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Abstract 

In general, a multi-bubble/droplet configuration cannot sustain a steady state using single-

component multiphase (SCMP) pseudopotential lattice Boltzmann method (LBM). Our study 

shows that the unachievable multi-bubble/droplet system is due to an unphysical mass transfer, 

which we call it “the big eat the small” - the smaller bubbles/droplets become smaller shrink, 

and eventually disappear while the bigger ones get bigger and bigger without a physical 

coalescence. In our present study, the unphysical mass transfer phenomenon is investigated, 

and the possible reason is explored. It is found that there is a spurious flow field formed 

between two bubbles or droplets with different shapes, and such flow field is exactly the 

transfer of high-density mass. In addition, it is found that the curvatures of the interfaces 

determine the direction of the spurious flow field, and for the definition of “the big eat the 

small”, “the big” refers to the interfaces that have larger radii of curvature while “the small” 

represents the interfaces with smaller radii of curvature. Multi-component multiphase (MCMP) 

LBM is also tested in this work and it is found to be free of the unphysical mass transfer. 

Moreover, all the cases show by analysing the unphysical mass transfer phenomena it can be 

summarized that the most likely reason for of the unphysical mass transfer might be the 

essential attractive interaction forces of the pseudopotential LBM. 
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Introduction 

In the past few decades, the lattice Boltzmann method (LBM) has been developed significantly 

due to its remarkable advantages compared with conventional CFD methods in mesoscale [1,2]. 

Meanwhile it has been applied to a broad range of application areas [3-9], such as single/multi-

phase flows, phase change, rarefied gas flows, etc. Among all the members of the LBM 
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community including the colour-gradient LBM [10], the pseudopotential LBM [5], the free-

energy LBM [11] and the phase-field LBM [12,13], the pseudopotential model has shown 

striking superiority in multiphase flows due to its simplicity, versatility and the distinctive 

feature that different phases can be segregated automatically on account of the particle 

interactions. Besides, in comparison with the free-energy and the colour-gradient LBM, the 

pseudopotential LBM has much better performance in dynamic multiphase flows at large 

density ratios and relatively high Reynolds numbers [7].  

The pseudopotential LBM was firstly introduced by Shan and Chen [14,15], and the most 

distinctive feature of this model is the interparticle potential 𝛹 which is based on the local 

density. With the pseudopotential treatment, the particles having the same densities can be 

attracted together, thus causing the phase segregation automatically without any special 

treatment of interface tracking or capturing techniques. The original definition of the 

pseudopotential proposed by Shan and Chen is [14,15] 

𝛹 = 𝜌0 (1 − 𝑒
−

𝜌

𝜌0),                                                     (1) 

where 𝜌 denotes density and 𝜌0 is a constant. The interaction force at the position 𝐱 and time 𝑡 

acting on a partible from the other surrounding particles for single-component multiphase 

(SCMP) models can be expressed as 

 𝑭𝑖𝑛𝑡(𝒙, 𝑡) = −𝐺𝛹(𝒙)∑ 𝑤𝛼𝛼 𝛹(𝒙 + 𝒆𝛼𝛿𝑡)𝒆𝛼,                 (2) 

where 𝐺 is a parameter that determines the strength of the interaction force, 𝑤𝛼 are the weights 

used to calculate the isotropic interaction force, and 𝐞𝛼 and 𝛿𝑡 are the discrete lattice velocities 

and time step, respectively. With Taylor expansion to the interaction force equation (2), the 

following non-ideal equation of state (EOS) can be obtained [5] 

𝑝 = 𝜌𝑐𝑠
2 +

𝐺𝑐𝑠
2

2
𝛹2,                                               (3) 

with which other EOSs such as van der Waals (vdW) EOS [16], Carnahan-Starling (C-S) EOS 

[17] and Peng-Robinson (P-R) EOS [18] can be incorporated into the pseudopotential model 

by replacing the potential equation (1) with the following definition [19] 

𝛹 = √
2(𝑝−𝜌𝑐𝑠2)

𝐺𝑐𝑠2
                                                  (4) 



Incorporating the realistic EOSs into the pseudopotential LBM is an important and effective 

way to increase the density ratio of simulation, which has always been a big issue restricting 

the application of LBM for real multiphase flows. 

In recent years, advances for development of the pseudopotential LBM have been focusing on 

the spurious current [20], thermodynamic inconsistency [21], limited density and viscosity 

ratios [22] by adjusting the equation of state (EOS) [18], interaction force term [23] and force 

scheme [24]. Meanwhile, applications of pseudopotential LBM can be found in a wide range 

of areas such as boiling heat transfer [25], condensation [26], droplet motions [27] etc. Some 

excellent latest review works regarding pseudopotential LBM can be found in references 

[2,5,7]. 

Our previous study shows that the multiple bubbles/droplets cannot coexist stably using the 

normal SCMP models [28], where only the attractive forces between particles are considered 

which drive the phase segregation. The reason for the unachievable multi-bubble/droplet 

system is the unphysical mass transfer which we call it “the big eat the small” - the smaller 

bubbles/droplets become smaller shrink and eventually disappear over time while the bigger 

ones get bigger before a physical coalescence. Chibbaro et al. [23] presented a new model with 

midrange repulsion forces introduced into the interaction forces by involving the second 

nearest-neighbouring particles. This repulsive force mimics the impurities on the liquid/vapour 

interface that prevents the coalescence of contacted droplets/bubbles to achieve multi-

bubble/droplet coexistence as shown in Fig. 1. However, after testing their model, it is found 

that the unphysical phenomenon of “the big eat the small” still cannot be eliminated. As shown 

in Fig. 1(b) and Fig. 1(c), it can be seen that the smaller bubbles still get smaller over time. The 

reason that there are more small droplets left in Fig. 1(a) than bubbles in Fig. 1(c) at the same 

time level is that the unphysical phenomenon of mass transfer is much less severe for multi-

droplet configurations than the multi-bubble configurations. 

   



                         (a)                                             (b)                                            (c) 

Fig. 1 Multi-bubble/droplet configurations in 512 × 512 computational domains with 

periodical boundary conditions using the midrange repulsion model (a) multi-droplet at 𝑡 =

20,000𝛿𝑡 (b) multi-bubble at 𝑡 = 15,000𝛿𝑡 (c) multi-bubble at 𝑡 = 20,000𝛿𝑡 

Besides the use of SCMP models, multi-component multiphase (MCMP) models are also 

widely applied, and the interaction force for this model can be written as [14]  

𝑭𝑖𝑛𝑡,𝜎(𝒙, 𝑡) = −𝛹𝜎(𝒙)∑ 𝐺𝜎�̅��̅� ∑ 𝑤𝛼𝛼 𝛹�̅�(𝒙 + 𝒆𝛼𝛿𝑡)𝒆𝛼,                 (5)                                

where 𝜎  and 𝜎  denote the corresponding components. Using MCMP models to study 

multiphase flows involving multi-bubble/droplet systems is more popular than SCMP models, 

and such studies can be found in reference [29-35]. However, the MCMP always suffers the 

limitation of increasing the density ratio and kinematic viscosity ratio [5], which restricts its 

application to a large extent. 

Our previous paper [28] pointed out the problem of “the big eat the small” in SCMP model for 

the first time and its behaviours in thermal multiphase flow was presented, where we found by 

coupling an entropy-based energy equation the unphysical mass transfer can be effectively 

restrained. In this paper, the features of the unphysical mass transfer phenomenon are studied 

in detail and the possible reason from the viewpoint of algorithm is discussed, to have a better 

understanding of this problem and lay the foundation for completely sorting it out in further 

studies. 

Numerical simulation and discussion 

The original Shan-Chen model [14], an improved Bhatnagar-Gross-Krook (BGK) model in 3D 

with the given code in reference [36], the Gong-Cheng model [37], the midrange repulsion 

model [23] and the Li Q. improved multiple-relaxation-time (MRT) model [38] are all tested 

in our study. These models contain the typical non-ideal EOSs, forcing schemes, and collision 

terms operators of SCMP pseudopotential LBM. After testing these models, it is found that 

none of them can get rid of the unphysical mass transfer. In this paper the Li Q. model [38] is 

used to present the study of the unphysical mass transfer features. 

With the realistic non-ideal EOS applied in the SCMP model, this model is verified by 

comparing the simulation result with the Maxwell construction  

∫ 𝑝𝐸𝑂𝑆
𝑉𝑚,𝑣

𝑉𝑚,𝑙
𝑑𝑉𝑚 = 𝑝0(𝑉𝑚,𝑣 − 𝑉𝑚,𝑙)                                    (6) 



where 𝑉𝑚 is the molar volume, and the subscript 𝑣 and 𝑙 denote vapour and liquid respectively. 

When the saturation temperature 𝑇𝑠 = 0.86𝑇𝑐, the liquid and vapour densities are 𝜌𝑙 ≈ 0.65 

and 𝜌𝑣 ≈ 0.38  in the two-phase system, which correspond to the coexistence densities 

calculated by Eq. (6). Other fluids properties as set as follows. The kinetic viscosities for liquid 

and vapour phases are 𝜐𝑙 = 0.1 and 𝜐𝑣 = 0.5/3. The specific heat is taken as constant 𝑐𝑣 = 6. 

The thermal conductivity is λ = 𝜌𝑐𝑣𝜒  with 𝑐𝑣𝜒 = 0.028.  For the MCMP simulation, the 

original Shan-Chen model [14] is applied, where no non-ideal EOS is considered, therefore the 

model is verified with the Laplace Law 

∆𝑝 =
2𝜎∗

𝑟
                                                                (7) 

where 𝜎∗ is the surface tension. The verification can be seen in Fig. 2. 

 

Fig. 2  Verification of Laplace Law for the MCMP model    

Why the unphysical mass transfer just occurs in multi-bubble/droplet systems as the process of 

“the big eat the small”? Is there “the small eat the big”? In this part a specific particular two-

phase system as shown in Fig. 3 is tested in a 100 × 150 computational area. The top and 

bottom boundaries are solid walls and the left and right boundaries are periodical. The initial 

states are shown in Fig. 3(a) and Fig. 3(e), where the initial radium of the bubble/droplet is 40, 

the height of the bottom vapour/liquid region is 10, and no initial velocity is loaded. In such an 

initial state, either the volume or the area of the liquid/vapour interface of the bottom 

vapour/liquid region is smaller than that of the bubble/droplet. However, this time it is the small 

that “eat” the big, rather than the normal phenomenon “the big eat the small”. Therefore adding 

the unphysical problem in the regular bubble/droplet systems  it can be concluded that it is the 

bubbles/droplets having bigger interface curvature radii that absorb the ones with smaller 



interface curvature radii, rather than the volume of the bubble/droplet or the area of the 

interfaces. 

    

                         (a)                            (b)                            (c)                            (d) 

    

                         (e)                            (f)                             (g)                            (h) 

Fig. 3  The small  vapour/liquid region “eats” the big bubble/droplet (a) bubble system, 𝑡 =

0 (b) bubble system, 𝑡 = 1,100𝛿𝑡 (c) bubble system, 𝑡 = 2,500𝛿𝑡 (d) bubble system, 𝑡 =

3,700𝛿𝑡 (e) droplet system, 𝑡 = 0 (f) droplet system, 𝑡 = 4,200𝛿𝑡 (g) droplet system, 𝑡 =

9,400𝛿𝑡 (h) droplet system, 𝑡 = 10,200𝛿𝑡 

From Fig. 3 it can be also seen that spurious flow fields are generated between bubbles/droplets. 

Moreover, the direction of the spurious flow field is exactly the direction of the high-density 

mass transfer, which means the unphysical mass transfer phenomenon is the transfer of high-

density mass. Besides in the normal SCMP pseudopotential LBM only attractive interaction 

force is considered, and this interaction force only acts on the area where there is potential 

gradient, and the interaction force has the same direction as with the potential gradient, which 

can be concluded from Eq. (2). Normally the high-density particles have high pseudopotentials, 

thus it can be in a manner of speaking that the essence of the normal SCMP pseudopotential 

LBM is the mutual attraction of high-density particles. Adding that the unphysical transfer is 



related to the curvatures of the two-phase interfaces, and the magnitude of the interaction forces 

are apparently concerned with the interface curvature – smaller curvature generates larger 

interaction force, it is most likely that the reason for of the unphysical mass transfer is the 

essential attractive interaction force. To confirm this viewpoint about the reason for of the 

unphysical mass transfer, another example is given in Fig. 4, where an annular liquid film is 

initially placed in a static state. It can be seen that eventually the annular liquid film is 

agglomerated to a sphere liquid droplet, which is more evident to suggest show the high-density 

mass moving driven by the attraction force. 

      

                   (a)                                (b)                                 (c)                               (d) 

Fig. 4   The evolution of an annular liquid film (a) 𝑡 = 41𝛿𝑡 (b) 𝑡 = 521𝛿𝑡 (c) 𝑡 = 1,001𝛿𝑡 

(d) 𝑡 = 1,361𝛿𝑡 

Fig. 5 presents the evolution of multi-bubble/droplet system using MCMP model, and there is 

no unphysical mass transfer observed over time. Fig. 6 gives the comparison of densities and 

spurious currents of the two different components. From Fig. 6(c) and Fig. 6(d), it can be seen 

that the spurious currents point to opposite directions due to the density distributions of the two 

components. Apparently the spurious currents in this model are mainly caused by the attractive 

interaction forces, and the attractive forces of the two components point to the opposite ways, 

thus any unphysical effect owing to the attractive interaction force can be counteracted, which 

should be the reason that there is no such unphysical mass transfer in MCMP LBM. 

           



                                             (a)                                                     (b) 

Fig. 5  Multi-bubble/droplet system evolution using MCMP model in a 200 × 200 area (a) 

𝑡 = 15,000𝛿𝑡 (b) 𝑡 = 20,000𝛿𝑡 

           

(a)                                                               (b) 

            

(c)                                                               (d) 

Fig. 6  Comparison of the two components of MCMP model in a 50 × 50 area at 𝑡 =

2,000𝛿𝑡 



Interestingly, for multi-droplet the unphysical mass transfer seems to be similar to the Ostwald 

ripening, which has been observed in solid solutions or liquid sols describing the change of an 

inhomogeneous structure over time that, small crystals or sol particles dissolve and redeposit 

onto larger crystals or sol particles [39]. The reason for Ostwald ripening is that larger particles 

are more energetically favoured than smaller particles, because molecules on the surface of a 

particle are energetically less stable than the ones in the interior and smaller particles have 

larger specific area [40]. Therefore, Ostwald ripening is related to the free energy at the level 

of molecular scale and particles motion. However in pseudopotential model the so called 

“particle” is density distribution function, not real particles and the mechanism for multi-phase 

flow are gas kinetic theory Boltzmann equation and fluid mechanics Navior-Stokes equations. 

That is also the reason we call problem “unphysical”, because in the general immiscible two-

phase systems which can be described by Navior-Stokes equation there should not be such  

phenomenon. 

Conclusions 

In the present study, the unphysical mass transfer phenomenon of SCMP pseudopotential LBM 

that causes the unachievable multi-bubble/droplet configurations is studied. A number of 

SCMP models involving the typical non-ideal EOSs, forcing schemes, and collision terms of 

pseudopotential LBM are tested. None of these models are free of the unphysical mass transfer 

which we call “the big eat the small”. The original Shan-Chen MCMP model is also studied, 

and there is no such unphysical mass transfer phenomenon observed. Through analysing the 

unphysical mass transfer phenomenon it is found that such problem is most likely caused by 

the essential attractive interaction forces of pseudopotential LBM. The following conclusions 

can be drawn within this work: 

(1) It is the bubbles or droplets having bigger interface curvature radii that absorb the ones 

with smaller interface curvature radii, and nothing to do with the volume of 

bubble/droplet or the area of the interface. 

(2) A spurious flow field can be generated between two bubbles or droplets, which is also 

the flow field of the high-density mass transfer. 

(3) The unphysical mass transfer phenomenon is consistent with the attraction force effect. 

(4) The unphysical mass transfer can be eliminated using MCMP pseudopotential LBM. 
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