, 4, 5, 6] for some

compendia of popular models) but all have one thing in common: they break one of the

underlying assumptions of general relativity. From a theoretical standpoint, GR is the unique

low-energy theory of a Lorentz-invariant massless spin-2 particle [7], and any modification

must necessarily break one of these assumptions. Several interesting and viable Lorentz-

violating theories exist that may have some insight for the quantum gravity problem [8], and,

similarly, healthy theories of massive spin-2 particles have recently been constructed [9].

An alternative to these approaches is to introduce new fields that couple to gravity. One of

the simplest possible options is to include a new scalar degree of freedom. These scalar-tensor

theories of gravity are particularly prevalent, and are natural extensions of general relativity.

Scalars coupled to gravity appear in many UV completions of GR such as string theory and

other higher-dimensional models, but the cosmological constant problem and the nature of

dark energy, two modern mysteries that GR alone cannot account for, are driving a vigorous

research effort into infra-red scalar-tensor theories, with much of the effort focussing on light

scalars (with cosmologically relevant masses) coupled to gravity.

Typically, the existence of such scalars are in tension with experimental bounds. If the

scalar is massless, or has a Compton wavelength larger than the size of the solar system (which

is certainly the case for Hubble-scale scalars), the theory’s predictions typically fall within the

remit of the parameterized post-Newtonian (PPN) formalism for testing gravity in the solar

system (see [10] and references therein). Scalars whose Compton wavelengths are smaller than

„ AU predict deviations from the inverse-square law inside the solar system, which has been

tested on interplanetary scales using lunar laser ranging (LLR) [11], and down to distances of

Opµmq using laboratory-based experiments such as the Eöt-Wash torsion balance experiment

[12]. In many cases, scalar-tensor theories spontaneously break the equivalence principle so

that objects of identical mass but differing internal compositions fall at different rates in an

external gravitational field. This too can be tested with LLR and terrestrial searches.

Recently, the simultaneous observation of gravitational waves and a gamma ray burst from

a binary neutron star merger (GW170817 and GRB 170817A) [13, 14] by the LIGO/Virgo

collaboration and the Fermi and INTEGRAL satellites has placed a new and stringent bound

on modified gravity theories. The close arrival time of the gravitational wave and photon signal

(δt ă 1.7s) constrains the relative difference speed of photons (c) and gravitons (cT ) to be close
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to unity at the 10´15 level (´3ˆ10´15 ă |c2
T ´c

2|{c2 ă 7ˆ10´16)[15, 16, 17, 18, 19, 20, 21, 22]

where the upper and lower bounds correspond to a „ 10 s uncertainty in the time between the

emission of the photons and the emission of the gravitational waves [13]. Many scalar-tensor

theories predict that the difference between the speeds of gravitons and photons is of order

unity for models that act as dark energy [23, 24] and so this bound represents a new hurdle

for them to overcome.

These stringent bounds imply that the simplest theories with light scalars have couplings to

matter that must be irrelevant on cosmological scales. Theories that try to avoid this problem

using a large mass to pass solar system tests must have a Compton wavelength ď Opµmq,

in which case they too are cosmologically inconsequential. Ostensibly, it seems that scalar-

tensor theories are trivial in a cosmological setting, but the link between solar system tests

of gravity and cosmological scalar-tensor theories can be broken. Indeed, the last decade of

scalar-tensor research can aptly be epitomized by two words: screening mechanisms.

Screening mechanisms utilize non-linear dynamics to effectively decouple solar system and

cosmological scales. At the heart of screening mechanisms lies the fact that there are 29 orders-

of-magnitude separating the cosmological and terrestrial densities and 20 orders of magnitude

separating their distance scales. As a result, the properties of the scalar can vary wildly in

different environments. The quintessential example of a screening mechanism being used

to ensure a dark energy scalar avoids solar system constraints is the chameleon mechanism

[25, 26] (earlier predecessors include [27, 28, 29]). In chameleon models, the mass of the

scalar is an increasing function of the ambient density. This allows it to have a sub-micron

Compton wavelength in the solar system but be light on cosmological scales. Later, a closely

related second dark energy screening mechanism was discovered: the symmetron mechanism

[30, 31]. Earlier work had studied a similar model but with a different motivation [28, 29],

and string-inspired models with similar phenomenology have also been proposed [32, 33].

Unlike the chameleon, the symmetron has a light mass on all scales and instead screens by

driving its coupling to matter to zero when the density exceeds a certain threshold. A third

mechanism, the environment-dependent dilaton was subsequently discovered that screens in

a similar manner [34].

In this work we will only discuss screening mechanisms of this type, which rely on non-

linear self-interaction terms in the potential. A final class of screening, which relies on non-

linearities in the kinetic sector screen through what is known as the Vainstein mechanism

[35, 4]. These theories will not be discussed here as the phenomenology of these models, and

therefore the most constraining observables, are very different to that of the chameleon and

symmetron models. Similarly, we will not discuss massive gravity [36, 37, 9, 38], which screens

using the Vainshtein mechanism, for the same reason. We note however that many models that

do screen using the Vainshtein mechanism (as well as those that predict a mass in the graviton

dispersion relation such as massive gravity) are severely constrained by the new bounds from

the observation of gravitational waves and photons from GW170817/GRB 170817A discussed

above if they are to simultaneously act as dark energy [15, 18, 16, 17, 19, 20]. (In the case
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of massive gravity, solar system tests are stronger than the LIGO/Fermi bound [18].) The

models we will discuss in this review (chameleon/symmetron/dilaton) predict that cT “ c

identically and so this bound is irrelevant for them.

Scalar fields with screening mechanisms cannot simultaneously screen and self-accelerate

cosmologically [39] but they can act as a dark energy quintessence field [40] i.e. they require a

cosmological constant term to drive the cosmic acceleration and they are capable of producing

deviations from GR on linear and non-linear cosmological scales as well as astrophysical scales

(see [41, 42] and references therein). In addition to this, many candidate UV completions of

GR such as string theory predict a multitude of scalars that couple to matter and screening

mechanisms are a convenient method of hiding such additional degrees of freedom. For these

reasons screening mechanisms are considered interesting and novel paragon for alternative

theories of gravity and, as such, there is an ongoing experimental search for screened scalars.

Being designed to evade conventional tests of gravity, screening mechanisms have inspired

novel and inventive approaches to search for them experimentally. These range from reinter-

preting the results of experiments not designed to look for them, to designing instruments

specifically adapted to testing their unique properties, to using astrophysical objects that

have never before been used to test gravity, such as Cepheid stars and galaxy clusters. In

many cases, new and imaginative scenarios have been concocted.

These searches typically use different parametrizations, making them difficult to compare

with one another. The purpose of this review is to collect the state-of-the-art constraints com-

ing from laboratory and astrophysical tests, and to combine them into a single parametriza-

tion. This not only makes it clear which models are ruled out by different experiments,

but also aides in deciding the optimum search strategy for exploring the remaining models.

In many cases, we will extend the experimental results to models to which they have not

previously been applied.

This review is organized as follows. In section 2 we will introduce the different screening

mechanisms we will consider in this review, outline their salient features, and present the

parameters we will use to compare constraints. In section 3 we will discuss how screening

works in both astrophysical and laboratory settings. Section 4 contains a brief description

of the experiments that have been used to constrain screening mechanisms, and translates

the constraints into our parametrization. The crux of this review is presented in section 5,

where we combine all of the contemporary constraints from various experiments into a series

of diagrams that show which regions of parameter space are ruled out, and how different

experiments compare in the same parametrization. We do this for chameleon and symmetron

modes. In section 6 we conclude by discussing the implications of the constraints for screened

modified gravity, and future prospects for constraining the remaining parameter space.
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2 Screening Mechanisms

The screening mechanisms that we consider in this review are all specific subsets of the general

scalar-tensor theory

S “

ż

d4x
?
´g

„

R

16πG
´

1

2
∇µφ∇µφ´ V pφq



` Smrg̃µν , φs, (2.1)

which describes a canonically normalised scalar field φ subject to a potential V pφq and con-

formally (Weyl) coupled to matter through the Jordan frame metric

g̃µν “ A2pφqgµν . (2.2)

It is this non-minimal coupling described by the coupling function Apφq that results in de-

viations from GR1. In particular, the Einstein frame metric, gµν , is a solution of Einstein’s

equations sourced by both matter and the scalar stress energy tensors, but matter moves on

geodesics of the Jordan frame metric, g̃µν . In what follows we work only with the Einstein

frame version of the theory. Classically, all observable quantities will be independent of the

choice of frame and our choice of the Einstein frame is purely for calculational convenience.

In the Jordan frame there would be no direct coupling between the scalar fields and mat-

ter, but instead the gravitational action will depend non-trivially on the scalar field. In this

frame matter particles travel on geodesics of the Jordan frame metric, but the evolution of

the gravitational potentials is modified by their mixing with the scalar field.

As an example of motion in the Einstein frame, consider a non-relativistic particle in

the Newtonian limit. This particle moves on geodesics of g̃µν and so, defining the tensor

Kαµν ” Γ̃αµν ´ Γαµν , the Newtonian limit of the geodesic equation is [42, 49]

:xi ` Γi00 “ ´κ
i
00 “ ´

βpφq

Mpl
∇iφ, (2.3)

where a dot denotes a derivative with respect to proper time and we have calculated Ki00

using (2.2) (see [50, 51]). The coupling is

βpφq ”Mpl
d lnA

dφ
. (2.4)

The Christoffel symbol Γi00 “ B
iΦN contains the Newtonian force and so we can interpret

F5 “ ´
βpφq

Mpl
∇φ (2.5)

as a new or fifth-force. In this review we do not consider scalars with non-minimal kinetic

terms which screen through the Vainshtein mechanism.

1Note that one could consider a more general theory where each particle species i is conformally coupled

to a different metric g̃
piq
µν “ A2

i pφqgµν although we will not consider such theories here since they are not

well-studied in the context of screened modified gravity. An even more general metric includes disformal

terms g̃µν “ Apφqgµν ` BpφqBµφBνφ [43]. Constraints on disformal couplings to matter can be found in

[44, 45, 46, 47, 48].
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Another important consequence of the coupling to matter is that the field is sourced by

the trace of the energy-momentum tensor so that its equation of motion is

lφ “
dV pφq

dφ
´
βpφqT

Mpl
. (2.6)

Note that T “ gµνT
µν where Tµν “ 2{

?
´gδSm{δgµν is the Einstein frame energy-momentum

tensor. This is not covariantly conserved (∇µTµν ‰ 0) because matter moves on geodesics of

g̃; it is the Jordan frame metric T̃µν “ 2{
?
´g̃δSm{δg̃µν that satisfies ∇̃µT̃µν “ 0. The two are

related via Tµν “ A6T̃µν [50, 42]. For non-relativistic matter, one has2 T “ ´ρ « ´ρ̃ « T̃ ,

where we have ignored post-Newtonian terms [52, 45]. The equation of motion is then

lφ “
dV pφq

dφ
`
βpφqρ

Mpl
“

dVeff

dφ
, (2.7)

which defines a density-dependent effective potential3

Veffpφq “ V pφq ` ρ lnApφq. (2.8)

It is this that governs they dynamics of φ and not V pφq solely.

In order to classify different screening mechanisms it is instructive to consider the field

profile sourced by a spherical object of mass M and radius R embedded in a medium of

background density ρ0. If the effective potential has a minimum then the field in this medium

will assume the value φ0 “ φminpρ0q where this is achieved. Expanding the field about this

background value φ “ φ0 ` δφ, where δφ is the field sourced by the point mass, and φ0 the

uniform background value (i.e. we have performed a background-object split), we have the

equation of motion for a massive scalar

∇2δφ´m2
effpφ0qδφ “

βpφ0qρprq

Mpl
, (2.9)

2There are three commonly used densities in the literature: the Jordan frame density ρ̃ “ ´T̃ 0
0 , the Einstein

frame density ρ “ ´T 0
0 “ A6

pφqρ̃, and the ‘conserved Einstein frame density’ ρconserved “ Apφqρ. The Jordan

frame density is the result of statistical physics calculations and it is in this frame that one may specify an

equation of state. The Einstein frame density is what arises naturally in equation (2.6) as a result of varying the

action (2.1) and the conserved density is a quantity that is useful in cosmological contexts [25, 52, 53, 54, 55, 42].

In particular, the conserved density satisfies a conservation equation that makes the cosmological equations

look similar to those of GR. Since this review is concerned with experimental tests of chameleon theories, we

have opted to work with the Einstein frame density. At the Newtonian level (weak-field limit), these densities

are equivalent [52, 42] and so the choice is somewhat arbitrary, but we note that one must work with the Jordan

frame pressure and density if one is interested in compact objects such as neutron stars [56, 57, 58, 59, 60].

We will not consider such objects here.
3Several definitions of the effective potential exist in the literature. If one uses the conserved Einstein frame

density then one has Veffpφq “ V 1pφq ` ρApφq [25, 42]. Furthermore, one often sees the effective potential

written as Veffpφq “ V 1pφq ` pApφq ´ 1qρ (using the conserved Einstein frame density). This is motivated by

models that have Apφq “ 1`βpφ0qφ{Mpl`¨ ¨ ¨ and the factor of ´1 is used to subtract the matter density from

the chameleon energy density in order to avoid double counting in cosmology. (The equation of motion (2.7)

which governs the dynamics is unchanged by including such a factor.) Since we do not consider cosmology

here we will not include this factor.
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where the effective mass

m2
effpφq ” V 2effpφq (2.10)

is the mass of small fluctuations about the minimum of the effective potential. The scalar

potential outside the source is then

δφ “
βpφ0q

4πMpl

fpM,Rq
r

e´meffr, (2.11)

where the undetermined function fpM,Rq is a model dependent function of the source mass

parameters. When the source is a point mass one simply has fpM,Rq “M but in general

the effective mass may vary inside the object and the object may have a non-trivial density

profile. From equation (2.11), it is clear that there are three ways one can suppress the effects

of the scalar. Either

1. The mass meffr " 1 so that the force is short ranged,

2. The coupling to matter βpφ0q ! 1, or

3. Not all of the mass sources the scalar field.

Of course, one could simply choose the parameters such that either of the first two conditions

is satisfied but this leads to a trivial situation where the modifications of gravity are negligible

on all scales, and requires fine-tuning the parameters. We are interested in theories where

solar system tests are satisfied trivially but strong modifications may appear on other scales,

producing new and interesting phenomena that may be relevant to small-scale physics or dark

energy and cosmology. Said another way, we would like to construct theories that exhibit some

environmental dependence of the screening, for example so that conditions 1. or 2. are only

satisfied locally. The density-dependence of the effective potential aids us here because the

ambient density of different objects can vary over many orders of magnitude. For example,

there are 29 orders of magnitude separating the mean cosmic density from the density on

Earth. The essence of screening mechanisms is that the effective potential is chosen such that

the minimum is density-dependent so that the field can assume different values in different

environments so that the scalar potential can be dynamically suppressed.

It is possible to construct models with the requisite density-dependent minimum such

that one or more of the conditions above are satisfied. Models that utilize a combination of

the first and third condition are typically known as chameleon models4 [25] and models that

utilize the second are known as either symmetron [30] or dilaton models [34].

2.1 Chameleon Screening

As remarked above, the chameleon is constructed to give an effective mass that increases with

the density. A wide variety of potentials and coupling functions can achieve this; here we

4Chameleon models were the first example of screening mechanism that screens using this effect. The scalar

blending in with its environment inspired the name.
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follow the existing literature and focus on power law potentials and exponential couplings,

V pφq “
Λn`4

φn
, Apφq “ e

φ
Mc , (2.12)

so that the effective potential is then

Veffpφq “
Λn`4

φn
` ρ

φ

Mc
, (2.13)

where Mc “MP {β. Theories with Mc „MP , β „ 1 have gravitational strength couplings to

matter. The effective potential has a density-dependent minimum given by

φminpρq “

ˆ

nMcΛ
4`n

ρ

˙

1
n`1

. (2.14)

The effective mass about this minimum is

m2
eff “ V 2effpφq “ npn` 1qΛn`4

ˆ

ρ

nMcΛn`4

˙
n`2
n`1

. (2.15)

For n ą ´1 this certainly satisfies our requirement that the mass is an increasing function of

the density, with the exception of n “ 0, which does not admit a minimum. Negative even

integers i.e. n “ ´4,´6,´8, . . . also have this property with the exceptions n “ ´1, ´2, which

do not allow the mass to vary with the density. There is no minimum when n “ ´3,´5,´7, . . .

and so there are no viable chameleon mechanism in these cases.

The chameleon mechanism is illustrated in Figure 1, which sketches the effective potential,

as well as the separate contributions from the bare potential and the matter coupling, for

positive and negative n in both high and low densities. One can clearly see that the curvature

around the high-density minimum is larger than around the low-density minimum, implying

a larger mass for fluctuations. In practice, the difference can be several orders of magnitude,

giving rise to very efficient screening.

Since chameleon models are unable to self-accelerate cosmologically [39], one typically

adds a cosmological constant to the bare potential in order to account for dark energy. In

this case, one has

V pφq “ Λ4
DE `

Λn`4

φn
(2.16)

with ΛDE “ 2.4 meV. A common origin for the cosmological constant and the chameleon is

an enticing scenario, for example one could have V pφq “ Λ4 exppΛ4{φnq [61], and so special

attention is often paid to the case Λ “ ΛDE “ 2.4 meV.

Another important model is the case n “ ´4. In this case, the mass-scale Λ that governs

that chameleon self-interactions is absent and one instead has the renormalizable potential

V pφq “ Λ4
DE ` λcφ

4. (2.17)

One generally expects λc „ Op1q to be natural since values larger than this can give rise to

large quantum corrections to the potential and smaller values typically require some degree

10



Φ

VHΦL

n ą 0, low density

Φ

VHΦL

n ą 0, high density

ϕ

V(ϕ)

n ă 0, low density

ϕ

V(ϕ)

n ă 0, high density

Figure 1: Sketches of the chameleon effective potential for positive n (upper panels) and

negative n (lower panels). The left and right panels show the cases of low and high density

environments respectively. The blue lines show the bare potential and the red lines show the

contribution from the coupling to matter. The black dashed lines show the resultant effective

potential, which is the sum of the red and blue lines, and governs the dynamics of the scalar.

of fine-tuning. Comparing with the form of the potential when n ‰ 4 one has λc “ pΛ{ΛDEq
4.

Even with this choice of renormalisable potential, the full chameleon model itself is non-

renormalisable because the coupling to matter introduces higher-order operators of the form

L Ą T lnrApφqs „

ˆ

φ

Mc
`O

ˆ

φ2

M2
c

˙

` ¨ ¨ ¨

˙

T. (2.18)

We will discuss this further below.

2.1.1 fpRq models

Theories of gravity where one replaces the Einstein-Hilbert action by a generic function R,

known as fpRq theories (see [62] for more general reviews), can screen using the chameleon

mechanism, indeed they need to possess a form of screening mechanism to be compatible with
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solar system constraints. The first example of such a model was that of Hu and Sawicki [63]

S “
1

16πG

ż

d4x
a

´g̃ pR` fpRqq ` Smrg̃s; fpRq “ ´a
µ2

1` pR{µ2q´b
, (2.19)

where a and b and both positive and R “ Rpg̃q. Expanding this action for high curvatures

(R " µ2) one finds that

fpRq “ ´aµ2 ` aµ2

ˆ

R

µ2

˙´b

` ¨ ¨ ¨ (2.20)

so that the theory looks like a cosmological constant with small corrections to GR. Indeed, one

can tune the constants a and b to match with the ΛCDM cosmological model and one is left

with small deviations from GR at the level of cosmological perturbations. In the low-curvature

regime (R ! µ2) the theory behaves like inverse-power law models where fpRq „ pR{µq´b so

that deviations from GR are suppressed. One can see the chameleon mechanism in action

using the equivalence between fpRq and scalar-tensor theories [64]. Introducing the auxiliary

field ϕ, a classically-equivalent action to (2.19) is

S “
1

16πG

ż

d4x
a

´g̃

ˆ

R` fpϕq `
df

dϕ
rR´ ϕs

˙

` Smrg̃s. (2.21)

One can verify this by varying with respect to ϕ to find ϕ “ R on shell, thereby recovering

the action (2.19). Introducing the Weyl-rescaled Einstein frame metric

g̃µν “ A2pφqgµν ; A2pϕq “ 1`
df

dϕ
, (2.22)

the action (2.21) can be recast into a scalar tensor theory of the form

S “

ż

d4x
?
´g

„

R

16πG
´

1

2
BµφB

µφ´ V pφq



` Smre

b

2
3

φ
Mpl s with (2.23)

V pφq “
Mpl

2

2

φf 1pφq ´ fpφq

p1` f 1pφqq2
, (2.24)

where the canonically-normalised field

φ “ ´

c

3

2
Mpl ln

`

1` f 1pϕq
˘

. (2.25)

The theory is then a chameleon with Mc “
?

6Mpl. The Hu-Sawicki model corresponds to a

chameleon with n “ ´b{p1` bq so that only a narrow range in the chameleon theory space is

covered i.e ´1 ă n ă ´1{2. The most well-studied models are b “ 1 (n “ ´1{2) and b “ 3

(n “ ´3{4), although, typically, results are only quoted for n “ 1, and so we will only focus

on this model here.
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2.1.2 UV Properties

Screening relies on the presence of non-linear self-interactions of the scalar field, and on cou-

pling the scalar to the matter energy momentum tensor. Written in the Einstein frame,

this necessarily introduces non-renormalisible operators, meaning that additional physics is

required in order to UV complete the model [4]. Additionally, we might worry that integrat-

ing out physics in the UV changes the form of the low energy theory, either rescaling the

coefficients, or introducing new terms into the Lagrangian.

For the theory to be fully predictive it is important to understand whether the low energy

theory we study is protected from corrections coming from UV physics. One commonly used

way to estimate the size of these effects is to compute the Coleman-Weinberg [65] corrections

to the scalar mass [66]. To do this one computes the corrections to the scalar mass from

scalar fields running in loops, these loop corrections arise precisely because the scalar field

has non-trivial self interactions in its potential. The Coleman-Weinberg corrections are found

to be at least logarithmically divergent with scale. Even if these corrections to the mass are

assumed to be small at some scale, they may become important at another scale, or in another

environment.

In [66] the relevance of these corrections for the Eöt-Wash experiment was computed. With

some simple assumptions about the scale at which the logarithmic terms become important

it was shown that the current constraints from these experiments are computed in a regime

in which the quantum corrections are indeed under control. However, as the experimental

sensitivity improves these corrections will become more relevant.

Keeping track of the quantum corrections is also important in order to understand the

behaviour of the chameleon in the early universe. In [67, 68] it was shown that, with the

exception of gravitationally coupled chameleons, it is not possible to evolve the chameleon

through the radiation dominated era without knowing the UV completion of the model. This

is because the decoupling of standard model particles during this epoch give a large impulse to

the otherwise slowly rolling chameleon field [61]. This causes the chameleon scalar to rapidly

roll to the part of the potential where the field’s self interactions are large, and so high energy

quantum fluctuations of the field are excited. It is possible that some non-perturbative physics

could resolve this, but in the absence of a proof of this, we do not know how to evolve the

chameleon model from the early universe to late times in a predictive way. One model that

can evade this problem is the case n “ ´4 due to the absence of a low mass scale (that is

problematic in the early Universe when energies are typically high) [69].

The most reliable way to compute UV corrections to the low energy chameleon model

would be to know exactly what the UV-completion of the theory is. A number of attempts

have been made to embed the chameleon mechanism within string theory [70, 71, 72, 73, 74],

within supersymmetry [75, 76], and using non-canonical kinetic terms [77], but, as yet, no

complete theory exists.
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2.2 Symmetron Screening

The symmetron model does not rely on varying mass, instead, the screening works by sup-

pressing the coupling to matter in high-density regions. This is accomplished using Z2 sym-

metry restoration. The bare potential and coupling function are

V pφq “ ´
1

2
µ2φ2 `

λ

4
φ4; Apφq “ 1`

φ2

2M2
s

(2.26)

so that the effective potential is

Veffpφq “
1

2
µ2

ˆ

1´
ρ

µ2M2
s

˙

φ2 `
λ

4
φ4. (2.27)

This is Z2 (φ Ñ ´φ) symmetric (as are V pφq and Apφq individually). The coefficient of the

quadratic term can be either positive or negative depending on the density and, in particular,

there is a critical density

ρ‹ ” µ2M2
s (2.28)

where the sign changes. The screening mechanism is best exemplified by examining the shape

of the effective potential sketched in Figure 2. When ρ ă ρ‹ there are two degenerate minima

at

φ˘min “ ˘
µ
?
λ

c

1´
ρ

µ2M2
s

(2.29)

« ˘
µ
?
λ
, if ρ ! ρ‹ (2.30)

In this case, the Z2 symmetry is spontaneously broken and the coupling to matter is

βpφ0q “

ˇ

ˇ

ˇ

ˇ

Mplφ
˘
min

M2
s

ˇ

ˇ

ˇ

ˇ

«
µMpl

λM2
s

, (2.31)

giving rise to a fifth-force potentially stronger than gravity. When ρ ą ρ‹ the only minimum

is at φ “ 0 so that the symmetry is restored and the coupling βpφ0q “ 0. In which case no

fifth force can be sourced. One can tune the parameters µ, and λ in terms of Ms to ensure

that ρ‹ coincides with the present day cosmological density, or so that the fifth-force is of

gravitational strength [30, 31], but we shall not do so here since we are considering a range

of different experimental tests that constrain the parameters in very different environments

and on many different scales.

2.2.1 Generalized Symmetrons

The symmetron screening mechanism is by no means reliant on the specific form of the

effective potential (2.27). Indeed, clearly any effective potential of the form

Veffpφq “ ´µ
4

ˆ

1´
ρ

µ4´2nM2n
s

˙

φ2n

µ2n
`

φ2m

Λ2m´4
s

(2.32)
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Figure 2: The effective potential for the symmetron when ρ ă ρ‹ (red, lower) and when ρ ą ρ‹

(blue, upper).

with n ă m and n, m P Z` exhibits qualitatively similar features to the canonical symmetron.

Such an effective potential can arise through the bare potential and coupling functions

V pφq “ ´
φ2n

µ2n´4
`

φ2m

Λ2m´4
s

; Apφq “ 1`
φ2n

M2n
s

. (2.33)

First discovered by [53, 55] using tomographic methods, there has been little investigation of

these models at the present time and so we do not consider them further here.

2.2.2 Radiativly-Stable Symmetrons

The symmetron model, as described here, suffers the same UV stability properties as the

chameleon. In particular that Coleman-Weinberg corrections could dramatically alter the

shape of the potential needed for the symmetron mechanism to work. In this case, however,

the one-loop corrections can also be exploited to give rise to the screening in a radiatively

stable way [78].

The Coleman-Weinberg model [65] was originally discussed as a way of using radiative

corrections to generate a spontaneous symmetry breaking transition. The classical model is

scale invariant, but the one-loop corrections generate a scale through dimensional transmu-

tation of the logarithmic divergences. In the one field model higher order loop corrections

become important in the spontaneously broken vacuum, but in a multi-field model these can

be kept under control [79], and the one loop potential can undergo a symmetry breaking

transition whilst the higher order loop corrections remain small.

The radiatively stable symmetron has a different bare potential to that discussed above

V pφq “

ˆ

λ

16π

˙2

φ4

ˆ

ln
φ2

m2
´

17

6

˙

(2.34)

however overall the phenomenology this gives rise to is very similar to that of the standard

symmetron.
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2.3 Coupling to Photons

A conformally coupled scalar field does not have a classical coupling to photons. This is

because the scalar couples to the trace of the energy momentum tensor of the matter fields,

and photons, being relativistic, have a traceless energy momentum tensor. This is not the

end of the story, however, as quantum effects make it easy to generate such a coupling. One

way to do this is to assume the presence of a new heavy fermion which has an electromagnetic

charge. Then an interaction between one conformally coupled scalar, and two photons can

be mediated by a triangle-loop of the heavy fermion. If the fermion is sufficiently heavy that

it can be integrated out, to leave the Standard Model plus the chameleon as a low energy

effective theory, then the low energy theory has a contact interaction between the chameleon

and two photons [80]. Such heavy, charged fermions are ubiquitous in theories of physics

beyond that Standard Model, including, string theory, supersymmetry and GUTs. It can

also be shown that the Weyl rescaling that allows us to change from Jordan to Einstein

frame, gives rise to a coupling to photons after quantisation of these fields, this was shown

for the chameleon in [81], following earlier work by Kaplunovsky and Louis in the context of

supersymmetry [82].

The coupling to photons that arises in all of these cases is that of a scalar axion-like

particle

L Ą φ

Mγ
FµνF

µν . (2.35)

(For a symmetron model with Z2 symmetry the leading coupling would instead be quadratic in

φ.) Here Mγ is the energy scale that controls the coupling to photons, this is not necessarily

the scale at which the chameleon couples to other matter particles Mc. The coupling in

Equation (2.35) means that existing constraints on axion-like particles can be applied to the

chameleon, although some care must be taken in doing this as standard axion-like particles

have fixed mass and couplings, and so constraints from environments of vastly different density

can be easily combined. This is not the case for a screened scalar. This axion-like coupling

is not necessary for a screening mechanism to work, however it is difficult to forbid such a

coupling in a truly quantum theory. Including the coupling opens new avenues for detecting

the chameleon, as high precision searches for axions and axion-like particles can be exploited

to detect or constrain the chameleon. For example, the interaction in equation (2.35) means

that chameleons can be produced through the Primakov effect as photons propagate through

a magnetic field. This underlies a range of different experimental search strategies.

3 Screening

In this section we discuss screening mechanisms in the context of astrophysical objects and

typical laboratory configurations, and discuss some salient features that are specific to screen-

ing mechanisms.
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3.1 Astrophysical Screening: The Thin Shell Effect

Astrophysical objects are typically spherical and so in this section we consider the screening

of a non-relativistic, static, spherically symmetric object of mass M, radius R, and density

δρprq immersed in a much larger medium with density ρ̄. The total density is ρ “ ρ̄`δρ. This

could represent a star inside a galaxy or a galaxy/dark matter halo/cluster embedded in the

cosmological background, in which case ρ̄ is the mean cosmic density. We follow the method

of [52, 83, 84, 42, 49]. (Other derivations using slightly different procedures recover the same

results [55] but the current astrophysical constraints have been derived using the method we

present here.) Far away from the object, the field minimizes the effective potential so that

one has φprq Ñ φ̄ ” φminpρ̄q. Near the object, the equation of motion in Eq. (2.6) becomes

(in spherical coordinates)

∇2φ “
1

r2

d

dr

ˆ

r2 dφ

dr

˙

“
dV

dφ
`
βpφqρ

Mpl
. (3.1)

One can then envisage two regimes. If the field can reach the minimum of the effective

potential inside the object then one has V 1effpφq “ 0 and the right hand side of (3.1) is

unsourced so that φ “ φminpρq is constant and there is no fifth-force. If instead the field

remains close to φ̄ we can linearise φ “ φ̄` ϕ to find

1

r2

d

dr

ˆ

r2 dφ

dr

˙

“ m2
0ϕ`

βpφ0q

Mpl
δρ, (3.2)

where m2
0 “ V 2pφq. V pφq is typically chosen so that φ is cosmologically relevant i.e. m0R ! 1

and one can ignore the first term on the right hand side of (3.2), in which case one is left

with a Poisson equation
1

r2

d

dr

ˆ

r2 dφ

dr

˙

“
βpφ̄q

Mpl
δρ. (3.3)

In practice, we expect a hybrid of these two cases where the field sits close to the minimum

of the effective potential at the centre of the object and remains there up to some radius rs

at which it begins to roll towards its asymptotic value and enter the second regime. There is

therefore no fifth-force interior to rs; for this reason we will refer to rs as the screening radius.

Outside the screening radius one can integrate (3.3) once to find

dφ

dr
“
βpφ̄q pMprq ´Mprsqq

4πMplr2
, (3.4)

where

Mprq “
ż r

0
4πr12δρpr1qdr1; M ”MpRq. (3.5)

The fifth-force (2.5) is then

F5 “
2β2pφ̄qG rMprq ´Mprsqs

r2
. (3.6)
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Figure 3: The thin-shell effect. The fifth-force only receives a contribution from the mass in

the thin-shell rs ă r ă R.

The field equation is only sourced by the density outside the screening radius and so only the

mass exterior to this contributes to the fifth-force. Objects that have rs ! R have

F5

FN
« 2β2pφ̄q (3.7)

and are hence unscreened whereas those for which rs « R have F5{FN ! 1 and are hence

screened. In this case, the fifth-force only receives contributions from the mass in a very thin

shell outside the screening radius. This phenomena has been dubbed the thin-shell effect ; we

depict this in Figure 3. Outside the object the mass term in (3.4) is more important than the

density and one has

F5 “
2β2pφ̄qG rM´Mprsqs

r2
e´meffpr´Rq. (3.8)

In order to determine whether an object is screened we must calculate rs. This can be

accomplished by integrating (3.4) from rs (where φ “ φs « φminpρq) to 8 to find

φ̄´ φs “
βpφ̄qMprsq

4πMplrs
`

ż 8

rs

βpφ̄qMpr1q
4πr12

dr1. (3.9)

Performing integration by parts and using Equation (3.5) one finds an implicit relation for rs

χ ”
φ̄

2βpφ̄qMpl
“ 4πG

ż 8

rs

r1δρpr1q dr1, (3.10)

where we have ignored φs since the screening mechanisms always act to push φ to smaller

values inside dense objects. Alternatively, one can use the relation dΦN{dr “ GMprq{r to

write (3.9) as

χ “ ´ΦNprsq ´ rsΦ
1
Nprsq. (3.11)
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Object ΦN

Earth 10´9

Moon 10´11

Main-sequence stars (Md) 10´6

post Main-sequence stars (1–10Md) 10´7–10´8

Spiral and elliptical galaxies 10´6

Dwarf galaxies 10´8

Table 1: Astrophysical objects of interest and their Newtonian potentials.

If (3.11) (or, equivalently, (3.10)) has no solution then rs “ 0 and the object is fully un-

screened. Given that ΦN ă 0 whilst Φ1N ą 0 there can be no solution when χ ą ΦN “ GM{R.

Hence, only objects where χ ă GM{R can be partially (or fully for χ ! GM{R) screened.

The screening criteria above is particularly useful for determining which astrophysical

objects will be partially unscreened and for which range of parameters; one simply needs to

calculate the Newtonian potential. Commonly studied examples are given in Table 1. In

the case of main sequence stars one can find the Newtonian potential using the mass-radius

relation
M

Md

“

ˆ

R

Rd

˙ν

, (3.12)

where ν depends on the type of star in question. In the case of galaxies one can use the Virial

theorem to calculate the Newtonian potential from the circular velocity:

v2 “
GM
R

. (3.13)

Dwarf galaxies are particularly good probes due to their low Newtonian potentials. Indeed,

many of the astrophysical tests we will discuss below use either dwarf galaxies themselves or

their constituent objects. Setting φ̄ “ φ0 the parameter of interest is

χ0 ”
φ0

2βpφ0qMpl
. (3.14)

Unscreened dwarf galaxies can then, in theory, test χ0
ą
„ 10´8.

In practice, one also needs to worry about environmental screening. So far, we have

only considered the screening of a single object embedded in a larger background, but real

astrophysical objects are typically not isolated; galaxies are found in clusters and stars come

in pairs or groups. The non-linear nature of the field equations means that we cannot simply

superimpose solutions sourced by different objects to obtain a new solution. This implies

that an object’s environment can affect whether it is screened or not. The most important

example of this is the screening of dwarf galaxies. Taken in isolation, the Newtonian potential

for a dwarf galaxy is Op10´8q but the typical potential associated with clusters of galaxies

is Op10´4q so that only values of χ0 larger than this can be tested. The ideal probes are

therefore dwarf galaxies located in voids that do not suffer from environmental screening.
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There has been a great effort towards determining the criteria for environmental screening

[85, 86, 87, 88]. Most of these rely on numerical N-body simulations, whose description

lies outside the scope of this review, but the end result is a screening map [89] of the local

universe that classifies galaxies as either screened, partially screened, or unscreened. To date,

all astrophysical tests using dwarf galaxies have been taken from this screening map.

Astrophysical tests ultimately end up constraining regions in the χ0–βpφ0q plane. For our

models of interest, one has

βpφ0q “

$

&

%

Mpl

Mc
Chameleons

µMpl?
λM2

s
Symmetrons

, (3.15)

and

χ0 “

$

’

&

’

%

1
2

´

Mc

Mpl
2

¯
n`2
n`1

´

nΛn`4

3ΩmH2
0

¯
1

n`1
Chameleons

1
2

´

Ms
Mpl

¯2
Symmetrons

, (3.16)

where we have replaced the cosmic density in φminpρq with 3ΩmMpl
2H2

0 .

3.1.1 Screening in fpRq Theories

Given that fpRq models only cover a restricted range of n and have a fixed value of Mc, it

is not particularly enlightening to constrain fpRq theories in terms of Λ and n, even more

so since the cosmological constant is fixed by tuning the parameters so that Λ “ 2.4 ˆ 10´3

eV does not have any special significance. (In this sense, fpRq theories should be thought

of as describing deviations from the ΛCDM model). Instead, constraints are often quoted in

terms of the parameter fR0 “ f 1pR0q, the first-derivative of fpRq evaluated at the present

time in the cosmological background. The significance of this parameter can be seen by

examining the screening in the fpRq formalism. Consider an object of density ρ0 embedded

in the cosmological background where the Ricci scalar curvature is R0 and the density is ρ0.

If one embeds an object with density δρ into this background then it will source a Newtonian

potential (g00 “ ´a
2p1` 2Φq) and perturb R “ R0 ` δR, fR “ fR0 ` δfR [90] such that

∇2Φ “
16πG

3
ρ´

1

6
δRpfR0q (3.17)

∇2δfR “
1

3
pδRpfR0q ´ 8πGδρq . (3.18)

In the limit where δfR ! fR0 there can be no source for δfR and one has δRpfR0q “ 8πGδρ so

that (3.17) becomes ∇2Φ “ 4πGδρ. Therefore, in this limit we recover the Poisson equation

and there are no deviations from GR; the fifth force is screened. In the opposite limit where

δfR " fR0 we can expand δRpfRq « δfR{fRR so that equation (3.18) becomes

∇2δfR “ m2
fδfR ´

8πG

3
δρ, m2

f “
1

3fRR
, (3.19)
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which is the equation of motion for a massive scalar with mass mf . On scales shorter than

m´1
f the mass can be ignored and one finds, using (3.17), ∇2Φ “ 16πGδρ{3 so that the

Newtonian potential is enhanced by a factor of 4{3; the force is fully unscreened. Note that,

in this limit, Equation (3.18) gives |δfR| “ 2Φ{3 but the maximal value of δfR is fR0 so we

conclude that objects must be partially screened if fR0 ă 2Φ{3. Thus we see that fR0 is the

fpRq equivalent of the χ.

3.1.2 Gravitational Lensing: Dynamical vs. Lensing masses

Conformal transformations leave null geodesics unchanged [91] (g̃µν 9xµ 9xν “ A2pφqgµν 9xµ 9xν “

0) so that photons move on geodesics of both g̃µν and gµν . This has some novel implications

for gravitational lensing by massive bodies. Expanding the Einstein frame metric in the

Newtonian gauge:

ds2 “ p´1` 2ΦNq dt2 ` p1` 2ΨNqdx2, (3.20)

the Jordan frame metric is

ds̃2 “

ˆ

´1` 2ΦN ´ 2βpφ̄q
φ

Mpl

˙

dt2 `

ˆ

1` 2ΨN ` 2βpφ̄q
φ

Mpl

˙

dx2, (3.21)

where we have set φÑ φ̄` φ and have absorbed factors of Apφ0q
2 into t and xi (see Section

3.2). We can thus identify the Jordan frame potentials

Φ̃N “ ΦN ´ βpφ̄q
φ

Mpl
Ψ̃ “ Ψ` βpφ̄q

φ

Mpl
. (3.22)

The Newtonian potential, which governs the motion of non-relativistic particles, therefore

depends on φ whereas the lensing potential, Ψ, which governs the motion of photons is

Ψ̃L “
1

2

´

Φ̃N ` Ψ̃
¯

“ ΦN, (3.23)

where we have used the relationship ΨN “ ΦN, which is a result of working in the Einstein

frame. For an extended object of massM, the mass inferred from lensing is the true massM
because the Einstein frame potentials satisfy the Poisson equation. Conversely, the potential

governing the motion of non-relativistic objects satisfies

Φ̃1N “
GM
r2

A2pφ̄q

„

1` 2β2pφ̄q

ˆ

1´
Mprsq

M

˙

“
GMdyn

r2
, (3.24)

which defines a dynamical mass Mdyn ě M with equality for fully screened objects. The

difference between the lensing and dynamical masses is in stark contrast to GR, and is a

particularly useful feature for testing modified gravity using astrophysical observations.

3.2 Solar System Tests

Classical tests of GR use the PPN formalism applied to solar system objects and so in this

Section we will illustrate how these tests apply to screened modified gravity, and why they

yield only weak constraints.
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3.2.1 PPN Parameters

The PPN metric is both an ansatz (for the possible potentials that could appear in the

metric sourced by a massive body) and a gauge choice. There are 10 parameters that can be

calculated and compared with observations, but only two are relevant for conformal scalar-

tensor theories (disformal theories involve four parameters [47]). The PPN metric with these

two parameters is (for a spherically symmetric object of mass M)

g00 “ ´1` 2
GM
r

´ 2β

ˆ

GM
r

˙2

, g0i “ 0, and gij “

ˆ

1` 2γ
GM
r

˙

δij . (3.25)

The parameter γ (“ 1 in GR) sets the amount of light-bending by massive objects, and the

Shapiro time-delay effect; and the parameter β (“ 1 in GR) measures the amount of non-

linearity in the field equations. The term proportional to β is responsible for the precession

of the perihelion of Mercury. Note that the first term in g00 is not free to vary, this is a gauge

choice that implies that G is Newton’s constant as measured in Cavendish-type experiments.

General expressions for γ and β in screened scalar-tensor theories can be found in [92, 93].

It is more instructive, however, to consider the solution for the fifth-force profile of a static

object derived in (3.6). We will ignore the mass of the scalar for simplicity but including it

does not change any of what follows. The calculation of the fifth-force was performed in the

Einstein frame but the PPN metric is defined in the Jordan frame since it is the metric that

controls the geodesics of matter and so our task is to calculate the Jordan frame metric given

φ to Opv2{c2q to find γ. The calculation of β is analogous except one continues to Opv4{c4q;

this calculation is long and tedious, and one does not gain any additional insight. For this

reason, we will only calculate γ.

To begin, we summarize our Einstein frame solution. This is

g00 “ ´1` 2
GM
r

, g0i “ 0, gij “

ˆ

1` 2
GM
r

˙

δij , and φ “ φ̄´ βpφ̄q
M´Mprsq

4πMplr
,

(3.26)

where we have used the fact that F5 “ 2βpφ̄qφ1 to find the field profile. Next, we can expand

the metric as

g̃µν “ A2pφqgµν « A2pφ̄qp1` 2βpφ̄qϕqgµν , (3.27)

where ϕ “ φ ´ φ̄. The factor of A2pφ̄q is usually ignored claiming “Apφ̄q « 1,” but a more

correct treatment is to rescale the coordinates such that t Ñ t{Apφ̄q and r Ñ r{Apφ̄q. We

also need to rescale the massM since this was defined using Einstein frame coordinates, and

Einstein frame densities. Note that one has T̃µν “ A6Tµν , which implies ρ̃ “ g̃µν T̃
µν “ A4ρ.

The mass then needs to be rescaled asMÑ Apφ̄qM. Rescaling the mass and the coordinates,

the Jordan frame metric is

g̃00 “ ´1` 2
A2pφ̄qGM

r

ˆ

1` 2βpφ̄q2
„

1´
Mprsq

M

˙

, g̃0i “ 0, and (3.28)

gij “

„

1` 2
A2pφ̄qGM

r

ˆ

1´ 2βpφ̄q2
„

1´
Mprsq

M

˙

δij , (3.29)
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where the weak-field limit implies we ignore all higher-order polynomials involving φ. More

correctly, the PPN counting scheme assumes φ ď GM{r „ v2{c2 and higher-power terms,

and cross terms, are therefore higher-order.

The Jordan frame metric is not yet in the PPN gauge; we need to rescale

GÑ GN ” A2pφ̄q

ˆ

1` 2β2pφ̄q

„

1´
Mprsq

M

˙

. (3.30)

This defines Newton’s constant as measured in laboratory experiments. The distinction be-

tween G and GN is not overly important for screened modified gravity because these exper-

iments are performed deep in the screened regime and G « GN but is crucial for theories

without screening mechanisms. Performing this rescaling, one finds a metric in precisely the

PPN form with [94, 92, 95, 93, 96]

γ “

„

1´ 2βpφ̄q2
ˆ

1´
Mprsq

M

˙„

1` 2βpφ̄q2
ˆ

1´
Mprsq

M

˙´1

« 1´ 4βpφ̄q2
ˆ

1´
Mprsq

M

˙

.

(3.31)

Note that throughout this derivation we have not made use of any screening mechanisms

directly, we could have taken any conformal field theory and applied the same procedure. The

novel aspect of screening mechanisms is the non-linearity in the field equations, which means

that instead of having |γ´1|92β2pφ̄q, one instead has |γ´1|92β2pφ̄qp1´Mprsq{Mq ! 2β2pφ̄q

in the screened regime. Without screening mechanisms, we would have to tune β2pφ̄q ă 10´5

in order to satisfy the Cassini bound |γ ´ 1| ă p2.1 ˘ 2.3q ˆ 10´5 [97]. With screening

mechanisms, this bound can be automatically satisfied for screened objects (Mprsq «Mprq)
without the need to perform any tunings.

3.2.2 Lensing Revisited

The careful reader will now be puzzled by a conundrum. We have already argued in section

3.1.2 that screened modified gravity (in fact, our derivation above applies equally to all

conformal scalar-tensor theories) does not affect the lensing of light. We have also argued in

this section that the PPN parameter γ ‰ 1 so that light bending by the Sun is different than

in GR, which implies that the scalar does affect lensing. In fact both of these statements are

compatible, the difference is merely a choice of coordinates.

In section 3.1.2, we did not fix to the PPN gauge, and so what we calledG is not the same as

GN, the value measured in laboratory experiments (although these should be approximately

the same since we live in a screened environment). In fact, we could equivalently write

equation (3.24) as

Φ̃1N “
GNM
r2

. (3.32)

This relation is typically tested using kinematics, i.e. by equating it to v2
c {r, where vc is

the circular velocity. Such a test does not determine the mass, but rather, the product

GNM “ GMdyn. If one chooses to set G “ GN then this measurement determines Mdyn,
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and one finds that this is larger than M. Alternatively, one could remove G completely by

measuring Ψ̃ “ GMlens{r and take the ratio ψ̃{Φ̃N “Mlens{Mdyn “ γ. Only the ratio of the

two metric potentials is relevant physically, that is to say, the amount of gravitational lensing

relevant to the force felt by non-relativistic objects. Whether or not φ directly affects lensing

or not is completely a matter of coordinates, and how one chooses to interpret them.

3.3 Equivalence Principle Violations

One important feature of screened modified gravity models is that they do not satisfy the

equivalence principle. By this, we mean that extended objects with identical masses but

differing compositions will not fall at the same rate in externally applied gravitational (New-

tonian + scalar) fields5. This can be quantified by considering the Newtonian equation of

motion for an extended object in external fields Φext
N and φext (defined in the Einstein frame)

respectively

M:~r “ ´M∇Φext
N ´Q∇φext. (3.33)

The mass on the left hand side is the inertial mass of the object whereas the mass on the

right hand side is the gravitational mass, which can be thought of as a gravitational charge

(analogous to the electric charge) for the object. Since we are working in the Einstein frame,

these two are equal. The quantity Q is the object’s scalar charge, which describes its response

to the externally applied scalar gradient; one can show that [52]

Q “ βpφ0q pM´Mprsqq . (3.34)

This implies that the motion of the object depends on the screening radius, which in turn

depends on the objects internal structure. The equivalence principle is thus violated for

all objects except those that are completely screened (because Q “ 0) or fully unscreened

(because rs “ 0 and Q “ M). This equivalence principle violation allows for several novel

tests that we will discuss below.

3.4 Laboratory Screening

Laboratory searches for screened fifth forces, and the particles that mediate them, are typically

performed in a vacuum chamber. Inside this chamber the position of the minimum of the

effective potential can be different to the minimum of the effective potential in the walls of

the vacuum chamber and its environment. This is the key difference between screening in the

laboratory, and screening in other astrophysical environments; in a vacuum chamber there is

a region of low density surrounded by a region of higher density.

5Note that point particles do satisfy the equivalence principle because every matter species appearing in

the action (2.1) is universally coupled to the Jordan frame metric and thus follow the same geodesics. The

motion of extended objects is governed by energy-momentum conservation and it is here that the difference

arises. See [52] for an extended discussion of this.
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The behaviour of the field in the experimental apparatus depends on its mass, as the

corresponding Compton wavelength sets the scale over which the field can vary its value. The

field can only change its value from the exterior of the experiment to the interior of the walls

of the vacuum chamber if its Compton wavelength in the walls is of order the thickness of

the walls or smaller. Similarly, the field can only vary its value from the walls to the vacuum

at the center of the chamber if its Compton wavelength in the chamber is comparable to, or

smaller, than the diameter of the chamber.

The chameleon field can vary its mass much more easily than the symmetron, and as

a result laboratory tests constrain a much broader range of models for the chameleon. If

the symmetron mass is too small it will not be able to vary its VEV over the scale of the

experiment. In this case there are no field gradients in the experiment, and no resulting fifth

forces, so no constraints can be placed. As the symmetron mass increases the vev starts to

vary within the experiment, and a fifth force is present, however this fifth force may then be

exponentially suppressed by the Yukawa term e´mr, where m is the mass of the symmetron

in the vacuum. In general, therefore, laboratory experiments will only constrain a small range

of symmetron masses [98, 99, 100].

The chameleon field can vary more easily in a laboratory vacuum, and therefore is much

more amenable to laboratory constraints. Over a wide range of the chameleon parameter

space the chameleon will not be able to reach the value which minimises its potential in the

interior of the vacuum chamber, and instead it will evolve to the value which sets its mass to

be of order the size of the chamber. Once the corresponding Compton wavelength becomes

smaller than the size of the chamber the field is able to reach the minimum of its effective

potential.

If the experiment is performed in a sufficiently small region at the center of the vacuum

chamber then we can assume that the background value due to the vacuum chamber is

constant. Then, the screening condition simplifies. A sphere at the center of the vacuum

chamber will be screened if there is a solution for the screening radius rs ą 0 to

1´
r2
S

R2
“

ˆ

Mc

MP

˙2 8πM2
PR

Mobj

ˆ

φvac ´ φminpρobjq

M

˙

(3.35)

where Mobj is the mass of the sphere, R its radius and ρobj its density. φvac is the background

chameleon value due to the vacuum chamber. The right hand side of this can be viewed as

the ratio of the chameleon to Newtonian potentials at the surface of the object; this relation

can be found by evaluating equation (3.10) for a sphere of constant density.

Clearly determining both the background value of the scalar field and the condition for

screening become more complicated for non-spherical geometries, and in these cases numerics

are needed to place definitive constraints. However the principles described here will still

guide the shape of the field profile, and the conditions for screening.

Laboratory searches for fifth forces are performed with both classical and quantum exper-

iments. To determine the condition for screening in a quantum experiment requires a little

more thought. If the experiment is sufficiently low energy that the internal structure of the
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source is not disrupted, it must still be checked how the chameleon screening condition is

affected by the delocalisation of the object’s center of mass [101]. The chameleon can re-

spond to changes in the position of the source on timescales on the order of 1{meffpφvacq, and

a delocalised source can be considered to fluctuate around with a time-scale Rtrap{v where

Rtrap is the spatial extent of the trapping potential, and v is the velocity of the particle. If

pv{Rtrapq ă mvac the chameleon field can respond to the quantum fluctuations of the object

and therefore it is the object’s density and size which determine whether the object is screened,

regardless of the uncertainty on its center of mass position. Otherwise the chameleon cannot

respond to the fluctuations in the position of the source, and the relevant density in the

screening condition is ψ̄objψobj, where ψobj is the wavefunction of the object [101].

3.5 Screening in the Jordan Frame

In this review we will work exclusively in the Einstein frame but, for completeness, and because

it has received little attention in the literature, we will discuss how screening works in the

Jordan frame. We will follow the notation of [52], who have provided the most comprehensive

treatment to date6, although we will not perform the full Einstein-Infeld-Hoffmann approach

for extended objects, instead we will work with the one-body problem to be consistent with

our analyses above. Written in the Jordan frame, the action (2.1) is

S “

ż

d4x
a

´g̃

„

Mpl
2

2A2pφq
R̃pg̃q ´

kpφq

2
BµφB

µφ´
V pφq

A4pφq



` Smrg̃µνs, (3.36)

where

kpφq “
1

A2pφq

«

1` 6Mpl
2

ˆ

d lnA

dφ

˙2
ff

. (3.37)

In the Jordan frame, the matter is minimally coupled to g̃µν but the scalar has a non-canonical

kinetic term, is non-minimally coupled to R, and the scalar potential is VJpφq “ V pφq{A4pφq.

The scalar equation of motion is

kpφqlφ`
dk

dφ
BµφB

µφ´
dVJ

dφ
`

1

2

dA´2pφq

dφ
R̃ “ 0. (3.38)

Since the Ricci scalar appears in this equation, we also need the Einstein equations, which

are

Gµν “
A2pφq

Mpl
2

„

T̃m µν ` kpφqBµφBνφ´ gµν

ˆ

k

2
∇αφ∇αφ` VJpφq

˙

` p∇µ∇ν ´ gµνlqA´2



.

(3.39)

Taking the trace of this, one finds

R̃ “ ´
A2pφq

Mpl
2

”

T̃m ´ kBαφB
αφ` VJ ` 3lA´2pφq

ı

, (3.40)

6Note that our conventions differ from theirs. They use tildes to refer to Einstein frame quantities whereas

we use them to refer to Jordan frame quantities and their function Ωpφq is related to our coupling function via

Ωpφq “ A´1
pφq.
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which can be used to eliminate R̃ in equation (3.38). These equations are complicated, but

they simplify significantly in the Newtonian (weak-field) limit. As discussed by [10, 47], the

expansion parameter in the Newtonian limit is v2{c2 (or GM{R, the Newtonian potential)

and one should take φ „ v2{c2 or smaller. In this case, one has

Anpφq « 1`
nβpφ0qφ

Mpl
, VJpφq « V pφq, BαφB

αφ „ O
ˆ

v4

c4

˙

, and T̃m « ´ρ̃, (3.41)

where we have neglected terms at higher-order than v2{c2 and possible time-derivatives of

the asymptotic field. We remind the reader that ρ̃ „ v2{c2 is the Jordan frame density. In

the weak-field limit, we can therefore ignore all factors of kpφq since they multiply terms that

are higher-order than v2{c27. We may ignore this contribution. With these approximations,

one has R̃ « ´T̃m{Mpl « ρ̃{Mpl
2 so that equation (3.38) becomes (sending l Ñ ∇2 as

time-derivatives are of order v{c in the Newtonian limit)

∇2φ “
dV pφq

dφ
`
βpφ0qρ̃

Mpl
. (3.42)

This is none other than equation (2.7) (the Einstein frame scalar equation of motion) with

the Einstein frame density replaces by the Jordan frame density. In fact, since T̃µνm “ A´6Tµνm

one has T̃m “ A´4Tm so that ρ̃ “ ρ ` Opv4{c4q. The equation of motion for the scalar is

therefore identical in both frames in the weak-field limit. Non-relativistic screening, which is

all we are concerned with in this review, therefore works identically in both frames.

In order to find the fifth-force, one can perform the Weyl-rescaling g̃µν “ A2pφqgµν (taking

the weak-field limit (3.41)) on equation (3.20) to find

ds̃ “

ˆ

´1` 2Φ` 2
βpφ0qφ

Mpl

˙

dt2 `

ˆ

1` 2Ψ´ 2
βpφ0qφ

Mpl

˙

δij dxi dxj (3.43)

so that the Jordan frame potentials are

Φ̃ “ Φ`
βpφ0qφ

Mpl
and (3.44)

Ψ̃ “ Ψ´
βpφ0qφ

Mpl
. (3.45)

In the weak-field limit the force is

F “ ´~∇Φ̃ “ ´∇Φ´
βpφ0q

Mpl

~∇φ. (3.46)

The second term is the fifth-force, which is identical to the total force calculated in the

Einstein frame.

7Technically one does have an Op1q contribution to kpφq « 1`6Mpl
2
{M2 which can be " 1 for some values

of M considered here. In fact, it should be the canonically normalized field, ϕ “
a

kpφqφ „ Opv2
{c2q (at this

order), which is why we can neglect this contribution.

27



4 Experimental Tests

In this section we summarize the present experimental tests of chameleon and symmetron

screening, which range from particle collider and precision laboratory experiments to astro-

physical tests using stars and galaxies.

4.1 Fifth-Force Searches

Fifth-force searches aim to directly measure the force between two objects and search for

deviations from Newton’s law. The experiment is performed inside a vacuum chamber to

reduce noise, and the geometry of the experiment is designed to minimize the Newtonian

force. Recently, some experiments have been designed specifically for the task of searching

for chameleons, either by adapting the geometry to maximize the chameleon force, or by

varying the density inside the vacuum chamber. Typically, scales of order µm or greater are

probed.

4.1.1 Torsion Balance Experiments

Torsion balance experiments typically consist of one mass that acts as a pendulum suspended

above a second that sources a gravitational field and acts as an attractor. The two masses

are arranged in a manner that cancels the inverse-square contribution to the total force so

that the experiment is sensitive to any deviations.

The state-of-the-art in torsion balance tests is the Eöt-Wash experiment [12, 102, 103],

which uses two circular disks as test-masses. The disks have holes bored into them which act

as missing masses, giving rise to a net torque due to dipole (and higher-order multipole) mo-

ments. The upper disk is rotated at an angular velocity such that the contribution from any

inverse-square forces to the torque is zero, and therefore any residual force is non-Newtonian.

The absence of any such forces places strong constraints on non-inverse-square law modifica-

tions of gravity. This includes any scalar-tensor theory where the field is massive, including

Yukawa interactions, and chameleons.

In order to reduce electromagnetic noise, the pendulum and attractor are coated in gold

and a beryllium-copper membrane is placed between them. This poses no additional problems

for linear theories such as Yuakawa forces, but does present several technical complications

for chameleon theories. The membrane may or may not have a thin shell depending on

the parameters under study, and the highly non-linear nature of the field equations make

the theoretical modelling of this non-symmetric system difficult. Over time, several works

have appeared with the aim of improving the accuracy of the theoretical calculation of the

chameleon torque [104, 105, 106, 107, 108], the most recent being the work of Upadhye [109],

which uses the so-called one-dimensional plane-parallel approximation to include the effects

of the missing masses on the chameleon force profile. A similar effort has been undertaken

for symmetron models, with the most stringent constraints presented in [98].
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4.1.2 Casimir Force Tests

The Casimir force (or Casimir-Polder force) is a prediction of quantum electrodynamics.

Classically, two uncharged parallel plates placed in a vacuum would source no electromagnetic

fields and therefore would feel no force; quantum mechanically, they interact with virtual

photons of the vacuum resulting in a net force that can be interpreted as being due to

the zero-point energy of the field between the plates. This force scales as d´4 (d is the

distance between the plates) and is hence sub-dominant to the Newtonian force except at

small separations.

This intriguing force has inspired several experiments to measure it, many of which operate

at sub-mm (and even sub-micron) distances [110, 111]. A chameleon force (per unit area)

between the two plates would scale as [107, 112, 113]

Fcham

A
9d´

2n
n`2 , (4.1)

which always scales with a power ě ´4 (the bound is saturated when n “ ´4). This would

dominate over the Casimir force at large separations and therefore the absence of any deviation

from the Casimir prediction can constrain chameleon models.

In practice, it is difficult to keep the plates perfectly parallel, and very smooth plates are

required for high-precision results. A more convenient scenario is the case where one of the

plates is replaced by a sphere whose radius is larger compared with the separation. In this

case, the Casimir force scales as d´3 and the chameleon force would scale as

Fcham

A
9d

2´n
n`2 . (4.2)

Again, this power is always ě ´3.

The current generation of Casimir force experiments place strong constraints on n “ ´4

and n “ ´6 chameleon models when Λc is fixed to the dark energy scale. The constraints on

other models are not presently competitive with other experiments discussed in this review.

The next generation of experiments will use larger separations where the chameleon force is

more pronounced [103, 110] so more stringent constraints on a broader class of models are

expected.

Interestingly, experiments such as these can be adapted to the chameleon’s unique prop-

erties because one can vary the density of the partial vacuum inside the chamber where

the experiment operates. By changing the pressure of the ambient gas, one can look for a

density-dependent change in the force, which would be a smoking gun of chameleon models

[114, 115].

At the present time, Casimir force experiments have not been applied to symmetron

models, mainly due to the lack of any theoretical calculations of the symmetron force between

objects of different geometries.
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4.1.3 Levitated Microspheres

A recent addition to the fifth-force hunter’s arsenal, optically-levitated microspheres are ca-

pable of probing forces ă
„ Op10´8 Nq [116]. The spheres have radii of Opµmq and, in the

context of chameleon models, they would therefore be unscreened when Λc ě 4.6 meV (a

factor of two above the dark energy scale). The spheres are held in an upward pointing laser

beam trap by virtue of radiation pressure so as to counteract the Earth’s gravity; any anoma-

lous motion would then be due to non-gravitational interactions. In the case of chameleon

models, a microsphere held in a chameleon gradient would experience a additional force given

by

F “ λ

ˆ

ρ

Mc

˙
ż

sphere
d3~x

Bφ

Bz
, (4.3)

where z is the vertical direction and the sphere’s density ρ is assumed to be constant. The

parameter λ is the scalar charge of the sphere. When the sphere is unscreened, which is the

case for Mc
ă
„ 1010 TeV, the chameleon force is unsuppressed and λ “ 1. When the sphere

has a thin shell one has λ ă 1 and the constraints are not as stringent in this regime.

An experiment measuring forces using levitated microspheres has recently been applied

to chameleon models resulting in new constraints on n “ 1 models [117]; other models have

yet to be considered. Constraints on symmetron models are not currently competitive with

other experiments [99].

4.2 Precision Atomic Tests

Precision atomic tests search for corrections to the structure of hydrogenic atoms by looking

for non-standard perturbations to the Hamiltonian. In the case of chameleons, electrons

would feel a chameleon potential in addition to the Coulomb potential given by

δH “
me

Mc
φN, (4.4)

where φN is the chameleon field sourced by the nucleus. Since the vacuum chamber shields the

experiment from the effects of the external field, chameleons with strong couplings to matter

can be probed by looking for the shifts in the atomic energy levels due to this perturbation.

In particular, this shielding implies that the nucleus is fully unscreened so that the shifts to

the lowest energy levels are [118]

∆E1s “ ´
ZmNme

4πa0M2
c

(4.5)

∆E2s “ ∆E2p “ ´
ZmNme

16πa0M2
c

, (4.6)

where Z is the atomic number, mN is the nucleon mass, and a0 is the Bohr radius. The

potential coupling of the chameleons to photons will break the degeneracy between the 2S

and 2P levels.

30



Presently, the 1S-2S transition in atomic hydrogen is the best constrained, having a total

uncertainty of 10´9 eV (at 1σ) [119, 120, 121]. The excellent agreement with standard atomic

theory constrains the chameleon coupling

Mc
ą
„ 10 TeV. (4.7)

The effects of symmetron models on atomic transitions has yet to be investigated, although

the Z2 means that the effective interaction with nucleons and electrons is higher-order i.e.

L Ą me
φ2

2M2
s

ēe, (4.8)

so that one would not expect this test to be as constraining.

4.3 Atom Interferometry

Atom interferometry is a hybridization of classical interferometric experiments and quantum

mechanical double slit experiments. Atoms can be put into a superposition of two states,

which travel along different paths and hence act like the arms of an interferometer. The two

paths can be recombined later to produce an interference pattern that can be measured.

The atoms can be moved within the interferometer by shining laser light on them. If an

atom absorbs a photon, it will be excited into a higher energy state and acquire the photon’s

momentum, resulting in some linear motion. In the absence of any observation, the atom is

in a superposition of the ground state (where it is stationary) and an excited state (where it

is in motion). The atom can be put into a superposition of states that travel along different

paths by repeating this process several times.

The probability of measuring the atom in an excited state at the output of the interfer-

ometer is a function of the difference in phases accumulated by the wave functions on the two

paths. If the atom is moving in an external force field that causes some constant acceleration

a then this probability is

P “ 9 cos2

„

akT 2

~



, (4.9)

where k is the photon momentum and T is the duration of the experiment.

A massive object placed inside the vacuum chamber will source a gravitational field that

contributes to a. If, in addition to this, the object sources a chameleon field then this too con-

tributes and the probability of measuring excited atoms is sensitive to it. Since atoms placed

in vacuum chambers are unscreened over a large range of the parameter space, this experiment

is incredibly sensitive to chameleon and symmetron forces [101, 122, 123]. Indeed, the first

generation of atom interferometry experiments designed to test screened modified gravity was

able to constrain any anomalous acceleration down to levels of 10´6g (g ” GMC{RC is the

gravitational acceleration at the surface of the Earth), placing new constraints on chameleons

and symmetrons that vastly reduced the viable parameter space [124, 99]. The current gen-

eration of experiments has constrained this further to À 10´8g, reducing the parameter space

further [125].
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4.4 Precision Neutron Tests

Neutrons are perfect objects for testing short-range gravitational physics because they are

electrically neutral, and are therefore not sensitive to electromagnetic noise such as back-

ground fields and van de Walls forces8. This has motivated a recent interest in using neutrons

to test chameleon models, which we summarize below. At the present time, all of the con-

straints derived using neutron experiments fix Λc to the dark energy scale.

4.4.1 Ultra-cold Neutrons

It is possible to arrange for neutrons produced in nuclear reactors to bounce above a mirror.

These neutrons interact with the Newtonian potential of the Earth leading to a quantized

energy spectrum. The mirror itself could source a chameleon field, which would act as a

perturbation to the neutron Hamiltonian given by [126, 127]

∆H “
mN

Mc
φ “

2.2 keV2

Mc

ˆ

z

82µm

˙

, (4.10)

where z is the distance above the mirror. If this perturbation were large enough, new bound

states would appear in the spectrum. No such states have been observed by a qBounce exper-

iment at the Institut Laue-Langevin in Grenoble, which immediately places a new constraint

[126]

Mc ą 104 TeV. (4.11)

Away from this regime, the perturbation (4.10) leads to a shift in the energy levels. This can

be probed using resonance spectroscopy, the most constraining transition being |3y Ñ |1y.

The absence of any observed shift leads to the stronger constraint [128]

Mc ą 1.7ˆ 106 TeV (4.12)

for n “ 1. In this review, we use the most up to date (at the time of writing) constraints

given in [129]9.

Bouncing neutron techniques have not yet been applied to symmetron models. The effec-

tive interaction for these models would be

mN
φ2

M2
s

n̄n, (4.13)

and so one may expect a similar issue to testing symmetrons using precision atomic tests

i.e. the higher-order nature of the interaction means that it would be naturally suppressed,

leading to weaker constraints than chameleons.

8Atoms are neutral as well but one advantage of neutrons is that their polarizability is 15 orders of magnitude

smaller, making Van de Waals forces less of a background. We are grateful to Tobias Jenke for pointing this

out to us.
9We thank Tobias Jenke for providing us with the numeric values.

32



4.4.2 Neutron Interferometry

In an analogous manner to optical interferometry, a coherent beam of neutrons can be split

and later recombined to produce interesting interference patterns [130, 131]. A mono-silicone

crystal plate can be used for this purpose.

The proposal for testing chameleons using this technique is to introduce a cell composed of

two parallel plates into the path one of the beams. A chameleon profile will develop between

the two plates leading to a phase shift for the neutrons given by [131, 132]

δϕ “
m2
N

~2kMc

ż d

´d
φpxq dx, (4.14)

where x is the horizontal direction and the plates are located at x “ ˘d. This phase shift

is maximum if the plates are in vacuum (or, rather, a partial vacuum) but diminishes if one

were to inject gas at a higher density due to the suppression of the chameleon field. Such an

experiment has been performed by two groups [133, 134], who report consistent bounds in

the range

M ą 107–108 TeV (4.15)

for models with 1 ď n ď 6, with stronger bounds being obtained for lower n.

4.5 Astrophysical Tests

In this section we describe tests of chameleon and symmetron models using astrophysical

objects. In many cases, the constraints are phrased in terms of χ0 and βpφ0q and so the

specific model is not important. We will not include bounds from binary pulsars since they

are uncompetitive and subject to astrophysical uncertainties to do with the screening level of

the Milky Way [135, 136].

4.5.1 Distance Indicator Tests

Determining the distance to astrophysical objects is a notoriously difficult task because only

the flux of emitted photons, can be measured. Since this depends on both the distance and

the absolute luminosity of the source via

F “
L

4πd2
(4.16)

some knowledge of the luminosity L is needed to infer the distance. Distance indicators are

objects with some intrinsic or empirical relation between their luminosity and other observable

properties. One famous example are type-Ia supernovae, where the luminosity can be found

by fitting their light curve, making them standard candles.

In the context of modified gravity, it is possible that the relation used to determine

the luminosity is sensitive to gravitational physics. If the relation has been calculated using

general relativity, or has been determined empirically using local (screened) observations, then

33



it will give incorrect distances when applied to unscreened galaxies. In contrast, relations that

are insensitive to the theory of gravity will always give the correct distance. Comparing how

well different distance estimates to theoretically unscreened galaxies agree can therefore yield

new constraints.

One robust distance indicator that is not sensitive to screened modified gravity is the tip

of the red giant branch (TRGB). Low mass post-main-sequence stars (Md
ă
„ M ă

„ 2Md)

in the process of ascending the red giant branch (RGB) consist of an isothermal helium

core surrounded by a thin hydrogen-burning shell. The hydrogen in this shell is continually

processed into helium that is deposited onto the core, causing it’s temperature to rise steadily

as the RGB is ascended. When the temperature is sufficiently high, the triple-α process (core

helium burning) can proceed efficiently, at which point the star moves to the asymptotic

giant branch in a very short time-scale. This leaves a visible discontinuity in the I-band.

The discontinuity occurs at fixed luminosity (I “ 4.0 ˘ 0.1, the error is due to a very weak

metallicity dependence [137, 138, 139]), making the TRGB a standard candle. Importantly,

the physics of the helium flash is set by nuclear physics and is non-gravitational in origin,

elucidating our earlier assertion that this distance indicator is insensitive to modified gravity10.

Cepheid variable stars are distance indicators that are sensitive to modified gravity.

With masses between 4 and 10Md, these stars enter a phase where their structure is dom-

inated by semi-convection—a convective process driven by inverse-gradients in the chemical

composition—shortly after ascending the RGB, resulting in large temperature increases with

a relatively small change in luminosity. This results in so called blue loops in the Hertzprung-

Russell (or color-magnitude) diagram. Whilst traversing the blue loop, the star crosses the

instability strip where it is unstable to pulsations due to the presence of a layer of doubly-

ionized helium11. Cepheids pulsate with a well-measured period-luminosity relation (PLR)

where the period Π9
a

R3{GM. This relation is therefore different in unscreened galaxies,

and, in particular, if one applies the locally measured formula to an unscreened galaxy one

under-estimates the distance by a factor

∆d

d
« ´0.3

∆G

G
. (4.17)

The screening mechanisms above can therefore be tested by comparing TRGB and Cepheid

distances to unscreened galaxies. Reference [140] have done precisely this for a sample of 25

galaxies taken from the screening map [89]. They also compared distances to a similar sample

of screened galaxies as a control set. They found a similar agreement and scatter in both

cases, and a χ2-fit to both GR and modified gravity models yielded constraints12 in the χ0–

10Technically, this is only the case when χ ă„ 10´6, corresponding to parameters where the hydrogen burning

shell becomes unscreened. When this happens, the core temperature increases at a faster rate leading to a

reduction of the tip luminosity because the star has less time time to ascend the RGB. We will see shortly

that χ ą 10´6 can be ruled out by other, independent means and so we will not dwell on this too much here.
11This has the result that small compressions result in an increased opacity that in turn causes an increase

in the energy absorbed. The energy dammed up by this compression drives the pulsations. This is known as

the κ-mechanism
12Metallicity and other corrections produce a positive ∆d{d, which makes the constraints even stronger.
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βpφ0q plane that we translate into chameleon, symmetron, and fpRq parameters in section

5.

4.5.2 Rotation Curve Tests

The circular velocity of objects orbiting the center of galaxies is given by

v2
c “

GMgalprq

r2

ˆ

1` 2βpφ0q
Q

M

˙

, (4.18)

where the scalar charge Q is defined in equation (3.34) and Mgalprq is the galactic mass

enclosed by r. If 10´8 ă
„ χ0

ă
„ 10´6 then dwarf galaxies are unscreened but their constituent

stars are not because their Newtonian potential allows them to self screen (see Table 1). Stars

in unscreened dwarf galaxies therefore have Q{M “ 0. In contrast, diffuse hydrogen gas with

ΦN „ 10´11–10´12 cannot self-screen and has Q{M “ βpφ0q. Assuming that the galaxy is

completely unscreened, the ratio of the circular velocity of stars and gas is then

vc, gas

vc, ‹
“

a

1` 2β2pφ0q (4.19)

implying that the galactic rotation curve measured using stellar observations will disagree

with the rotation curve measured using observations of the interstellar gas. This is a direct

consequence of the equivalence principle violation (i.e. Q ‰M).

Measurements of the galactic rotation curves typically use either Hα emission or the 21

cm line, both of which probe the gaseous component. An alternate but less prevalent method

involves measuring the Mgb triplet lines, which are due to absorption in the atmosphere

of K- and G-stars (0.45Md
ă
„ M ă

„ 1.2Md). At present, the screening map contains six

unscreened dwarf galaxies for which both Mgb and either Hα or 21 cm data (or both) are

available. Using this, [141] have reconstructed both the gaseous and stellar rotation curves,

and have used them to test the prediction (4.19) using a separate χ2 fit for each galaxy. The

has placed new constraints in the χ0–βpφ0q plane which are comparable with the Cepheid

bounds.

4.5.3 Galaxy Clusters

The predicted difference between the dynamical and lensing masses discussed in Section 3.1.2

can be tested using observations of galaxy clusters, for which there is a wealth of X-ray and

weak lensing data available. The X-ray brightness temperature is a measure of the mass of the

hot gas in the intra-cluster medium, which is in hydrostatic equilibrium and hence satisfies13

dP

dr
“ ´

GMdynρ

r2
. (4.20)

13This assumes that the gas entirely supported by thermal pressure. In practice, one expects a small amount

of non-thermal pressure but N-body simulations of chameleon theories have shown this to be negligible [142].
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X-ray observations therefore probe the dynamical mass whereas weak lensing probes the

lensing mass, so comparing the two places new constraints on screening. This was first done

by [143] using observations of the Coma cluster to find the new constraint fR0 ă 6 ˆ 10´5.

Reference [142] subsequently applied the same methodology to a sample of 58 clusters using

X-ray data from the XMM Cluster Survey and weak lensing data from CFHTLenS to obtain

further constraints on more general chameleon models.

4.6 fpRq Specific Tests

In this section we will briefly summarize tests that have been specifically designed to test the

Hu & Sawicki [63] fpRq theories discussed in section 2.1.1. Note that, since these theories

correspond to chameleons with ´1 ă n ă ´1{2, many of these tests are unconstraining for

more general chameleon models. Similarly, specific tests are needed to target this parameter

range. Note also, that fpRq models are designed to be cosmologically relevant, and so the

majority of the tests discussed here are astrophysical in nature. In what follows, we will only

focus on b “ 1 (n “ ´1{2) models because the majority of tests have reported constraints for

this model only. Larger values of b are more readily screened and so one would expect the

constraints to be weaker. Note that some tests mentioned above report bounds on fR0. We

will not repeat that discussion here. A full list of constraints on fR0 can be found in [144]

Table 1.

4.6.1 Solar System Bounds

One can solve the field equations sourced by the Sun to find a bound on the the value of

fgal
R “ dfpRq{dRpρgalq (defined as dfpRq{dR at the Milky Way density) [63]

fgal
R “ pγ ´ 1q

GMd

Rd
ă
„ 4.9ˆ 10´11, (4.21)

where γ is the Eddington light-bending parameter in the PPN formalism. Relating the galactic

density to the cosmological density (ρgal “ 10´24 g cm´3) one finds

fR0 ă 74p1.23ˆ 106qb´1

„

R0

µ2

Ωmh
2

0.13

´pb`1q

, (4.22)

which gives fR0
ă
„ 0.03 for b “ 1.

4.6.2 Strong Gravitational Lensing

Another method to probe the predicted discrepancy between the dynamical and lensing mass

of an object is to use strong lensing by individual galaxies. In this case one can use the stellar

dispersion relation to calculate the dynamical mass. Reference [145] has performed such a

test for a sample of galaxies from the Sloan Lens ACS (SLACS) survey and find a constraint

fR0 ă 2.5ˆ 10´6.
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4.6.3 Cluster Density Profiles

N-body simulations of fpRq gravity have repeatedly predicted an enhancement in the dark

matter halo density profiles around the virial radius compared with GR [146, 147]. This

is an artefact of the late-time unscreening in fpRq models. The center of the galaxy is

largely unaffected because it is both screened and formed earlier when the screening was

more efficient. In contrast, there is a pile-up of mass in the outer regions, which form at

later times, due to the weaker screening. Reference [148] has used weak lensing data for the

Max-BCG galaxy cluster sample from the SDSS to probe this potential novel feature, finding

a constraint fR0 ă 3.5ˆ 10´3.

4.6.4 Cluster Abundances

The statistics of galaxy clusters is very sensitive to the theory of gravity. For fpRq theories, the

enhanced gravitational force results in a higher abundance of rare massive clusters compared

with GR [146] meaning the halo mass function is modified. Making quantitative theoretical

predictions for this requires knowledge of physics deep within the non-linear cosmological

regime and so N-body simulations and spherical collapse halo models calibrated on them are

required in order to make quantitative predictions.

The first bound obtained by looking at cluster abundances yielded fR0 ă 1.2 ˆ 10´4

[149]. This was obtained by using X-ray inferred clusters in combination with a variety of

different cosmological datasets available at the time. A stronger bound fR0 ă 1.6 ˆ 10´5

has subsequently been obtained by [150] using a full MCMC analysis of the cluster likelihood

function for updated datasets from more recent cosmological surveys.

4.6.5 Cosmic Microwave Background

Modifications of GR change the structure of the equations describing linear cosmological

perturbations, and can hence effect the cosmic microwave background (CMB) [151, 152, 153].

Updating various CMB codes to include the effects of fpRq gravity, several groups have all

obtained a similar bound fR0 ă 10´3 [152, 153, 154, 150].

4.6.6 Scalar Radiation

As was first pointed out by [155], pulsating stars should source scalar radiation and hence

lose energy over time. If too much scalar monopole radiation (which is absent in GR) is

emitted then the pulsations may quench. This was investigated by [156], who found that

the energy loss to monopole radiation is too weak to place any meaningful bounds. They

identified another scenario whereby the scalar radiation sourced by an expanding type II

supernovae could drain the kinetic energy of the expanding matter and significantly impede

the expansion. This places the weak constraint fR0 ă 10´2.
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4.6.7 Redshift-space Distortions

The clustering of matter can be greatly modified in fpRq cosmologies compared with GR, and

this can be particularly pronounced in redshift space [157, 158, 159]. The possibility of testing

this was first investigated by [160], who examined a sample of luminous red galaxies (LRGs)

from the SDSS to find a bound fR0 ă 10´4. A more recent study combining redshift-space

distortion observations with other cosmological datasets found the stronger bound fR0 ă

2.6ˆ 10´6 [161].

4.7 Tests of the Coupling to Photons

In this section we summarize experimental tests of the coupling to photons discussed in Section

2.3. We will restrict our attention to chameleon models, for which the coupling to photons

has been widely studied. Extending these constraints to other models with screening remains

a topic for future work.

4.7.1 PVLAS

The PVLAS experiment [162] studied the polarisation of light propagating through a magnetic

field. The presence of an axion, or axion-like particle coupled as in Equation (2.35) would

mean that, in the presence of a magnetic field, one polarisation of the propagating photon

can convert into the scalar particle and vice versa. The second polarisation will propagate

through unimpeded [163]. This induces rotation and ellipticity into the polarisation of the

incoming laser beam. The PVLAS experiment bounded the induced rotation to be less than

1.2 ˆ 108 rad at 5 T and 1.0 ˆ 108 rad at 2.3 T, and the induced ellipticity to be less than

1.4ˆ 108 at 2.3 T. This constraints the coupling strength Mγ of a light axion-like particle.

In such experiments chameleon particles behave very differently to standard axion-like

particles, precisely because of their density dependent mass. If standard axion-like particles

were produced in PVLAS they would pass through the walls at the end of the vacuum chamber

without interacting and so leave the experiment. For a chameleon to pass through the wall,

the chameleon particle must have enough energy that it can adjust its mass to the higher

value needed for it to exist inside the wall. If it does not have this energy it is instead reflected

from the wall and back into the vacuum chamber [164, 165]. This leads to a large ratio of the

rotation to the ellipticity of the polarisation which is a unique signal of chameleon models.

For a chameleon with a potential V pφq “ p2.3 ˆ 10´3 eVq5{φ, and assuming the coupling

to photons is the same as the coupling to other matter fields, the results of the PVLAS

experiment constrain Mc “Mγ ą 2ˆ 106 GeV.

4.7.2 GammeV-CHASE

A second commonly used experimental design to look for axion-like particles, light-shining-

through-walls, also needs to be modified in order to search for chameleon particles. Experi-
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ments searching for standard ALPs rely on the ability of ALPs to pass through walls which

are impermeable to photons. Light is shone into a cavity across which a magnetic field is

applied. A wall is then placed in this cavity, in the absence of ALPs no light would be seen

on the far side of the wall. But if a photon converts into an ALP before hitting the wall this

ALP can pass through and then may reconvert into a photon on the far side of the wall.

As discussed in the previous subsection, chameleon ALPs cannot pass through walls in the

way that standard ALPs do, and so light-shining through walls experiments cannot constrain

chameleons. However this inability to pass through walls can be developed into a new type

of experiment specifically designed to look for chameleons; these are known as after-glow

experiments [166, 167]. The basic design of the experiment is to shine a laser beam into a

vacuum chamber across which a magnetic field is applied. If there is a non-zero probability

of the photons converting into chameleons then the number of chameleons trapped inside the

chamber (because they cannot pass through the walls) will increase the longer the laser beam

is on. The laser is then turned off, but the magnetic field is left on. Then the chameleons can

reconvert into photons, leading to a detection of light, after the laser has been turned off.

This experiment was successfully performed by the GammeV collaboration, and was

known as GammeV-CHASE (GammeV CHameleon Afterglow SEarch) [168]. Constraints

were placed on values of the chameleon coupling to photons, as a function of the effective

chameleon mass in the chamber [169]. This mass depends on the choice of the chameleon

potential and the strength of the coupling to other matter fields. For the lightest chameleons

inside the vacuum chamber, GammeV-CHASE constrains the coupling to photons to be

Mγ ą 3ˆ 107 GeV [170, 171]. The constraints weaken if the effective mass of the chameleon

is above 10´3 eV.

The modelling of how the chameleon behaves inside the experiment requires care. Whilst

a semi-classical approximation would predict that the chameleon bounces off the walls of the

vacuum chamber unchanged, considering the chameleons as fluctuations in a quantum field

opens up the possibility that the non-trivial self interactions of the chameleon field could

allow a chameleon particle to fragment into a number of lower energy chameleons as it hits

the wall. This was shown not to be a significant effect in the GammeV-CHASE experiment

for the benchmark potentials V pφq “ λφ4 and V pφq “ Λ5{φ [172]. However, for steeper

potentials this effect will start to become relevant.

4.7.3 ADMX

ADMX (Axion Dark Matter eXperiment), is another experiment aiming to detect axions and

axion-like particles through the Primakov effect [173, 174]. However, in this case the axions

come from outside the experiment, and are hypothesised to be responsible for the dark matter

in our galaxy [175]. This set up has been used to constrain chameleon theories using the

same afterglow effect discussed above [176], but using microwave photons trapped in a cavity

instead of laser light. The experiment excluded couplings 5ˆ 103 GeV ăMγ ă 1ˆ 109 GeV

for effective chameleon masses in the cavity „ 1.95 µeV.
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4.7.4 CAST

The CAST (CERN Axion Solar Telescope) experiment searches for axions produced in the

Sun, by looking for their reconversion into photons in the bore of a decommissioned LHC

magnet [177]. Results from this search can be applied to chameleons, if they are also produced

in the Sun. At the particle level the processes which produce chameleons are the same as those

that produce scalar axion-like particles, but determining the total flux of chameleons from

the Sun requires taking into account the added complication that the mass of the chameleon

field varies with the density of the solar medium [178].

CAST has not yet detected a signal from the Sun, and so bounds can be placed on

the chameleon couplings. They exclude photon couplings Mγ ě 2.6ˆ 107GeV, for a range of

couplings to matter 1012 GeV ďMc ď 1018 GeV, assuming that the bare chameleon potential

is V pφq “ p10´3 eVq5{φ [179].

There are also proposals by the CAST collaboration to detect solar chameleons using a

novel force sensor [180]. While chameleons may be produced in the sun due to the coupling

to photons, the detection mechanism itself does not rely on the coupling in Equation (2.35).

The detection relies on having a force sensor sufficiently sensitive that it can measure the

chameleon radiation pressure [181], which comes about as the chameleons emitted from the

Sun bounce off the sensor, for the same reason that chameleons are reflected from the walls

of vacuum chambers, the chameleon particle does not have enough energy to adjust its mass

sufficiently to pass through the membrane of the sensor.

4.7.5 Collider Constraints

The collider constraints on chameleon models can also be extended to include the coupling to

photons in equation (2.35). This leads to additional loops, which should be inserted into the

diagrams, and allows for additional production and decay processes which should be included.

Analysis of precision electro-weak data from LEP constrains Mγ Á 103 GeV [182].

4.7.6 Galactic and Extra-Galactic Constraints

The effects of the chameleon on light propagating through magnetic fields, originating in the

interaction of equation (2.35), can also be relevant to astrophysical observations. For many

observations, light from distant sources has to propagate through galactic, intra-cluster, or

extra-galactic magnetic fields in order to reach us. Whilst the magnetic fields strengths are

much lower than those achievable in the laboratory they extend over much larger distances,

meaning that the astrophysical constraints can in principle be more stringent that those

achieved in the laboratory. They do, however, come with much larger uncertainties around

the initial luminosity of the source, the polarisation of the light it emits, and over the structure

of the magnetic fields. Astrophysical magnetic fields also display much more structure than the

coherent magnetic fields used in laboratory, which adds to the complexity of the calculations.

In [183] it was shown that chameleons coupled to photons can induce both linear and
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circular polarisation into light from stars. As long as the chameleon mass is smaller than

the local plasma density, then it can be neglected in these calculations, meaning that the

constraints are largely model independent as long as the chameleon is light on astrophysical

scales. Within the galaxy this requires mφ ă 1.3 ˆ 10´11 eV. From measurements of the

polarisation of galactic stars, expected to be largely unpolarized initially, the bound Mγ ą

1.1ˆ109 GeV was derived. Assuming the magnetic field strength of the intergalactic medium

is B « 3 µG and the coherrence length is 20 pc. The polarisation of light from the Crab

nebula, type 1a supernova, high redshift quasars, gamma ray bursts and the CMB was also

analysed but the bounds were weaker than those from observations of stars.

Looking for the depletion in luminosity of astrophysical sources from photons converting

into chameleons is difficult because there is generally no way of determining the intrinsic

luminosity of the source. However, for some astrophysical objects, correlations have been

observed between the luminosity of the source, and a second observable that should not be

affected by the coupling to chameleons. The best constraints of this form on chameleons come

from looking at Active Galactic Nuclei (AGN) where the X-ray luminosity at 2 keV is observed

to be tightly correlated with the optical luminosity at 5 eV [184, 185]. Similar luminosity

relations exist for blazars and gamma ray bursts, but these give rise to weaker constraints.

As the probability of a photon converting into a chameleon increases with the frequency of the

photon, the effects of the chameleon on the X-ray luminosity of the AGN can be significant,

whilst the effects on the optical luminosity remain small. Therefore the luminosity relation

can be used to constrain the chameleon [186], with the current best constraint Mγ Á 1011 GeV

assuming, again, that the chameleons are sufficiently light, mφ ă 10´12 eV, on astrophysical

distance scales that the effects of their mass are negligible [186, 187].

The conversion of photons into chameleons also will increase the opacity of the universe

at high frequencies. In [188] tests of the distance duality relation, which relates luminosity

distance and angular diameter distance to sources, were used to derive constraints on cosmic

opacity. This can be viewed as a test of chameleons because depletion of photons from

the source will change the luminosity distance, whilst leaving the angular diameter distance

unaffected. Constraints are currently not competitive with those from starlight polarisations,

but should be expected to improve significantly with new data from upcoming cosmological

surveys.

Light from the cosmic microwave background also passes through magnetic fields on its

way to us, although constraints from CMB intensity and polarisation data are difficult to

apply because of our lack of knowledge about primordial magnetic fields [189]. Knowledge

of the magnetic fields of localised objects, such as the Coma cluster, mean that constraints

can be obtained from measurements of the Sunyaev-Zel’dovich (SZ) effect. The SZ effect is

the distortion of the CMB spectrum by inverse Compton scattering of high-energy electrons.

The effect of converting photons into chameleons in the cluster’s magnetic field, also depletes

the expected photon number, but with a very different frequency dependence. Knowledge of

the Coma cluster’s magnetic fields leads to the constraint 1.1ˆ 109 GeV ÀMγ [190].
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Test Chameleons Symmetrons

Eöt-Wash 3 3

Casimir force 3 7

Microspheres 3 7

Precision atomic tests 3 7

Atom interferometry 3 3

Cold neutrons 3 7

Neutron interferometry 3 7

Distance indicators 3 3

Rotation curves 3 3

Cluster Lensing 3 7

Table 2: Summary of present tests of chameleon and symmetron theories.

4.8 Summary of Tests

Here, we briefly summarize the tests that have been used to test screened modified gravity

to date. The summary is given in Table 2 and we do not include fpRq-specific tests because

they do not carry over to more general models.

5 Constraints

In this section we convert the constraints discussed in the previous section into a single and

familiar parametrization and combine them to show the presently allowed parameter ranges.

5.1 Chameleon Constraints

The current bounds on chameleon models are shown below. We cover the two most commonly

studied models n “ 1 (Figure 4) and n “ ´4 (Figure 5). In these cases we plot Λ vs. Mc.

Furthermore, many experiments focus on the case Λ “ ΛDE “ 2.4 meV (the dark energy

scale) and so for this choice we plot Mc vs. n for both positive (Figure 6) and negative n

(Figure 7).

5.1.1 fpRq Constraints

We show the current constraints on the Hu & Sawicki b “ 1 fpRq model (2.19) in Figure 8.

The x-axis labels each specific test and the y-axis shows the resultant upper limit on fR0. It is

common to express constraints on fR0 showing the length scale on which they were obtained

(e.g. [144]). Whilst complementary tests on all scales are crucial consistency checks of the

theory, it is important to note that this length is not a new parameter appearing in the theory,

and that it is the same parameter fR0 being constrained no matter the test or the length scale
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Figure 4: Current bounds on the parameters Mc and Λ for n “ 1 chameleon models. The

regions excluded by each specific test are indicated in the figure; the region labelled astro-

physics contains the bounds from both Cepheid and rotation curve tests. The dashed line

indicates the dark energy scale Λ “ 2.4 meV. The black, red, and blue arrows show the lower

bound on Mc coming from neutron bouncing and interferometry. The blue corresponds to

the bounds of [133] and the red to the bounds of [134].
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that it probes. For this reason, we have included the typical length scale for each test in the

figure.

The point labelled “Milky Way” is not derived from any specific test and is simply the

statement that the fR0 should be smaller than the Newtonian potential of the Milky Way.

One does not need to impose this a priori because it is not clear whether or not the Milky

Way is screened by the local group; we include it here for completeness, and to make contact

with those parts of the literature that take this constraint as given.

5.1.2 Constraints on the Coupling to Photons

The constraints on the coupling to photons are shown in Figure 9. We only show constraints

for n “ 1 models since many experiments only report bounds for these models at the present

time. Furthermore, many of the experiments restrict to the case Λ “ ΛDE “ 2.4 meV and

so we do the same here. The results from ADMX are not included since they are presented

in terms of meff rather than the fundamental parameters. One could convert the constraints

into the Mc–Mγ plane, but this depends on the geometry and densities of the experimental

apparatus, which are not sufficiently well known. Similarly, we do not include astrophysical

bounds due to the need to make assumptions about the strength of magnetic fields and the

value of the ambient density.

5.2 Symmetron Constraints

The current bounds on the symmetron parameters Ms and λ are shown in Figure 10 for some

commonly studied values of µ indicated in the caption.

6 Conclusions and Outlook

Chameleon and symmetron models have been a paragon for viable, interesting, and relevant

infra-red modifications of general relativity for over a decade. The screening mechanism has

resulted in theories of gravity that are perfectly consistent with general relativity’s predic-

tions in the solar system but are yet falsifiable using novel approaches such as astrophysical

phenomena in distant galaxies, as well as specifically targeted laboratory searches. In many

cases, these models may be relevant on linear (and non-linear) cosmological scales.

In this review, we have surveyed the omnibus of literature providing constraints and have

translated them into a single parametrization in order to assess the current viability of the

models. The main results are presented in Figures 4–10, which can be summarized as follows:

• n “ 1 and n “ ´4 chameleon models (two of the most commonly studied) are tightly

constrained but there is a large parameter space remaining for n ą 1 and n ă ´4 when

Λ is fixed to the dark energy scale. Away from this, the constraints are not as strong.

In many cases, this is because bounds on other models are not reported.
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• Symmetron models are well-constrained by astrophysical probes and atom interferom-

etry but there is a lack of theoretical work translating the bounds from existing exper-

imental results into symmetron constraints. This has resulted in a desert separating

astrophysical and laboratory tests (this could be filled in partially by constraints from

future space-based tests of relativistic gravitation [96]).

• The coupling of chameleons to photons for n “ 1 models is tightly constrained and

there is only a narrow window remaining. The coupling of symmetrons to photons and

chameleon models with n ‰ 1 has yet to be explored.

• Hu & Sawicki fpRq models [63] are well-constrained for b “ 1 but, presently, there are

not enough reported bounds on larger values to make a meaningful comparison. For

b “ 1 the bounds on fR0 are at the 10´7 level. In theory, 10´8 would be achievable

with better statistics; below this, dwarf galaxies begin to become screened and higher-

precision tests are necessary.

• At the present time, the environment-dependent dilaton, which screens in a distinct

manner from chameleon and symmetron models, has not been studied sufficiently in the

context of laboratory and astrophysical tests to produce any meaningful constraints.

6.1 Prospects for Future Bounds

We end by discussing the prospects for future tests of screened modified gravity.

6.1.1 Laboratory Tests

As new experimental techniques are been developed, and existing ones are improved

we can expect bounds on chameleon and symmetron models of screening to continue

to improve. It is to be expected that this will be a combination of the reinterpretation

of experimental results obtained when searching for other types of new physics, and a

smaller number of experiments dedicated to directly searching for screening.

It is difficult to imagine that a single experiment could cover all of the remaining

chameleon and symmetron parameter space, and so ideally a combination of techniques

and searches are needed in order to fully rule out the possibility that screened scalars

exist in our universe.

6.1.2 Astrophysical Tests

Astrophysical objects show strong deviations from GR when the Newtonian potential

ΦN ă χ0 („ fR0 for fpRq theories). Given that current bounds place χ0
ă
„ Op10´7q,

the only objects in the Universe with a low enough Newtonian potential to exhibit novel
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effects are dwarf galaxies located in voids, and several tests using such galaxies have

been proposed.

The rotation curve test described in Section 4.5.2 suffers from a lack of unscreened

galaxies, and a larger sample would improve the constraints. Future and upcoming

data releases, in particular SDSS-MaNGA, can provide a larger sample size that would

significantly improve the bounds. Additional tests, such as the warping of galactic disks

due to equivalence principle violations have been proposed [191], although a test using

SDSS optical and ALFALFA radio observations did not yield any bounds on the model

parameters [192]. Future radio surveys such as VLT may be more fruitful.

Finally, N-body simulations are uncovering a variety of novel phenomena exhibited by

chameleons on non-linear cosmological scales [41]. Many of these are clear smoking-gun

signals that could be measured with upcoming peculiar velocity and galaxy redshift

surveys [193].

6.1.3 Tests of the Coupling to Photons

The increase in interest in axions and axion-like particles as dark matter candidates has

lead to a series of proposals and experiments aimed at further constraining these parti-

cles which, in many cases, focus on their interactions with photons. These experiments

present an exciting opportunity for new constraints on theories with screening, but the

details of how powerful these constraints can be remain to be worked out.
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Figure 5: Current bounds on the parameters Mc and Λ for n “ ´4 chameleon models. The

regions excluded by each specific test are indicated in the figure. Comparing equation 2.16

with equation 2.17 reveals that λc “ pΛ{ΛDEq
4 and so the values of λc plotted here cover the

same range of Λ as figure 4. The black dashed line at λc “ 1 therefore corresponds to the

dark energy scale Λ “ ΛDE.
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Figure 6: Current bounds on the parameters n and Mc when Λ is fixed to the dark energy

scale ΛDE and n ą 0. The regions excluded by each specific test are indicated in the figure.

The blue region corresponds to astrophysical tests, which includes both Cepheid and rotation

curve tests. The blue and red arrows indicate the lower bounds coming from the neutron

interferometry experiments of [133] and [134] respectively.
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Figure 7: Current bounds on the parameters n and Mc when Λ is fixed to the dark energy

scale ΛDE and n ă 0. The red hashed region indicates values of n where the model is not

a chameleon, and the reader is reminded that only negative even integers are chameleons.

The regions excluded by each specific test are indicated in the figure; the region labelled

astrophysics contains the bounds from both Cepheid and rotation curve tests. The blue

arrow indicates the lower bound coming from the neutron interferometry experiment of [133].
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Figure 8: Constraints on fR0 for b “ 1 Hu & Sawicki fpRq models (see equation (2.19)). The

red dots indicate the upper limit for the specific test given on the x-axis and the points are

labelled by the typical distance scale associated with the relevant test.
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Figure 9: Current constraints on the chameleon coupling to photons, Mγ , for n “ 1 models

with Λ set to the dark energy scale. The bounds coming from each specific test are indicated

in the figure.
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Figure 10: The current bounds on the symmetron parameters Ms and λ. The region of

parameter space excluded by each specific test is indicated in the figure. The Eöt-Wash

region corresponds to µ “ 2.4 meV; the outlines for values µ “ t10´4, 10´3, 10´2u eV are

shown by the solid, dashed, and dotted green lines respectively. The atom interferometry

lines correspond to the regions excluded for µ “ t10´4, 10´4.5, 10´5, 10´5, 2.4 ˆ 10´3u eV

from top to bottom respectively, the latter value corresponding to the dark energy scale. The

astrophysical bounds are insensitive to the value of µ for the values considered here.
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