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Abstract

In this article we develop an hp–adaptive refinement procedure for Trefftz discontinuous
Galerkin methods applied to the homogeneous Helmholtz problem. Our approach combines
not only mesh subdivision (h–refinement) and local basis enrichment (p–refinement), but also
incorporates local directional adaptivity, whereby the elementwise plane wave basis is aligned
with the dominant scattering direction. Numerical experiments based on employing an em-
pirical a posteriori error indicator clearly highlight the efficiency of the proposed approach for
various examples.
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1 Introduction

Trefftz discontinuous Galerkin (TDG) methods are finite element schemes which employ discon-
tinuous test and trial functions whose restriction to each mesh element belongs to the kernel of
the differential operator to be discretized. For time-harmonic wave problems, Trefftz discretiza-
tion spaces are made of oscillating functions with the same frequency as that of the underlying
analytical solution. This results in improved approximation properties, as compared to standard
piecewise polynomial spaces. Moreover, based on Trefftz spaces, one can construct discontinu-
ous Galerkin methods which feature unconditional unique solvability, as well as coercivity of the
discrete bilinear forms in suitable (mesh-dependent) norms. We focus here on the case of the
Helmholtz problem and refer, e.g., to the survey [19] for a review of the construction, properties,
and relevant literature of Trefftz methods for its numerical approximation.

The purpose of this article is to develop an efficient hp–adaptive refinement algorithm for TDG
methods applied to the homogeneous Helmholtz problem; we will specifically consider the ultra-
weak variational formulation with plane wave basis functions [9]. Within the adaptive procedure,
elements will be marked for refinement based on employing an empirical a posteriori error indicator,
stimulated by the upper bounds derived in [23] for the h–version of the TDG method. For the
h–version of the plane wave discontinuous Galerkin method, incorporating Lagrange multipliers, a
similar error indicator has been presented in [3]. Once an element has been marked for refinement,
a decision must then be made regarding the type of refinement to be undertaken, i.e., whether
the element should be subdivided (h–refinement), or whether the local basis should be enriched
(p–refinement). The choice of whether to h– or p–refine an element is typically based on the
observation that when the underlying solution is smooth, then p–refinement will be more efficient
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in terms of reducing the error, for a given increase in the number of degrees of freedom, than if
the element is subdivided. On the other hand, if the solution is not smooth, then h–refinement
should be employed. In general, a posteriori error estimators only provide an estimate of the local
elementwise error, but do not indicate which type of refinement should be employed. Within the
existing literature a number of algorithms have been devised for determining the type of refinement
(h– or p–) to be undertaken. For a comprehensive review of this subject, we refer to [26, 27], and
the references cited therein. In the present context, given the oscillatory nature of solutions to
high-frequency scattering problems, the exploitation of hp–strategies based on local regularity
estimation techniques is not generally applicable. Thereby, we consider an alternative approach
based on estimating the predicted decay rate of the a posteriori estimator, given the refinement
history of each element; see, for example, [25]. For a posteriori error estimation of conforming
finite element approximations of the Helmholtz problem, we refer, e.g., to [4, 5] and [11]; analogous
bounds have been established for polynomial-based discontinuous Galerkin finite element methods
in [29, 32].

In addition to standard h– and hp–adaptivity, we also consider the issue of directional refine-
ment of the underlying plane wave basis employed within our TDG scheme. In particular, we rotate
the underlying elementwise plane wave basis in order that the first basis function is aligned with
the local dominant propagation direction; strategies for determining the local dominant propaga-
tion direction have been proposed in [2, 6, 7, 15], for example. Stimulated by the work undertaken
on anisotropic mesh adaptation in [12, 13], cf., also, [14, 17], we propose an alternative approach
based on studying the properties of the Hessian of the computed TDG solution. More precisely,
the principal eigenvector of the Hessian of the solution indicates the dominant direction of wave
propagation. However, since eigenvectors are only unique up to scalar multiples, the precise wave
direction must be fixed, based on exploiting an impedance condition. In this way, we can locally
orientate the elementwise plane wave basis to reduce the error in the underlying computed TDG
solution in a simple and computationally cheap manner. When combined with hp–refinement, the
resulting adaptive procedure is capable of generating highly optimized hp–refined Trefftz spaces.
Indeed, the efficiency of the proposed strategy is illustrated for a number of test problems, where
we compare the performance between an h– and hp–refinement algorithm, both with and without
directional adaptivity.

The outline of this article is as follows: in Section 2 we introduce the model problem to be
studied within this article, together with its TDG discretization. Then in Section 3 we develop
an hp–refinement algorithm, based on employing both local mesh subdivision and local basis
enrichment, together with directional adaptivity for the underlying Trefftz space. The performance
of this procedure is studied in Section 4 through a series of two– and three–dimensional examples.
Finally, in Section 5 we summarize the work undertaken within this article and highlight potential
future directions of research.

2 Model problem and TDG discretization

In this section we state the model problem to be studied in this article, together with its TDG
discretization; for further details, we refer to [19], for example.

2.1 Model problem

We study the homogeneous Helmholtz equation; to this end, we let Ω ⊂ Rd, d = 2, 3, be an open
bounded, Lipschitz domain with boundary ∂Ω. Thereby, we seek u : Ω 7→ C such that

−∆u− k2u = 0 in Ω ,

∂u

∂n
+ ikϑu = gR on ΓR ,

u = gD on ΓD ,

(1)
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where n denotes the unit outward normal vector on the boundary ∂Ω, and ΓR and ΓD are non-
overlapping open subsets of ∂Ω, such that ∂Ω = ΓR ∪ ΓD. Furthermore, i is the imaginary unit,
ϑ = ±1, gR ∈ L2(ΓR), and we assume, for the moment, that the (real-valued) wavenumber k is
constant in Ω.

2.2 Meshes and spaces

We partition Ω into computational meshes {Th}h>0 consisting of non-overlapping (curvilinear)
polygons/polyhedra K, which potentially include hanging nodes, such that Ω =

∪
K∈Th

K. More-
over, we assume that the family of subdivisions {Th}h>0 is shape regular [8, pp. 61, 114, and
118]. For each element K ∈ Th, we write hK to denote its diameter and nK signifies the unit
outward normal vector to K on ∂K; we set h := maxK∈Th

hK . Furthermore, we introduce the
mesh skeleton Fh, defined by Fh = ∪K∈Th

∂K; we write FI
h and FB

h to denote the interior and
boundary skeletons, respectively, defined by FI

h = Fh \ ∂Ω and FB
h = ∂Ω. Implicitly, we assume

that the finite element mesh Th respects the decomposition of the boundary, in the sense that,
given an element face f ⊂ ∂K, K ∈ Th, which lies on the boundary ∂Ω, i.e., f ⊂ ∂Ω, then f is
entirely contained within either ΓR or ΓD.

Let K and K ′ be two adjacent elements of Th, and x an arbitrary point on the interior face
f ⊂ FI

h given by f = (∂K ∩ ∂K ′)◦. Furthermore, let v and w be scalar- and vector-valued
functions, respectively, that are sufficiently smooth inside each element K,K ′. Then, the averages
of v and w at x ∈ f are given by

{{v}} = 1

2
(v|K + v|K′), {{w}} = 1

2
(w|K +w|K′),

respectively. Similarly, the jumps of v and w at x ∈ f are given by

[[v]] = v|K nK + v|K′ nK′ , [[w]] = w|K · nK +w|K′ · nK′ ,

respectively.
Given K ∈ Th the local Trefftz space is defined by

T (K) := {v ∈ H1(K) : −∆v − k2v = 0};

with this notation, we write

T (Th) := {v ∈ L2(Ω) : v|K ∈ T (K),K ∈ Th}.

Thereby, given a local space VpK
(K) ⊂ T (K), of finite dimension pK ≥ 1, the corresponding TDG

finite element space is defined by

Vp(Th) := {v ∈ T (Th) : v|K ∈ VpK (K),K ∈ Th},

where p = {pK : K ∈ Th}.

2.3 TDG discretization

Equipped with the TDG finite element space Vp(Th) defined on the mesh partition Th of Ω, the
TDG approximation of (1) is given by: find uhp ∈ Vp(Th) such that

Ah(uhp, vhp) = ℓh(vhp) (2)
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for all vhp ∈ Vp(Th), where

Ah(u, v) =

∫
FI

h

(
{{u}}[[∇hv]]− β(ik)−1[[∇hu]][[∇hv]]− {{∇hu}} · [[v]] + αik[[u]] · [[v]]

)
ds

+

∫
ΓR

((1− δ)(u∇hv · n+ ikϑuv)− δ((ikϑ)−1(∇hu · n)(∇hv · n) +∇hu · n v)) ds

+

∫
ΓD

(−∇hu · n v + αikuv) ds,

ℓh(v) =

∫
ΓR

gR((1− δ)v − δ(ikϑ)−1∇hv · n) ds+
∫
ΓD

gD(αikv −∇hv · n) ds,

and ∇h denotes the broken gradient operator, defined elementwise. Here, α > 0, β > 0 and
0 < δ ≤ 1/2 are given penalty parameters. We note that the selection of these penalty parameters
has been studied in a number of different contexts within the literature; in particular, here we
mention the ultra-weak variational formulation (UWVF), cf. [9], the DG-type scheme studied
in [16], and [18] which considered their selection on locally refined meshes; cf. [19, Table 1]. We
note that the a priori analysis presented in [18] covers the case when the underlying computational
mesh contains hanging nodes; in that setting, the penalty parameters were chosen to depend on
the local mesh size. For the purposes of this article we consider the UWVF, corresponding to the
choice α = β = δ = 1/2. We note that, in our computational work, we have not observed any
quantitative differences in the performance of the underlying numerical scheme when employing
this latter selection of the penalty parameters, when compared to those proposed in [18].

2.4 Plane wave basis functions

Finally, in this section we outline the choice of the underlying discrete space VpK
(K), K ∈ Th. To

this end, we select VpK
(K) to be a local space consisting of plane waves in pK different directions,

all with the same wavenumber k. We note that, under suitable assumptions on K and the choice
of plane wave directions, VpK

(K) approximates smooth Trefftz functions with the same order of
convergence as polynomials of degree qK , where

pK =

{
2qK + 1, d = 2,

(qK + 1)2, d = 3;
(3)

see [28]. Thereby, qK is referred to as the effective polynomial degree of the discrete Trefftz space;
we set q = {qK : K ∈ Th}. More precisely, we write

VpK
(K) :=

{
v ∈ T (K) : v(x) =

pK−1∑
ℓ=0

αℓe
ikdK,ℓ·(x−xK), αℓ ∈ C

}
, (4)

where xK is the center of mass of element K and dK,ℓ, ℓ = 0, . . . , pK−1, are pK evenly distributed
unit direction vectors (with respect to the unit ball). For d = 2 we can simply define

dK,ℓ = (cos(2πℓ/pK), sin(2πℓ/pK))
⊤, ℓ = 0, . . . , pK − 1; (5)

for d = 3 we employ the directions determined by the extremal (maximum determinant) points
on S2, cf. [30, 31].

3 Adaptive mesh refinement

In this section we develop an automatic adaptive refinement algorithm which is capable of not only
marking elements for refinement, but also determining the type of refinement to be undertaken. In
particular, here we consider both h– and p–refinement, whereby the local element is subdivided,
or the number of elementwise plane wave directions is enriched, respectively, as well as directional
refinement which seeks to rotate the local plane wave basis in order to align it with the principal
scattering direction.
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3.1 A posteriori error indicator

In the absence of rigorous a posteriori error bounds for the numerical approximation of (1) by the
TDG scheme (2), which are sharp with respect to both the local mesh size hK and the number of
local plane waves pK employed on each element K ∈ Th, we employ an empirical error estimator
stimulated by the work undertaken in [23] in the h–version setting. To this end, we first introduce
the dual problem: find z ∈ H1(Ω), such that

−∆z − k2z = u− uhp in Ω ,

∂z

∂n
+ ikϑz = 0 on ΓR ,

z = 0 on ΓD .

Noting that z ∈ H2/3+s(Ω), 0 < s ≤ 1/2, cf. [18], we recall the following (second) a posteriori error
bound from [23].

Theorem 3.1. Assume that the mesh Th is shape-regular, locally quasi-uniform, in the sense that,
for two elements K and K ′ which share a face f ⊂ FI

h, there is a constant τ , independent of h,
such that

τ−1 ≤ hK/hK′ ≤ τ

for all choices of K and K ′, and that Th is quasi-uniform in the vicinity of ΓR, i.e., for all K ∈ Th
which lie on the boundary ΓR, i.e., so that ∂K ∩ ΓR ̸= ∅, there exists τR such that

h/hK ≤ τR.

Then, for gD ≡ 0 and fixed pK , K ∈ Th, the following a posteriori bound holds:

∥u− uhp∥L2(Ω) ≤ E(uhp, h) ≡ C

( ∑
K∈Th

η2K

)1/2

,

where

η2K =
∥∥∥α1/2hs

K [[uhp]]
∥∥∥2
L2(∂K\∂Ω)

+ k−2
∥∥∥β1/2hs

K [[∇uhp]]
∥∥∥2
L2(∂K\∂Ω)

+ k−2
∥∥∥δ1/2hs

K (gR −∇uhp · nK + ikuhp)
∥∥∥2
L2(∂K∩ΓR)

+
∥∥∥α1/2hs

Kuhp

∥∥∥2
L2(∂K∩ΓD)

,

(6)

where C is a positive constant, which is independent of h.

We stress that the a posteriori error bound stated in Theorem 3.1 depends on the regularity
index s; thereby, a priori knowledge of s is required in order to yield a fully computable bound.
From the proof presented in [23], it is clear that the constant C in the reliability estimate reported
in Theorem 3.1 is independent of p, or equivalently q. However, we wish to determine the scaling
for each of the terms present in (6) in order to obtain efficiency also in p. Thereby, we propose
the following empirical error estimator, where for simplicity of notation, we also denote it by E,
for the hp–version TDG method:

E(uh, h,p) =

( ∑
K∈Th

η2K

)2

, (7)

where

η2K =
∥∥∥α1/2h

1/2
K q

−1/2
K [[uhp]]

∥∥∥2
L2(∂K\∂Ω)

+
∥∥∥β1/2h

3/2
K q

−3/2
K [[∇uhp]]

∥∥∥2
L2(∂K\∂Ω)

+
∥∥∥δ1/2h

3/2
K q

−3/2
K (gR −∇uhp · nF + ikuhp)

∥∥∥2
L2(∂K∩ΓR)

+
∥∥∥α1/2h

1/2
K q

−1/2
K (gD − uhp)

∥∥∥2
L2(∂K∩ΓD)

.

(8)
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We stress that the choice of the exponents of hK and qK have been selected on the basis
of numerical experimentation on a problem with a smooth analytical solution; for details, see
Section 4.2 below. Compared to the error indicator (6) from [23], we note that we have a factor
of h instead of k−1 in the terms with [[∇uhp]] and in the Robin boundary terms. These are both
dimensionally correct, but reproducing the numerical experiments conducted in Section 4.2 with
the dependency on k−1 results in different effectivities for different wavenumbers k.

3.2 Plane wave directional adaptivity

In this section, we discuss the design of a practical algorithm for determining the direction vectors
dK,ℓ, ℓ = 0, . . . , pK − 1, used to define the plane wave basis within each element K in the compu-
tational mesh Th. The key observation is that, many wave propagation problems typically exhibit
a dominant direction of propagation of the underlying wave within each element in Th. Thereby,
by aligning the plane wave basis in an appropriate fashion, we expect to attain a significant reduc-
tion of the error in the computed TDG solution. Indeed, in the simple case when the analytical
solution is a plane wave, then if the direction for one of the plane wave basis functions is selected
such that it is aligned with this plane wave direction, then the TDG method will exactly recover
the analytical solution, subject to rounding errors.

The essential idea here is to simply rotate the element basis according to the predicted elemen-
twise dominant direction. For simplicity of presentation, let us consider the two-dimensional case,
i.e., d = 2; we note that d = 3 follows in an analogous manner, cf. Remarks 3.2 & 3.3 below. In
two-dimensions, the standard plane wave directions are generally selected to be evenly spaced, with
the first direction dK,0 = (1, 0)⊤ always pointing along the x-axis, cf. (5) (in the three-dimensional
setting, the first direction vector typically points along the z-axis). Alternatively, assuming that
a dominant elementwise direction, denoted by dK , can be determined within each K ∈ Th, then
the direction vectors for the plane wave basis functions in K are chosen such that the first plane
wave direction is aligned with dK , i.e., (5) is replaced by

dK,ℓ = (cos(2πℓ/pK + θK), sin(2πℓ/pK + θK))⊤, (9)

ℓ = 0, . . . , pK − 1, where θK is the angle between dK and the x-axis.
Clearly, in general, the dominant elementwise direction dK , K ∈ Th, cannot be determined a

priori, but instead must be numerically estimated as part of the solution process. In this regard,
a number of algorithms have been proposed within the literature; here we mention the ray-tracing
approach developed in [6, 7], though this includes terms involving integrals over the elements
within the underlying TDG formulation. In [2], the optimal angle of rotation was numerically
estimated based on adding an extra unknown into the problem; however, this leads to a system
of nonlinear equations to be computed. The selection of the plane wave directions by solving an
optimal control problem was proposed in [1], while [15] uses an approximation of

∇e(x0)

ike(x0)
,

at a given point x0 ∈ K, K ∈ Th, where e denotes the error.
Stimulated by the work undertaken in [12, 13], cf. also [14, 17], on the design of anisotropically

refined computational meshes, in this section we compute an estimate of dK , K ∈ Th, based
on the properties of the Hessian of the TDG solution uhp. Indeed, we note that the principal
eigenvector, i.e., the eigenvector corresponding to the largest eigenvalue in absolute value, of the
Hessian of a given function indicates the direction of most rapid variation, and thereby, in our
context, the dominant direction of wave propagation. With this in mind, writing H(φ,x0) to
denote the Hessian matrix of a given function φ, evaluated at the point x0 ∈ Rd, in Algorithm 1
we outline the steps involved in computing a potential dominant plane wave direction d̂K for a
given element K ∈ Th. Table 1 summarizes how this potential first plane wave direction d̂K is
selected; for the numerical experiments presented in Section 4, we set Λ = 2. We note that in
the case when no primary propagation direction is determined, then we leave the first plane wave
direction unchanged.
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Algorithm 1 Computation of the potential first plane wave direction d̂K for element K.

1: Input: the TDG solution uhp of the discrete problem (2) and the parameter Λ > 1.
2: Writing xK to denote the centroid of K, K ∈ Th, evaluate the eigenpairs (λ1,v1), (λ2,v2)

of H(Re(uhp|K),xK), and (µ1,w1), (µ2,w2) of H(Im(uhp|K),xK), such that |λ1| ≥ |λ2| and
|µ1| ≥ |µ2|.

3: if |λ1| ≥ Λ|λ2| then
4: if |µ1| ≥ Λ|µ2| then
5: if |λ1| ≥ Λ|µ1| then
6: d̂K ← v1

7: else if |µ1| ≥ Λ|λ1| then
8: d̂K ← w1

9: else
10: d̂K ← v1+w1

∥v1+w1∥
11: end if
12: else
13: if |λ1| ≥ Λ|µ1| then
14: d̂K ← v1

15: else
16: No primary propagation direction
17: end if
18: end if
19: else
20: if |µ1| ≥ Λ|µ2| then
21: if |µ1| ≥ Λ|λ1| then
22: d̂K ← w1

23: else
24: No primary propagation direction
25: end if
26: else
27: No primary propagation direction
28: end if
29: end if

|λ1| ≥ Λ|λ2| |µ1| ≥ Λ|µ2| |λ1| ≥ Λ|µ1| |µ1| ≥ Λ|λ1| First Plane Wave d̂K

3 3 3 7 v1

3 3 7 3 w1

3 3 7 7
(v1+w1)
∥v1+w1∥

3 7 3 7 v1

3 7 7 — —
7 3 7 3 w1

7 3 — 7 —
7 7 — — —

Table 1: Summary of selection of first plane wave direction d̂K using Algorithm 1.

Remark 3.2. We note that in the case when d = 3, H(Re(uhp|K),xK) and H(Im(uhp|K),xK)
each have a third eigenpair, (λ3,v3) and (µ3,w3), respectively. However, if the eigenpairs are
sorted such that |λ1| ≥ |λ2| ≥ |λ3| and |µ1| ≥ |µ2| ≥ |µ3|, the third eigenpairs never represent
a dominant direction, and thereby Algorithm 1 can be used to identify d̂K , K ∈ Th, without
modification.

Noting that eigenvectors are only unique up to scalar multiples, the vector d̂K , K ∈ Th,
evaluated according to Algorithm 1 may be pointing in precisely the opposite direction to the
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Algorithm 2 Evaluation of the first plane wave direction dK for element K.

1: Input: the TDG solution uhp of the discrete problem (2), the parameter 0 ≤ δ → 0, and d̂K

computed by Algorithm 1.
2: The first plane wave direction dK on element K, K ∈ Th, is given by

dK =

−d̂K , if Re
(

∇uhp(xK+δd̂K)·d̂K+ikuhp(xK+δd̂K)
ik

)
< eikδ,

d̂K , if Re
(

∇uhp(xK+δd̂K)·d̂K+ikuhp(xK+δd̂K)
ik

)
≥ eikδ.

primary wave propagation direction. Thereby, to ensure that d̂K , K ∈ Th, is correctly oriented,
we study the impedance trace on the boundary of a ball Bδ(xK) of radius δ, centered at xK , of
both the numerical solution and a plane wave with (the desired) propagation direction dK . As
we let δ → 0, we expect that the numerical solution should be closely approximated by the plane
wave in the primary propagation direction.

More precisely, given K ∈ Th, the impedance trace of the plane wave

ũK(x) = eikdK ·(x−xK)

on ∂Bδ(xK) is given by

(∇ũK(x) · nBδ
+ ikũK(x))|∂Bδ(xK) = (ik(dK · nBδ

+ 1) eikdK ·(x−xK))|∂Bδ(xK), (10)

where nBδ
denotes the unit outward normal vector on ∂Bδ(xK). Setting x = xK + δd̂K in (10)

and noting that, at this point of evaluation, nBδ
= d̂K , we deduce that

∇ũK(xK + δd̂K) · nBδ
+ ikũK(xK + δd̂K)

ik
=

{
2eikδ, if d̂K = dK ,

0, if d̂K = −dK .

Thereby, the (potential) dominate direction of propagation d̂K , K ∈ Th, predicted according to
Algorithm 1 may be corrected to yield the dominant direction dK on the basis of Algorithm 2;
this direction will then be selected as the first plane wave direction on element K, K ∈ Th. For
simplicity, throughout this article we set δ = 0.

Remark 3.3. In the three–dimensional setting, once the selection of the primary wave propagation
direction dK has been computed on the basis of Algorithms 1 & 2, we then select the remaining
wave directions, dK,ℓ, ℓ = 1, . . . , pK − 1, by applying a transformation matrix T ∈ R3×3 to the

original ‘reference’ directions d̃K,ℓ, ℓ = 1, . . . , pK − 1, respectively, where d̃K,0 points along the
z-axis, cf. above. Thereby,

dK,ℓ = T d̃K,ℓ,

ℓ = 1, . . . , pK − 1, where T is selected such that

dK ≡ dK,0 = T

0
0
1

 ≡ T d̃K,0.

We note that the selection of T is not unique; writing dK = (dx, dy, dz)
⊤, we define T to be the

identity matrix if dx = dy = 0; otherwise, we set

T =


dxdz√
d2
x+d2

y

dy√
d2
x+d2

y

dx
dydz√
d2
x+d2

y

− dx√
d2
x+d2

y

dy

−
√
d2x + d2y 0 dz

 .
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Algorithm 3 hp–Adaptive refinement algorithm.

1: Input the control parameters γh, γp, and γn.
2: Choose a coarse initial mesh Th,0 of Ω and a corresponding low-order starting (effective)

polynomial degree vector q0, together with the total dimension vector p0 defined as in (3).

3: Set the initial predicted error indicator ηpredK,0 =∞ for all K ∈ Th,0.
4: for i = 0, 1, . . . , until sufficiently many iterations have been performed. do
5: Solve (2) for uhp ∈ Vpi

(Th,i).
6: Compute the a posteriori error indicators ηK,i ≡ ηK , K ∈ Th,i, and mark elements for

refinement based on their relative magnitude.
7: for K ∈ Th,i do
8: if K is marked for refinement then
9: if ηK,i > ηpredK,i then

10: Perform h–refinement: Subdivide K into N children Ks, s = 1, . . . , N , and set

11: (ηpredKs,i+1)
2 ← 1

N γh
(
1
2

)2qK
η2K,i, 1 ≤ s ≤ N .

12: else
13: Perform p–refinement: qK ← qK + 1
14: (ηpredK,i+1)

2 ← γpη
2
K,i

15: end if
16: else
17: (ηpredK,i+1)

2 ← γn(η
pred
K,i )2

18: end if
19: end for
20: Construct the new mesh Th,i+1 and corresponding Trefftz space Vpi+1

(Th,i+1).
21: end for

3.3 hp–Adaptive mesh refinement

In this section we discuss the design of an automatic algorithm for generating sequences of hp–
adaptively refined TDG finite element spaces in an efficient manner. This topic has been exten-
sively studied within the finite element literature in the case when the local element spaces consist
of polynomial functions; for a comprehensive review, we refer to [26, 27]. In general, the key under-
lying principle of most hp–refinement strategies is to employ local mesh subdivision (h–refinement)
in regions where the solution is not smooth, while local enrichment of the finite element space (p–
refinement) is undertaken elsewhere. Given that such regularity information is generally unknown
a priori, several strategies have been developed to a posteriori estimate the local smoothness of
the analytical solution, based on its numerical approximation; cf. [21], for example. However, in
the context of TDG schemes for the numerical approximation of high-frequency time-harmonic
wave problems, the extraction of such regularity information is expected to be unreliable due to
the oscillatory nature of the computed numerical solution.

Thereby, as an alternative to directly estimating local smoothness of the solution, we employ
the a posteriori error indicator (8) to select the type of refinement to be undertaken on the basis of
the refinement history of the current element, cf. [25]. More precisely, following [25] refinements are
selected based on checking if the local error estimate has decayed according to the expected rate
of convergence based on the last type of refinement employed. If the expected rate of convergence
is achieved, then p–refinement is performed; otherwise, h–refinement is undertaken. The variant
of [25, Algorithm 4.4] we employ here is summarized in Algorithm 3. Here, we note that γh, γp,
and γn are control parameters; for the purposes of this article, we select γh = 4, γp = 0.4, and
γn = 1. Furthermore, the number of child elements, N , cf. step 10. in Algorithm 3, is dependent
on the type of subdivision, i.e., isotropic/anisotropic, undertaken, as well as the element shape;
for isotropic refinement of tensor-product elements, we have that N = 2d.

Remark 3.4. In lines 11 and 14 of Algorithm 3 we use the same predictions as in a polynomial
finite element method. This prediction is based on the a priori convergence rates, which in the
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case of the TDG method with p plane waves, where p = 2q + 1 in 2D or p = (q + 1)2 in 3D, are
the same as in the case of a DG method with polynomials of degree q. For h-refinement, i.e., line
11, we write eK to denote the L2(K)-norm of the error in the computed numerical solution on
element K, of size hK , and ẽK to be the square-root of sum of the squares of the L2-norm errors
computed in each of the N children of K, each of size hK/2, namely ẽ2K =

∑N
s=1 e

2
Ks

. Then, we

have the predicted ratio ẽK
eK

=
(
1
2

)q+1
. Assuming the square of the error is equally distributed

among the N children, we deduce the coefficient of 1
N γh

(
1
2

)2q
in Line 11. For line 14, we assume

exponential convergence of the error under p-refinement; hence, we expect the predicted error to
reduce by a constant multiple.

Remark 3.5. We note that in [25] the initial values of the predicted error indicator ηpredK,0 , K ∈ Th,0,
are set to zero; thereby, this ensures that h–refinement is undertaken the first time an element
is refined. In contrast, in Algorithm 3 we set ηpredK,0 = ∞ for all K ∈ Th,0 which instead leads to
p–enrichment being undertaken as the first refinement of a given element, since the TDG method
for the numerical approximation of the Helmholtz equation is intrinsically a high-order method.

Remark 3.6. Plane wave directional adaptivity can be performed at different stages within Algo-
rithm 3; for example, the following options are available:

• undertake directional adaptivity only on elements marked for p–refinement,

• undertake directional adaptivity on all elements marked for refinement, with h–refinement
performed after plane wave direction adaptivity, or

• undertake directional adaptivity on every element K ∈ Th, even if the element K has not
been marked for refinement.

In Section 4 we shall numerically investigate each of these approaches in order to assess their
relative computational performance in terms of error reduction.

Remark 3.7. As a final remark, we note that within Algorithm 3 we employ the fixed fraction
refinement strategy to select elements for refinement, cf. step 6; throughout this article we set the
refinement fraction equal to 25%.

4 Numerical experiments

In this section, we present a series of numerical experiments to highlight the practical perfor-
mance of the hp–refinement algorithm, with directional adaptivity, proposed in Algorithm 3.
Throughout this section we shall compare the performance of the proposed hp–adaptive refine-
ment strategy with the corresponding algorithm based on exploiting only local mesh subdivision,
i.e., h–refinement. The numerical experiments presented within this section have been undertaken
using the AptoFEM software package [20].

4.1 Plane wave direction adaptivity

In this first example, we study the effect of adjusting the plane wave directions while employing a
fixed computational mesh with uniform p–refinement. To this end, we consider problem (1) with
Ω = (0, 1)2, ΓR = ∂Ω, and ΓD ≡ ∅; furthermore, the Robin boundary condition gR is selected
such that the analytical solution u of (1) is given by

u(x, y) = H(1)
0

(
k
√
(x+ 1/4)2 + y2

)
, (11)

where H(1)
0 denotes the Hankel function of the first kind of order 0. Throughout this section, we

set k = 20; note that for this problem the analytical solution u is smooth in Ω.
Here, the underlying computational mesh consists of 16 uniform square elements; on each

element we initially select the effective polynomial degree q = 2, i.e., p = 5. In Table 2 we compare
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Relative L2(Ω)-Error
q No of Dofs Standard TDG Direction Adaptivity % Reduction
3 112 2.015×100 1.959×100 2.7%
4 144 5.027×10−1 3.194×10−1 36.5%
5 176 7.414×10−2 2.658×10−2 64.1%
6 208 1.616×10−2 6.320×10−3 60.9%
7 240 3.420×10−3 1.435×10−3 58.0%
8 272 5.154×10−4 3.011×10−4 41.6%
9 304 8.928×10−5 6.908×10−5 22.6%

Table 2: Plane Wave Refinement: Comparison of the relative L2-error for uniform p–refinement (without
direction adaptivity), and p–refinement with direction adaptivity (Algorithm 2).
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Figure 1: Plane Wave Refinement: Plane wave directions of (a) initial mesh and after (b) 1, (c) 2 and (d)
3 p–refinements with plane wave refinement (Algorithm 2)
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Relative L2(Ω)-Error
q No of Dofs Initial One Direction Adapt. Two Direction Adapts.
3 112 2.015×100 8.755×10−1 5.856×10−1

4 144 5.027×10−1 1.267×10−1 1.149×10−1

5 176 7.414×10−2 2.614×10−2 2.584×10−2

6 208 1.616×10−2 6.330×10−3 6.327×10−3

7 240 3.420×10−3 1.435×10−3 1.435×10−3

8 272 5.154×10−4 3.011×10−4 3.011×10−4

Table 3: Plane Wave Refinement: Comparison of the relative L2-error with fixed effective polynomial
degree, q = 3, . . . , 8, and direction adaptivity (Algorithm 2).

the computed relative L2-error based on employing uniform p–refinement of the underlying TDG
space Vp(Th) in the two cases when the standard TDG scheme is employed, i.e., when the local
plane wave directions are kept fixed, and when plane wave directional adaptivity is utilized, based
on exploiting Algorithm 2 (direction adaptivity). We note that, since uniform p–refinement is
employed in both cases, then at each step of the refinement, both schemes possess the same number
of degrees of freedom. At each step of the refinement algorithm, we observe that the exploitation of
directional adaptivity leads to roughly 50% reduction in the relative L2-error when compared to the
corresponding quantity computed for the standard TDG method (without direction adaptivity).
For q = 3, however, we note that the relative L2-norm of the error is only reduced by a small
amount; this behavior is due to the fact that the underlying computed numerical solution with q =
2 is too inaccurate to provide a reliable prediction of the dominant wave direction. Furthermore,
we also note that, as the number of plane waves increases, the improvement in the relative L2-error
decreases; this is caused by the fact that, as the number of plane waves increases for the standard
TDG scheme, one of the directions will get closer to the actual dominant direction.

In Figure 1 we plot, for each element, the initial plane wave directions and the plane wave
directions computed after 1, 2, and 3 uniform p–refinements employing directional adaptivity. We
emphasize the first plane wave direction with a larger arrow, i.e., the dominant wave direction as
determined by Algorithm 2. Moreover, we overlay the directions on top of a contour plot showing
the real part of the analytical solution (11). From Figure 1, we can clearly observe that the
directional adaptivity algorithm is able to accurately determine the dominant wave direction after
a few refinements.

Finally, in this section we consider performing more than one directional adaptivity step after
each uniform p–refinement. To this end, we compute, for the case when q = 3, . . . , 8, the numerical
solution with the initial directions, perform direction adaptivity using this solution, and then
perform a second direction adaptation using the numerical solution computed with the directions
from the first direction adaptation. We show, in Table 3, the relative L2-norm of the error for
the initial directions, as well as after the first and second application of the direction adaptivity
algorithm. Here, we observe that additional application of the direction adaptivity algorithm does
not lead to a significant reduction in the relative L2-norm error; indeed, most of the reduction,
when compared to the standard TDG scheme, without directional adaptivity, is attained after one
step of Algorithm 2. Moreover, we emphasize that this first step may be undertaken in a very
computationally cheap manner.

4.2 Efficiency of the a posteriori error indicator

The selection of the exponents of hK and qK in the weights present in (8), together with the
independence on the wavenumber k, have been determined by numerical experimentation. To this
end, we consider the example presented in the previous section, cf. (11), whereby the numerical
approximation is computed on a series of uniform computational meshes, with uniform effective
polynomial degrees q, for a range of wave numbers k. In each case, we compute the effectivity
index of each constituent term arising in E(uh, h,p), whereby the dependency on hK , qK , and k
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Figure 2: Effectivities for h–refinement with fixed effective polynomial degree of the smooth analytical
Hankel solution with different wavenumbers.

was eliminated; note that with the removal of hK , qK , and k, the effectivity index of each term
is computed by dividing by ∥u− uhp∥L2(Ω). More precisely, effectivity indices were computed for
q = 3, . . . , 8, and k = 20, 30, 40, 50, based on starting from a uniform 4 × 4 mesh consisting of
square elements. On the basis of these results, the dependence of each term on hK , qK , and k
was established. The final effectivity indices for the correctly scaled empirical a posteriori error
indicator E(uh, h,p), i.e., E(uh, h,p)/∥u− uhp∥L2(Ω) are presented in Figure 2. Here, we observe
that that the effectivity indices have roughly the same values for all the selected values of h, q,
and k; however, at higher wave numbers, pre-asymptotic behavior leads to some increase in the
effectivity indices as the mesh is refined, due to the fact that the mesh size is too large for the
wavelength. We note that this behavior is more noticeable in the case when q = 3.

Finally, we compute the effectivity index for each individual term arising in the definition of
the error indicator E(uh, h,p), cf. (8). More precisely, we define

E[[uhp]] :=

(∑
K∈Th

∥∥∥α1/2h
1/2
K q

−1/2
F [[uhp]]

∥∥∥2
L2(∂K\∂Ω)

)1/2

∥u− uhp∥L2(Ω)

,

E[[∇uhp]] :=

(∑
K∈Th

∥∥∥β1/2h
3/2
K q

−3/2
K [[∇uhp]]

∥∥∥2
L2(∂K\∂Ω)

)1/2

∥u− uhp∥L2(Ω)

,

ER :=

(∑
K∈Th

∥∥∥δ1/2h
3/2
K q

−3/2
K (gR −∇uhp · nF + ikuhp)

∥∥∥2
L2(∂K∩ΓR)

)1/2

∥u− uhp∥L2(Ω)

;

the results for the case when k = 20, 30, 40, 50 are depicted in Figure 3. Here, we observe that each
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(b) k = 20, E[[∇uhp]]
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(c) k = 20, ER

Mesh Number
1 2 3 4 5 6 7

E
ff
e
c
ti
v
it
y

0

5

10

15

20
q = 3
q = 4
q = 5
q = 6
q = 7
q = 8

(d) k = 30, E[[uhp]]
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(e) k = 30, E[[∇uhp]]

Mesh Number
1 2 3 4 5 6 7

E
ff
e
c
ti
v
it
y

0

5

10

15

20
q = 3
q = 4
q = 5
q = 6
q = 7
q = 8

(f) k = 30, ER
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(g) k = 40, E[[uhp]]
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(h) k = 40, E[[∇uhp]]
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(j) k = 50, E[[uhp]]
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(k) k = 50, E[[∇uhp]]
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Figure 3: Effectivities of individual components of the error indicators for h–refinement with fixed effective
polynomial degree of the smooth analytical Hankel solution with different wavenumbers.
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individual effectivity index is roughly constant for all the selected values of h, q, and k, except
within the pre-asymptotic region. For this smooth problem, we clearly observe that the dominant
part of the error indicator involves the jump in the gradient of the numerical solution.

Remark 4.1. We note there that we have only computed the weightings for the interior and Robin
faces. In the case of Dirichlet boundary conditions we assume that the weighting scales the same
as the term involving [[uhp]].

4.3 hp–Adaptive refinement

In this section we consider the computational performance of the proposed hp–adaptive refine-
ment algorithm, with directional adaptivity, for a range of test problems in both two- and three-
dimensions. To this end, employ the fixed fraction refinement strategy to mark elements for
refinement; throughout this section, we set the refinement fraction equal to 25% of the elements
with the largest contribution to the error bound. Furthermore, we allow the meshes Th to be
‘1-irregular’, i.e., each face of any element K ∈ Th contains at most one hanging node (which, for
simplicity, we assume to be at the barycenter of the corresponding face) and each edge of each face
contains at most one hanging node (yet again assumed to be at the barycenter of the edge). We
also only allow the effective polynomial degree qK to vary by one between neighboring elements,
as is commonly the case in hp-adaptivity employing standard polynomial bases. Note that this
ensures that the local quasi-uniformity of the effective polynomial degree, required in the a priori
analysis of [18], is satisfied.

For each test problem, we compare the performance of employing hp–adaptive refinement with
h–adaptivity. In the latter case, we consider a standard h–adaptive algorithm, i.e., adaptive mesh
refinement without directional adaptivity, as well as an h–adaptive strategy which incorporates
directional adaptivity; here, we shall consider the two cases when directional adaptivity is either
undertaken only on the elements marked for refinement, as well as the case when it is performed
on all elements in the computational mesh. In the hp–setting, similar comparisons will be made,
in addition to studying the case when directional adaptivity is only performed on elements marked
for p–refinement.

We note that when hp–refinement is exploited we often reach a point where the L2–norm
of the error and a posteriori error bound stagnates, in the sense that both quantities no longer
tend to zero, and indeed may start to oscillate, as further refinement is undertaken. This is
caused by the fact that as the relative magnitude of qK , with respect to hKk, becomes large, the
local plane wave bases are very ill-conditioned. In this situation, we simply stop the numerical
experiments and discard further results. We refer to [10] for a numerical study of the conditioning
of the plane wave basis for d = 2. In this case it is observed that the condition number of
the underlying matrix behaves like 2.34p ln p(hk)1−p; hence, for any type of h-/p-/hp-refinement
strategy, we expect to encounter issues with matrix conditioning. In the case of hp-refinement
strategies, possible improvements based on ensuring qK is well behaved with respect to hKk could
be implemented; cf. [9, 22, 24] for details. We expect that the use of directional adaptivity should
help with these issues, in the sense that the accuracy of the underlying numerical method can
be improved by rotating the local plane-wave directions, instead of increasing qK , or undertaking
local mesh refinement.

4.3.1 Example 1 — Smooth solution (Hankel function)

In this section, we again consider the problem outlined in Section 4.1. Furthermore, we select the
initial mesh to consist of 8× 8 uniform square elements and set qK = 3 on each K ∈ Th. Firstly,
in Figures 4a and 4e we compare the relative error in the L2-norm to the number of degrees of
freedom in the TDG space Vp(Th), when h–refinement is employed, with wavenumbers k = 20
and k = 50, respectively. In each case, we consider the performance of the underlying adaptive
algorithm when both the standard TDG scheme (without direction adaptivity) is employed, as
well as the corresponding method with directional adaptivity; in this latter setting, we consider the
cases when either directional adaptivity is undertaken on only the elements marked for refinement,
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Figure 4: Example 1: (a) L2-error and (b) Effectivity index for h–refinement with wavenumber k = 20;
(c) L2-error and (d) Effectivity index for hp–refinement with k = 20; (e) L2-error and (f) Effectivity index
for h–refinement with k = 50; (g) L2-error and (h) Effectivity index for hp–refinement with k = 50.
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Figure 5: Example 1: Comparison of relative L2-error for h– and hp–refinement, with direction adaptivity
on all elements, for wavenumbers (a) k = 20 and (b) k = 50.
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Figure 6: Example 1: Meshes after 8 (a) h– and (b) hp–refinements for wavenumber k = 20; meshes after
8 (c) h– and (d) hp–refinements for wavenumber k = 50.
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as well as when it is exploited on every element in the computational mesh Th. Analogous results
are presented in Figures 4c and 4g in the hp–setting, respectively; here, we compare standard hp–
refinement, with hp–adaptivity incorporating directional adaptivity. In the latter case, different
directional adaptivity strategies are considered: firstly, directional adaptivity is performed only on
elements marked for p–refinement; secondly, directional adaptivity is undertaken on all elements
marked for refinement; finally, directional adaptivity is applied to every element in Th. In the hp–
setting we observe exponential convergence of the error as the finite element space is adaptively
enriched: on a linear-log scale, the convergence lines are roughly straight. Thereby, it is clear
that the exploitation of the proposed hp–refinement algorithm, with directional adaptivity, leads
to a significant reduction in the relative L2-norm of the error, for a given number of degrees of
freedom, when compared to the same quantity computed with h–refinement alone; cf. Figure 5.

In both the h– and hp–refinement cases, we generally observe that the error is decreased when
directional refinement is employed. Moreover, it is evident in the hp–setting that selecting more
elements for directional refinement generally leads to a smaller error, for a given number of degrees
of freedom; this is particularly noticeable in the case when k = 50. In Figures 4b, 4d, 4f, and 4h we
plot the effectivity indices for each of the above refinement strategies for the case when k = 20, 50;
here, we observe that they remain roughly constant during adaptive h–/hp–mesh refinement, and
are roughly the same for the two different wavenumbers, with the notable exception of the pre-
asymptotic region for k = 50.

Finally, in Figures 6a–6d, we show the meshes after 8 h– and hp–refinements, with directional
adaptivity employed on all elements, for both k = 20 and k = 50; here, the hp–meshes show the
effective polynomial degree qK for each element. Given the smoothness of the analytical solution
on Ω, we observe that the resulting computational meshes are almost uniform; indeed, in the
hp–setting almost uniform p–refinement has been undertaken.

4.3.2 Example 2 — Singular solution

In this second example, we consider problem (1) posed on the L-shaped domain Ω = (−1, 1)2 \
(0, 1) × (−1, 0), ΓR = ∂Ω, and ΓD ≡ ∅, with Robin boundary condition gR selected so that the
analytical solution is given, in polar coordinates (r, θ), by

u(r, θ) = J2/3(kr) sin(2θ/3),

where J2/3 denotes the Bessel function of the first kind with order 2/3; we note that the gradient
of u has a singularity at the origin.

As in the previous example, we again compare the performance of the h– and hp–adaptive
refinement algorithms, both in the standard setting, as well as when directional adaptivity is
employed; here, we again consider the analogous directional refinement strategies employed in
Section 4.3.1. To this end, in Figures 7a and 7e we compare the relative error in the L2-norm with
the number of degrees of freedom in the TDG space Vp(Th) when h–refinement is employed for
k = 20 and k = 50, respectively; the respective convergence plots in the hp–setting are given in
Figures 7c and 7g. Here, we observe that although exploiting hp–refinement leads to exponential
convergence of the relative L2-norm of the error as Vp(Th) is enriched, in both the h– and hp–
settings, we observe that the magnitude of the error, computed both with and without directional
refinement, is roughly identical; i.e., directional refinement does not lead to any reduction in
the computed TDG solution when either h–/hp–refinement is employed. We note that, for this
particular problem, this behavior is expected, since the error in the computed TDG solution is
dominated by the influence of the singularity at the origin, rather than local wave propagation.

In Figures 7b, 7d, 7f, and 7h we plot the effectivity indices when both h– and hp–refinement
is employed for the case when k = 20, 50. In all cases, we observe that the effectivity indices
are roughly constant for this singular problem, though when h–refinement is employed, on highly
refined meshes, we see a slight drop in the computed effectivity indices. Finally, in Figures 8a–8d,
we show the meshes after 8 h– and hp–refinements, with direction adaptivity employed on all
elements, for both k = 20 and k = 50. As we would expect, in both the h– and hp–settings,
mesh subdivision is concentrated in the vicinity of the singularity located at the origin; away
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Figure 7: Example 2: (a) L2-error and (b) Effectivity index for h–refinement with wavenumber k = 20;
(c) L2-error and (d) Effectivity index for hp–refinement with k = 20; (e) L2-error and (f) Effectivity index
for h–refinement with k = 50; (g) L2-error and (h) Effectivity index for hp–refinement with k = 50.
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Figure 8: Example 2: Meshes after 8 (a) h– and (b) hp–refinements for wavenumber k = 20; meshes after
8 (c) h– and (d) hp–refinements for wavenumber k = 50.

from this region, the h–refinement algorithm employs almost uniform mesh subdivision, while
the hp–refinement strategy employs the necessary combination of local mesh refinement and local
polynomial enrichment, as required, to reduce the error in the computed TDG solution.

4.3.3 Example 3 — Transmission/internal reflection

We now consider the case of transmission and internal reflection of a plane wave across a fluid-fluid
interface in the domain Ω = (−1, 1)2, ΓR ≡ ∅, and ΓD = ∂Ω, with two different refractive indices,
cf. [23, Section 6.3]. The interface between the two regions is located at y = 0; in this setting the
wavenumber k is given by the piecewise constant function

k(x, y) =

{
k1 := ωn1 if y ≤ 0,

k2 := ωn2 if y > 0,

where, we select ω = 11, n1 = 2, and n2 = 1. Throughout this section we impose an appropriate
inhomogeneous Dirichlet boundary condition, so that the analytical solution u to (1) is given, for
a constant 0 ≤ θi ≤ π/2, by

u(x, y) =

{
T ei(K1x+K2y) if y > 0,

eik1(x cos(θi)+y sin(θi)) +Reik1(x cos(θi)−y sin(θi)) if y < 0,

where K1 = k1 cos(θi), K2 =
√

k22 − k21 cos
2(θi),

R = −K2 − k1 sin(θi)

K2 + k1 sin(θi)
,

and T = 1 + R. We note that there exists a critical angle θcrit, such that when θi > θcrit the
wave is refracted, while θi < θcrit results in internal reflection, cf. [23, Section 6.3]. As in [23] we
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(a) θi = 29◦ (b) θi = 69◦

Figure 9: Example 3: Analytical solutions (real part) when (a) θi = 29◦ resulting in internal reflection,
and (b) θi = 69◦ resulting in refraction.

perform numerical experiments for both internal reflection (θi = 29◦) and refraction (θi = 69◦).
To highlight the reflection and refraction behavior, in Figures 9a and 9b we show the analytical
solution when θi = 29◦ and θi = 69◦, respectively.

To account for the jump in the wavenumber k, the value of k present in the integrals along
the interface y = 0 in the TDG scheme (2) is replaced by ω. We select the initial mesh to
consist of 8 × 8 uniform square elements, so that the interface between the two materials is
captured by the mesh; thereby, the wavenumber is constant in every element, and hence the
TDG space (4) and error indicators (8) can be easily modified to treat this example by setting
the wavenumber for each element equal to the wavenumber of the material within which the
element is contained. Firstly, we consider the case when there is an internal reflection, i.e., when
θi = 29◦; to this end, in Figures 10a and 10c we plot the relative error in the L2-norm against
the number of degrees of freedom in Vp(Th) using both h– and hp–refinement, respectively. As
for the previous numerical experiments, here we again observe exponential convergence of the
error when hp–refinement is employed. Furthermore, in the h–version setting, we observe that
employing directional adaptivity does not improve the magnitude of the error; when hp–refinement
is exploited, initially the standard refinement approach is superior, though as Vp(Th) is enriched, we
again observe the benefits of employing directional adaptivity. This behavior is perhaps expected,
since for the internal reflection case, no waves are present above the y = 0 line and moreover it
does not possess a dominant wave propagation direction below the y = 0 line due to the reflected
waves, cf. Figure 9a. In Figures 10b and 10d, we plot the effectivity indices for both refinement
strategies, respectively; here we observe that, apart from an initial pre-asymptotic region, the
effectivity indices are roughly constant.

The corresponding convergence plots for the refraction case, i.e., when θi = 69◦, are presented
in Figures 10e and 10g when both h– and hp–refinement are employed, respectively; in the latter
setting, we again observe exponential convergence of the computed relative L2-norm of the error.
Moreover, in contrast to the case when there is an internal reflection, here we observe the com-
putational benefits of employing directional adaptivity, in the sense that this typically leads to a
reduction in the error, for a given fixed number of degrees of freedom, when compared to the stan-
dard refinement strategy; this is particularly evidenced in the hp–setting. Indeed, in this case there
is a dominant propagation direction throughout the domain, cf. Figure 9b. Figures 10f and 10h
show the effectivity indices computed using both h– and hp–refinement, respectively; analogous
behavior is observed as for the internal reflection case, i.e., the effectivity indices become roughly
constant, after an initial pre-asymptotic region.

Finally, in Figures 11a & 11b we show the meshes after 7 h– and hp– adaptive mesh refinements
have been performed, respectively, in the case of an internal reflection, i.e., θi = 29◦. Here, the h–
refinement strategy concentrates most of the elements in the y < 0 region; although, there is some
refinement above y = 0 to resolve the exponentially decaying solutions present there. Additional
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(f) θi = 69◦; h–refinement
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(g) θi = 69◦; hp–refinement
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Figure 10: Example 3: (a) L2-error and (b) Effectivity index for h–refinement with reflection (θi = 29◦);
(c) L2-error and (d) Effectivity index for hp–refinement with reflection (θi = 29◦); (e) L2-error and (f)
Effectivity index for h–refinement with refraction (θi = 69◦); (g) L2-error and (h) Effectivity index for
hp–refinement with refraction (θi = 69◦).
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Figure 11: Example 3: Meshes after 7 (a) h– and (b) hp–refinements for reflection (θi = 29◦); meshes
after 7 (c) h– and (d) hp–refinements for refraction (θi = 69◦).

mesh smoothing has also been undertaken here to ensure that there is only one hanging node
per face, cf. [23]. The hp–refinement algorithm also performs some h–refinement below the y = 0
line, though this region is largely p–refined; however, most of the refinement occurs around the
y = 0 line to resolve the exponentially decaying solutions. Some p–refinement occurs in the rest of
the y > 0 region, which is caused by enforcing the condition that the effective polynomial degree
may only vary by one between neighboring elements. In the refraction case, i.e., θi = 69◦, cf.
Figures 11c & 11d, we note a sharp boundary at the y = 0, with more refinement undertaken in
the y < 0 region than the region y > 0.

4.3.4 Example 4 — Scattering

We now consider sound-soft scattering around an obstacle. To this end, we consider a concave
quadrilateral (kite) obstacle ΩD defined by the vertices (π + 1, π)⊤, (π, π + 1)⊤, (π − 1, π)⊤, and
(π, π + 0.25)⊤ within the domain ΩR = (0, 2π)2; i.e., Ω = ΩR \ ΩD. We define homogeneous
Dirichlet boundary conditions gD = 0 on the boundary of the obstacle ΓD = ∂ΩD and Robin
boundary conditions

gR(x) = eikd·x,

with k = 20 and d = −(cos(6π/13), sin(6π/13))⊤ on the remainder of the boundary ΓR = ∂ΩR.
Thereby, this simulates an incident plane wave with wavenumber k traveling along the direction
(cos(6π/13), sin(6π/13))⊤.

We again compare the performance of the h– and hp–adaptive refinement algorithms, both
in the standard setting, as well as when directional adaptivity is employed; here, we consider
the analogous directional refinement strategies employed in Section 4.3.1. We note that for this
problem we do not have a known analytical solution; therefore, in Figures 12a and 12b we compare
the error estimator E(uh, h,p) from (8) with the number of degrees of freedom in the TDG space
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Figure 12: Example 4: A posteriori error bound for (a) h–refinement with wavenumber and (b) hp–
refinement with k = 20; (c) Re(uhp) solution after 9-hp refinements; Meshes after (d) 6 h– and (e) 9
hp–refinements; Mesh detail around the corner at (π − 1, π) after (f) 6 h– and (g) 9 hp–refinements.
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Vp(Th) when h–refinement and hp-refinement, respectively, are employed. In the h-refinement case
we observe that direction adaptation only slightly improves the error, which would be expected,
since in the region directly below the obstacle, the reflected waves will result in multiple dominant
wave directions. In the hp-refinement case we actually observe an improvement when directional
adaptivity is exploited; however, we note that this appears to be due to the fact that initially the
method does not converge until the mesh is fine enough to resolve the incidence waves and that
the refinement strategies with directional adaptivity appears to resolve these waves with fewer
degrees of freedom.

In Figures 12d & 12e we show the meshes after 6 h– and 9 hp–adaptive mesh refinements
have been performed, respectively. We note that although the refinement is fairly uniform in the
majority of the domain, there is more refinement in the area below the kite where the reflected
waves are present; cf., Figure 12c, which shows the real part of the numerical solution after 9
hp-refinements. We also note that, in both h– and hp–settings, mesh refinement is undertaken
in the vicinity of the two acute corners of the kite located at (π − 1, π)⊤ and (π + 1, π)⊤; cf.,
Figures 12f & 12g for an enlargement of the meshes around the point (π − 1, π)⊤.

4.3.5 Example 5 — 3D smooth solution (plane wave)

In this final example, we consider problem (1) posed on the domain Ω = (0, 1)3, ΓR = ∂Ω, and
ΓD ≡ ∅, with Robin boundary condition gR selected so that the analytical solution u to (1) is
given by

u(x) = eikd·x,

where dj = 1/
√
3 for j = 1, 2, 3.

In Figures 13a and 13e we present the performance of the proposed directional adaptivity algo-
rithm employing h–refinement with wavenumbers k = 20 and k = 50, respectively; the analogous
results for hp–refinement are given in Figures 13c and 13g, respectively. As in the two–dimensional
setting, we observe that selecting more elements for directional adaptivity at each step of the pro-
posed refinement strategy, leads to a greater reduction in the relative L2-norm of the error, for
a fixed number of degrees of freedom, when compared to the standard case when directional
adaptivity is not employed. Of course, given the simple nature of the analytical solution for
this problem, we clearly expect directional adaptivity to be advantageous. In the case when the
wavenumber k = 50 we note that both h– and hp–refinement strategies are essentially in the
pre-asymptotic region; however, performing directional adaptivity ensures that the method leaves
this pre-asymptotic region after only a few mesh refinements. Finally, in Figures 13b, 13d, 13f,
and 13h we plot the effectivity indices of both the h– and hp–refinement algorithms for the case
when k = 20, 50. We note, especially in the hp–refinement case, that the effectivity indices are
roughly constant but do slightly rise after the pre-asymptotic region.

5 Concluding remarks

In this article we have developed an automatic hp–adaptive refinement algorithm for the TDG
approximation of the homogeneous Helmholtz equation. In addition to employing both local mesh
subdivision and local basis enrichment, we also locally rotate the underlying plane wave basis in
such a manner so that the first basis function is aligned with the dominant wave direction. The
choice to h– or p–refine an element is based on a prediction of how much reduction we expect
to observe in the elementwise error indicator, when a particular refinement is performed. The
alignment of the local basis with the dominant wave direction is undertaken on the basis of an
eigenvalue analysis of the Hessian of the numerical solution, together with a correction computed
from an impedance condition. The computational efficiency of the proposed adaptive strategy has
been studied through a series of numerical examples; indeed, the application of hp–refinement,
with directional adaptivity, leads to a significant reduction in the computed error compared to
standard refinement strategies. We also note that performing directional adaptivity on all elements
generally leads to a greater reduction in the error than the corresponding case when only elements
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Figure 13: Example 5: (a) L2-error and (b) Effectivity index for h–refinement with wavenumber k = 20;
(c) L2-error and (d) Effectivity index for hp–refinement with k = 20; (e) L2-error and (f) Effectivity index
for h–refinement with k = 50; (g) L2-error and (h) Effectivity index for hp–refinement with k = 50.
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marked for refinement are directionally adapted; clearly, this error reduction is attained while
keeping the number of degrees of freedom in the underlying TDG space fixed. In this article,
the proposed Hessian-based directional adaptivity algorithm can only take into account a single
dominant direction; in general cases, for example, in scattering problems where several principle
wave directions may be present, this strategy may not be sufficient to improve the accuracy in
the underlying numerical solution. As part of our programme of future research, we will consider
the extension to this setting; furthermore, work will also be devoted to the derivation of robust
hp–version a posteriori error bounds, as well as the application to problems of engineering interest.
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[4] F. Babuška, F. Ihlenburg, T. Strouboulis, and S. K. Gangaraj. A posteriori error estimation
for finite element solutions of Helmholtz’ equation I. The quality of local indicators and
estimators. Internat. J. Numer. Methods Engrg., 40(18):3443–3462, 1997.
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