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Abstract: 

Formation and accretion of ice on the leading edge surface of aircrafts wings may lead to 

disasters. The current de-icing system for aircraft will build up weight, increase energy 

consumption and add complexity to the aircraft systems. Development of icephobic coatings 

is a potential solution to prevent ice formation and/or reduce accretion on the critical surface 

of aircraft.  Icephobic coatings based on poly(dimethylsiloxane) (PDMS) with modification by 

fluorosilane and incorporation of silica nanoparticles have been fabricated. The hydrophobicity 

of the coatings has been measured in normal conditions with atmospheric pressure and room 

temperature, showing improvement of hydrophobicity by the fluorination of PDMS and 

incorporation of silica nanoparticles. The water droplet icing behaviour shows better anti-icing 

performance for fluorinated PDMS (F-PDMS)/silica coatings with a rough surface. The ice 

adhesion strength test results show that F-PDMS coatings without silica nanoparticles have 

lower ice adhesion strength implying better de-icing performance. The wettability of the 

coatings was also measured at reduced pressure and temperature, to study the mechanism of 

higher ice adhesion strength of F-PDMS/silica coatings comparing with F-PDMS based 

coatings. For the design and fabrication of icephobic coatings, compromise on the roughness 
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induced hydrophobicity may become a critical requirement to avoid mechanical interlock 

between the ice and the rough surface. 

Keywords: Icephobicity, Poly (dimethylsiloxane), Wettability, Ice adhesion strength, Water 

droplet erosion 

1 Introduction 

    Ice formation and accumulation on critical aircraft surfaces such as leading edges of wings 

is a serious hazard that will disturb smooth air flow and greatly degrade the ability to 

generate lift and adversely affect the handling qualities of the aircraft.  An investigation of 

icing-related accidents and incidents sponsored by the U. S. Department of Transportation 

reported 308 in-flight icing events including 166 classified as accidents [1]. When aircraft flight 

through supercooled water droplets which often present in stratiform and cumulus clouds, ice 

may form and start to accumulate. Therefore, the ice protection during flight is a critical issue 

for flight safety [2]. An in-flight de-icing method on existing aircraft is to heat the critical 

components using hot air bled from the engine compressor [3] and/or use electrothermal 

heating. However, the in-flight de-icing system will build up weight, increase fuel consumption 

and add complexity to the aircraft systems. 

    Aiming to improve the energy efficiency and operational effectiveness of the current anti-

icing or de-icing system, especially during in-flight, in an environmentally friendly way, 

applying icephobic coatings with anti-icing function, low ice adhesion and mechanical 

durability on the critical regions of aircraft is a potential solution. Although it is an argument 

that some superhydrophobic surfaces may not necessarily be icephobic, more researchers 

suggested surface-roughness-induced hydrophobicity can be used to design icephobic coatings 

[4-17].  
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    The hydrophobicity is normally evaluated in atmospheric pressure and room temperature. 

However, during flight, the highest probability to have icing formation and accumulation is 

between the altitude of 4300 meters and 5000 meters with a temperature of -15 ~ -12 °C and 

pressure of about 0.5 Bar [18, 19]. In the flight condition, the surface-roughness-induced 

hydrophobicity may act differently as it under normal conditions. Gradually, it has been 

realized that the water contact angle should be measured at low temperatures when correlating 

the water contact angle with icephobic performance [20]. However, attention has not been paid 

properly to the possible influence of the environmental pressure. Therefore, hydrophobicity 

study in reduced pressure and/or temperature is essential to evaluate the correlation between 

hydrophobicity and icephobicity. 

    Poly(dimethylsiloxane) (PDMS) is a good candidate for icephobic coatings due to its low 

surface energy [21] and was explored for anti-icing applications [22, 23]. However, it is 

unlikely to reach water contact angle of above 120° using smooth PDMS. To enhance the 

hydrophobicity and icephobicity, PDMS was further modified using fluorosilane and 

incorporated with silica nanoparticles to lower down the surface energy and increase the 

capability of repelling water. Icephobic evaluation of the coatings including water droplet icing 

behaviour and ice adhesion strength were carried out. Moreover, the wettability of coatings 

based on fluorinated PDMS (F-PDMS) with silica nanoparticles (F-PDMS/silica) was also 

evaluated under reduced pressure and/or reduced temperature, to investigate the variation in 

hydrophobicity/icephobicity and mechanisms involved. 

 

2 Experimental details 

2.1 Fabrication of PDMS and PDMS/silica coatings 



4 
 

    Poly(dimethylsiloxane) hydroxyl terminated (PDMS) and methanol were purchased from 

Sigma-Aldrich Company (Dorset, UK). Fumed silica nanoparticles with average size of 15 nm 

were purchased from Evonik. Xylene was purchased from Fisher Scientific Company. 

(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane was purchased from Fluorochem. 

All chemicals were used as received. The PDMS was fluorinated by mixing with 

(Heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (weight percentage of 6.8%) in 

xylene and kept stirring for 2 hours. Then the F-PDMS was mixed with silica (30 wt% and 40 

wt%) in xylene and stirred for 2 hours. The F-PDMS and F-PDMS/silica were used to coat the 

sand-blasted aluminium alloy (2024-T4) substrates by brushing. Then the samples were 

transferred to a furnace for heat treatment at 150 °C for 150 mins to remove the organic solvent 

and complete the curing. For comparison, the pristine PDMS were also used to prepare coatings. 

2.2 Characterization of structure and morphology 

    Fourier transform infrared (FTIR) spectra were recorded by a spectrometer (Spectrum One, 

Perkin Elmer, Akron, OH, USA) using attenuated total reflection mode. The surface 

topography and roughness were investigated by an Optical Profiler (Zeta - 20) and Atomic 

Force Microscopy (AFM, Bruker, FastScan) using PeakForce Mapping mode. The surface 

morphology of the coatings before and after erosion test was measured by the Scanning 

Electron Microscope (SEM, 6490LV, JOEL) under an acceleration voltage of 10 kV after Pt 

was deposited on the samples to prevent charging by the electron beam. 

 

2.3 Test of hydrophobicity and icephobicity 

    Static water contact angle (CA), advancing CA, receding CA and CA hysteresis of the 

surfaces under normal conditions with atmospheric pressure and room temperature were 

characterized using a contact angle goniometer (FTA200, First Ten Angstroms, Inc., 

Portsmouth, VA, USA) with pumping out rate of 1 µL/s. Besides, the water contact angles 
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were also measured under simulated flight conditions under 0.5 bar pressure and/or temperature 

of -12 °C following the method described elsewhere [24]. 

    The water droplet icing tests were performed by monitoring the water droplets with a volume 

of 4 μL on five spots of coated samples and uncoated aluminium substrates for comparison on 

a cold plate setting at -10 °C [25]. The average icing duration was recorded to evaluate the anti-

icing performance. 

    Ice adhesion tests were performed using a centrifuge method with a glaze ice block (mass of 

1.3 g) in a chamber with a temperature of -5 °C. Using the rotation speed at the detachment of 

the glaze ice block, the ice adhesion strength is calculated using the ice block mass and beam 

length [26]: 

                                   𝐹 = 𝑚𝑟ɷଶ                                                            (1)                                                            

Where F is the centrifugal force (N), m is the mass of ice block (kg), r is the radius of the beam 

(m) and ɷ is the speed of rotation (rad/s). From the centrifugal force, the shear stress is 

determined: 

                                       τ =
ி


                                                                      (2)   

Where A is the Area iced (m2), 𝜏 is the shear stress (Pa).  

2.4 Water impinging erosion test 

    To evaluate the coating durability, erosion test (as shown in Figure 1) was carried out. During 

the test, water droplets under compressed gas were sprayed onto the coated specimen from the 

nozzle connected with the water tank using the following parameters including gas pressure of 

103.4 kPa, velocity of up to 37 m/s, liquid flow rate of 72 mL/min, distance between the nozzle 

and the specimen of 4 cm and duration of 90 min.  The water contact angles and surface 

morphology of the coatings were measured before and after the erosion test. 
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Figure 1 Schematic diagram of the water impinging erosion test. 

3 Results and discussion 

3.1 Fluorination of PDMS 

    In general, the interaction between the substrate and ice includes mechanical adhesion and 

electrostatic force. Fluoropolymer can reduce the electrostatic force between the substrate and 

ice due to the low dielectric constant [27]. For a heterogeneous polymer surface containing 

both fluorocarbon and siloxane, the interaction energies between the surface and water droplet 

would be decreased. Therefore, in principle, modification of siloxane by fluorocarbon would 

contribute to better hydrophobicity and icephobicity [21].  

    FTIR spectra of the pristine PDMS and F-PDMS modified using fluorosilane were collected 

to investigate the composition and structure change during the fluorination. Both PDMS and 

fluorosilane contain CH3 groups and the unique groups for fluorosilane are the CF2 and CH2 

groups. It can be seen from the FTIR spectra shown in Figure 2 after fluorination two new 

peaks centred at 1730 cm−1 and 2850 cm-1 / 2916 cm−1 appear which can be assigned to 

vibration mode of CF2  and CH2 indicating existing of fluorosilane composition [28]. Besides, 

the peak at 2963 cm−1 is found on the original PDMS and modified PDMS and it can be 

attributed to the CH3 stretching vibrations originating from the methyl side groups of PDMS 

and fluorosilane which are an overlap of the absorption area [29]. The fluorination of PDMS 
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using fluorocarbon will create a surface with better hydrophobicity by reducing the surface 

energy instead of increasing the roughness. 

 

Figure 2 FTIR spectra of pristine PDMS and F-PDMS modified using fluorosilane. 

3.2 Hydrophobicity and surface morphology 

    The hydrophobicity for the samples with pristine PDMS, F-PDMS and F-PDMS/silica was 

evaluated using water contact angle measurement. Figure 3 shows the water contact angles of 

105° for the pristine PDMS coatings, 124° on F-PDMS based coating, 132° on F-PDMS/(30 

wt%)silica and 157° on F-PDMS/(40 wt%)silica coatings, indicating an improvement of 

hydrophobicity by the fluorination of PDMS and the incorporation of silica nanoparticles. The 

improvement of hydrophobicity by fluorination of PDMS can be attributed to the lower surface 

energy due to the nature of fluorosilane. The hydrophobicity improvement by addition of silica 

nanoparticles is likely to be attributed to the change of surface morphology.  

                                                       

             (a) WCA = 105°    (b) WCA = 124°    (c) WCA = 132°            (d) WCA = 157° 
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Figure 3 Typical water contact angles of (a) pristine PDMS coatings, (b) F-PDMS based 

coating, (c) F-PDMS/(30 wt%) silica nanoparticle and (d) F-PDMS/(40 wt%) silica 

nanoparticle  coating. 

The advancing contact angle, receding angle and contact angle hysteresis have been widely 

used to distinguish different modes or regimes of wetting including Wenzel, Cassie-Baxter, 

lotus and petal, and a transition mode between them [30]. Rose petal tends to have large CA 

hysteresis and high water adhesion as opposed to lotus leaf with low CA hysteresis and low 

adhesion [30]. Table 1 shows the advancing CA, receding CA and CA hysteresis of pristine 

PDMS, F-PDMS and F-PDMS/silica coatings. It can be seen that CA hysteresis reduced from 

23° to 16° and 2° after fluorination and incorporation of silica nanoparticles, indicating lower 

water adhesion. Besides, smaller CA hysteresis is normally found on the surface with Cassie-

Baxter state due to the small solid-liquid contact area and is expected to allow water droplet to 

roll off easily [30, 31]. Meanwhile, larger CA hysteresis is normally found on the surface with 

Wenzel state and it is more difficult to roll off the water droplets as water follows the contours 

of the rough surface [32]. Therefore, reduction of CA hysteresis may benefit the anti-icing 

function of the coatings by allowing water rolling off from the surface. 

Table 1 Advancing contact angle, receding contact angle and contact angle hysteresis of 

pristine PDMS, fluorinated PDMS and fluorinated PDMS with silica nanoparticles coatings. 

 Advancing CA 

(°) 

Receding CA 

(°) 

CA hysteresis 

(°) 

Pristine PDMS coating 126 ± 1.7 103 ± 1.5 23 ± 2.5 

F-PDMS based coating 123 ± 4.4 107 ± 0.13 16 ± 4.5 

F-PDMS/silica coating 134 ± 0.43 132 ± 0.29 2 ± 0.6 



9 
 

Based on the known chemistries, the highest contact angle on a purely smooth surface is 

~120° [33]. To achieve significantly reduced ice adhesion with a correlation of water contact 

angle, micro and nanoscale roughness were needed in principle [33] which is the reason to 

incorporate fumed silica nanoparticles. The surface topography and roughness of F-PDMS 

coating and F-PDMS/silica coatings were investigated by Optical Profiler and AFM and the 

results are shown in Figure 4. The Roughness Average (Ra) measured in the range of 450 μm 

× 550 μm by Optical Profiler are 1.6 μm and 7.3 μm for F-PDMS and F-PDMS/silica 

respectively. The Ra measured in the range of 1 μm × 1 μm are 2.0 nm and 56.4 nm by AFM 

for F-PDMS and F-PDMS/silica respectively. The significantly increased roughness and the 

images show the F-PDMS coatings are relatively smooth, while the F-PDMS/silica coatings 

show a rough surface which increases surface area and creates significant irregularities. Air 

pockets can be formed at the solid/liquid interface when contacting with water droplets, which 

is favourable to obtaining higher water repelling capability. The increased roughness and 

reduced CA hysteresis by the incorporation of silica nanoparticles suggest a transition from the 

Wenzel regime of surface wetting to the Cassie-Baxter wetting [34] which will benefit the anti-

icing performance.  

   

                                   (a)                                                               (b) 
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                          (c)                                                                             (d) 
 
 
 
 

Figure 4 3D optical images of F-PDMS coatings (a) and F-PDMS/silica coating (b) with 

scanning area of 450 μm × 550 μm and scale bar in μm; AFM images of F-PDMS coatings (c) 

and F-PDMS/silica coating (d) with scanning area of 1 μm and scale bar in nm. 

3.3 Anti-icing and de-icing performance 

    It was believed that the ice nucleation rate and macroscopical growth velocity can be greatly 

reduced by a hydrophobic surface owing to low thermal transfer rate caused by a low actual 

solid-liquid contact area between the water droplets and the hydrophobic surface according to 

classical nucleation theory and observation [35]. To evaluate anti-icing performance of the 

coatings, water droplet icing duration on the coating surface was measured. Figure 5 shows the 

average duration for water droplets to frozen is 3.2 seconds, 9.8 seconds, 11.2 seconds and 13.8 

seconds for the aluminium substrate, coatings based on pristine PDMS, F-PDMS and F-

PDMS/silica nanoparticles, respectively, indicating that better anti-icing performance is 

correlated with better hydrophobicity. The thermal transfer rate is lower if the solid-liquid 

contact area is smaller due to high water contact angle. 
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Figure 5 Water droplet icing test results for the aluminium substrate, pristine PDMS, F-PDMS 

and F-PDMS/silica coatings. 

    Besides anti-icing performance, ice adhesion strength is another important parameter to 

evaluate the icephobicity which can reflect the degree of difficulty during de-icing process. For 

coatings with low ice adhesion strength, the ice can be removed with a less mechanical force 

which is desirable for energy efficiency during de-icing process. It was revealed that the ice 

adhesion strength is linearly correlated with 1 + cosθe, with θe standing for the estimated 

equilibrium contact angle which implies that a low ice adhesion strength can be obtained from 

hydrophobic surfaces [5]. The ice adhesion strengths of F-PDMS and F-PDMS/silica coatings 

were measured using the centrifuge method. As observed in Figure 6, the shear stresses 

between the ice and F-PDMS or F-PDMS/silica coatings are all lower than that of the untreated 

aluminium substrates and are well below 100 kPa which is considered as the threshold for 

icephobicity showing icephobicity [36]. However, the ice adhesion of F-PDMS/silica coatings 

is higher than F-PDMS coatings which is not expected according to the conventional 

understanding of the correlation between the hydrophobicity and icephobicity. Considering the 

de-icing purpose, the F-PDMS coatings show better performance comparing with F-

PDMS/silica coatings. It is easy to imagine that the rough surface of F-PDMS/silica may form 

mechanical interlocks between the ice and surface which causes higher ice adhesion. To 
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investigate the underlying mechanism, contact angles on F-PDMS/silica coatings under 

conditions with reduced temperature and/or reduced pressure were measured.  

 

Figure 6 Ice adhesion strengths of coatings based on F-PDMS and F-PDMS/silica on Al 

substrates and untreated bare aluminium substrates. 

3.4 Wetting behaviours at reduced pressure and temperature 

    Conventionally, superhydrophobic surface with high roughness and/or low surface energy 

layer was widely explored to be used for icephobic applications [37]. In general, the 

hydrophobicity was measured in normal conditions with atmospheric pressure and room 

temperature. Aiming for applications as ice protection for aircraft, hydrophobicity / 

icephobicity in-flight conditions with reduced pressure and temperature is helpful to evaluate 

the suitability. The highest possibility of icing formation for an aircraft occurs at the altitude 

of 4300 to 5000 meters with the pressure of 0.5 bar and temperature of -12 °C [18, 19]. Figure 

7 shows the water contact angle of F-PDMS/silica coatings of 119°, 118° and 104° measured 

at reduced pressure ( P = 0.5 Bar, T = 24 °C), reduced temperature (P = 1 bar, T = -12 °C) and 

simulated flight conditions with a reduced pressure and temperature ( P = 0.5 Bar, T = -12 °C). 

It is obvious that the water contact angle measured at reduced pressure and/or temperature is 

much lower than the water contact angle of 157° measured at atmospheric pressure and room 

temperature. The reasons can be explained by the less functionality of air pockets on the 
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roughness-induced hydrophobic surface of F-PDMS/silica coatings and higher surface free 

energy under reduced pressure and/or temperature [38]. The results can partially explain the 

higher ice adhesion strength of F-PDMS/silica coating to be stronger chemical bonds between 

water and surface under reduced temperature [38].  

 

                             (a)                                     (b)                                     (c) 

Figure 7 Typical water contact angles of F-PDMS/silica based coatings measured at different 

environment conditions: reduced pressure (a: P = 0.5 Bar, T = 24 °C), reduced temperature (b: 

P = 1 bar, T = -12 °C) and simulated flight conditions with a reduced pressure and temperature 

(c: P = 0.5 Bar, T = -12 °C) [19]. 

    The surface free energy was calculated based on Owens – Wendt model taking into account 

of the thermodynamic parameters under simulated flight conditions with reduced pressure and 

temperature [18, 24]. Table 2 shows the surface free energy and its components of PDMS / 

silica coatings comparing with commercial coatings [18]. It can be seen that the total surface 

energy, dispersion component and polar component were reduced by 65.3%, 45.7% and 97.6% 

respectively compared with the commercial icephobic coatings. It is believed that the polar 

component mainly influences the adhesion between the water droplet and surface [18].  

Therefore, the significantly reduced polar component implies a reduction of the adhesion of 

water droplet on the surface which facilitates water droplets rolling off and minimize icing 

accumulation. 
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Table 2: Surface free energy and its components of PDMS/Silica coatings and commercial 

icephobic coatings measured in simulated flight conditions [18, 19] 

 
Total  

surface energy  
(mJ/m2) 

Dispersion 
component  

(mJ/m2) 

Polar component  
(mJ/m2) 

PDMS/silica 
coatings 

25.7 24.7 0.7 

Commercial 
coatings 

74.1 45.5 28.6 

Reduction (%) 65.3% 45.7% 97.6% 

 

    To quantify the effect on ice adhesion strength by different pressures and temperatures, the 

work of adhesion, W, was calculated according to Young-Dupré equation [5]: 

                              W=σ(1+cosθ)                                            (3) 

where σ stands for the surface tension and θ stands for the water contact angle. According to 

Equation (3), the estimated work of adhesion between water and the PDMS/silica coatings 

measured in reduced pressure and temperature is 6 to 9 times of that measured in normal 

conditions. It could explain the higher ice adhesion strength of F-PDMS/silica coatings. 

3.5 Durability under water impinging erosion 

    When an aircraft flies through the atmosphere, its surfaces and particularly its leading edge 

of wings may undergo impact by hydrometeors such as rain, hail and ice which can adversely 

affect the flight [39]. Similarly, as the skin of the aircraft, icephobic coatings will also encounter 

the same problem. Durability performance under water impinging erosion for the icephobic 

coatings is extremely important for the practical applications.  Water impinging erosion test 

method was established and used to evaluate the durability of F-PDMS and F-PDMS/silica 

coatings. Water contact angle was measured before and after the erosion test. Wettability test 

results show water contact angle of 125° before erosion test and 127° after the erosion test for 
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90 minutes for F-PDMS based coating. For the F-PDMS/silica coatings, WCA slightly reduced 

from 157° to 151° after the erosion.  

To reveal the surface evolution during water impinging erosion, surface morphology 

characterization was performed for F-PDMS/silica coatings. Compared with the as-prepared 

surface (Figure 8(a)), the coatings after erosion test maintained similar surface morphology, as 

indicated in Figure 8(b). But a few big surfaces cracks formed and grew during the water 

impinging erosion. Cracks on these surfaces are more likely to occur and grow [40]. Therefore, 

although there was not too much change on the surface wettability with the specific water 

impinging erosion, the coating durability does need further improvement. Smooth surfaces 

fabricated by materials with better bonding properties might be a favourable direction for 

improvement of durability.  

    

                         (a)                                                                           (b) 

Figure 8 SEM images of F-PDMS/silica coating before erosion test (a) and after erosion test 

for 90 minutes (b). 

4 Conclusions 

Coatings based on fluorinated PDMS (F-PDMS) and fluorinated PDMS/silica (F-

PDMS/silica) nanoparticles have been developed aiming for ice protection for aircraft. 
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Hydrophobicity test results in normal conditions with atmospheric pressure and room 

temperature show improved hydrophobicity by the fluorination of PDMS and the incorporation 

of silica nanoparticles. The water droplet icing test shows better anti-icing performance with 

F-PDMS/silica coatings due to better hydrophobicity. However, the ice adhesion test shows 

lower ice adhesion strength by fluorinated PDMS coatings without the addition of silica 

nanoparticles. The wetting behaviour measured under reduced pressure and temperature 

revealed much higher work of adhesion between water and F-PDMS/silica coatings under 

reduced pressure and/or temperature implying that higher surface free energy and roughness-

induced-hydrophobicity would play less function to the icephobicity especially for the de-icing 

performance in reduced pressure and temperature. A balance between the anti-icing and de-

icing performance needs to be reached when designing an icephobic coating. A compromise of 

the hydrophobicity by using smooth surface is critical to avoid the increase of mechanical 

bonding between the ice and the rough surface. 
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