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For a scalar theory whose classical scale invariance is broken by quantum effects, we compute self-
consistent bounce solutions and Green’s functions. Deriving analytic expressions, we find that the
latter are similar to the Green’s functions in the archetypal thin-wall model for tunneling between
quasi-degenerate vacua. The eigenmodes and eigenspectra are, however, very different. Large
infrared effects from the modes of low angular momentum j = 0 and j = 1, which include the
approximate dilatational modes for j = 0, are dealt with by a resummation of one-loop effects. For
a parametric example, this resummation is carried out numerically.
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I. INTRODUCTION

A sufficiently large lifetime of metastable vacuum
states [1, 2] is an important criterion for the viability
of models of electroweak symmetry breaking [3–6]. For
other sectors that are more or less closely tied to the
electroweak one, false vacuum decay can play an essen-
tial role in cosmology [7]. Since tunneling events do not
correspond to extrema of the Minkowskian action, the
calculation of the decay rates relies on Euclidean solitons,
which are saddle-point configurations often referred to as
bounces [1].

Since the bounce action enters the decay rate expo-
nentially, leading-order calculations are often sufficient to
check the metastability. Higher precision can be achieved
when including the first quantum corrections, which also
establish the correct dimensionful prefactors for a decay
rate per unit volume by trading the zero modes associ-
ated with the spontaneous breakdown of spacetime sym-
metries for integrals over collective coordinates.

The fluctuation modes around the solitons differ from
those in calculations of effective potentials because they
include the gradient corrections from the varying back-
ground, whereas, for the effective potential, one assumes
a field configuration that is constant throughout space-
time. Nevertheless, effective potentials can be useful in
order to include radiative effects, provided it can be jus-
tified that gradient corrections are of higher order and
pathologies, such as imaginary parts appearing in con-
cave regions of the tree potential, can be ignored.

One-loop corrections to the action that account for
the gradients can be expressed through the functional
determinant of the quadratic fluctuations around the
bounce. A powerful method to deal with this apparently-
complicated task is provided by the Gel’fand-Yaglom the-
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orem, which reduces the problem to one of solving field
equations for certain boundary conditions [8, 9].

When dealing with bounce configurations that are not
perturbatively close to a tree-level solution (see Ref. [10]),
we encounter a significant limitation of this method.
Such a situation occurs for models of radiative symmetry
breaking, where the true vacuum only appears through
loop corrections [11] or, as in the case of interest for the
present work, for approximately scale-invariant models,
where the scale of the radius of the nucleating bubbles
is not known before consistently accounting for quantum
effects. In particular, for a scalar theory with a negative
quartic self-coupling, the classical solution, known as the
Fubini-Lipatov instanton [12, 13], contains a scale param-
eter that determines the radius of the nucleating bubbles,
which is not fixed at tree level. In this case, one needs to
find the bounce solutions by computing radiative correc-
tions to the equations of motion self-consistently within
the bounce field configuration, which is the main objec-
tive of the present paper. We must emphasize that there
are many ways in which the classical scale invariance can
be broken, and we make here a specific choice that we find
most suitable for our present methodical developments.
Our particular setup is therefore presented in Sec. II, and
additional technical details are provided in App. A.

Methodically, we compute the loop corrections from
Green’s functions in the bounce background. This ap-
proach has already been applied to examples in the thin-
wall limit in Refs. [11, 14, 15]. Formally, these Green’s
functions are the inverse of the quadratic fluctuation op-
erator, where the aforementioned zero modes must be
projected out in order to leave the inversion well de-
fined. We find that analytic solutions are available and
that these seem to suggest a decomposition into zero and
positive- or negative-definite modes in a form that is not
consistent with what we obtain when computing these
contributions explicitly. This may be a concern, and a
way of checking this and of gaining further insight is to
obtain the Green’s function from its explicit representa-
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tion in terms of a spectral sum. This requires the knowl-
edge of the eigenmodes, the complete set of which, how-
ever, does not appear to be available in terms of analytic
expressions for the Fubini-Lipatov case. In Sec. III, we
therefore return to the archetypal case of tunneling be-
tween quasi-degenerate vacua, originally considered by
Coleman and Callan [1, 2], where the spectral sum rep-
resentation can be worked out explicitly. It turns out
there that the contributions from the discrete modes can-
not simply be “read off” from the analytic solution for
the Green’s function, such that we may not expect such
a straightforward decomposition for the Fubini-Lipatov
case either, which should address the above concern.

In Sec. IV, we describe a procedure for treating the
zero modes pertaining to the spontaneous breakdown of
translational invariance in the bounce background. Par-
ticular attention is paid to combine this with the resum-
mation of one-loop corrections in order to regulate the
infrared divergences that occur in this sector.

These developments are subsequently applied to the
case of a Fubini-Lipatov instanton with corrections from
scalar loops in Sec. V. We also explain in that sec-
tion how we deal with infrared effects due to dilatational
zero modes associated with the classical scale invariance.
These modes are not normalizable in the proper sense
because they appear at the end point of a continuum
spectrum. Our calculation makes use of the physical reg-
ularization of the infrared divergences, i.e. due to the ra-
diative breakdown of scale invariance, by resumming the
one-loop corrections within the Green’s function. This
method therefore presents an alternative to the subtrac-
tion of the dilational sector in favour of a collective co-
ordinate for the scale transformations.

Finally, in Sec. VI, we apply the methods presented
in this work to a parametric example of scalar theory
with quartic interactions and extra couplings to scalar
fields. This serves to illustrate and to test the methods
presented here such that further developments and para-
metric studies can follow in the future. Our conclusions
and possible future directions are presented in Sec. VII.

II. SETUP

We work with the following Euclidean Lagrangian,
comprising a real scalar field Φx ≡ Φ(x):

L =
1

2
(∂µΦ)2 + U(Φ) + δU(Φ) , (1)

where the classical potential is

U(Φ) =
1

2
m2Φ2 +

1

3!
gΦ3 +

1

4!
λΦ4 , (2)

and

δU(Φ) =
1

2
δm2 Φ2 +

1

3!
δgΦ3 +

1

4!
δλΦ4 (3)

contains the mass and coupling-constant counterterms.
In Eq. (1), ∂µ ≡ ∂/∂xµ is the derivative with respect to
the Euclidean coordinate xµ ≡ (x, x4).

When λ < 0, the potential U(ϕ) exhibits a false vac-
uum at ϕ ≡ 〈Φ〉 = 0 and is unbounded from below for
ϕ → ±∞. At the level of the classical potential and
when setting m = 0 and g = 0, transitions from the false
vacuum at ϕ = 0 proceed via quantum-mechanical tun-
neling, and the bounce solution to the equation of motion

− d2

dr2
ϕ − 3

r

d

dr
ϕ + U ′(ϕ) = 0 (4)

is the Fubini-Lipatov instanton [12, 13]:

ϕ(r) =
ϕ(0)

1 + r2/R2
, (5)

where ϕ(0) =
√
− 48/λ/R2, r =

√
x · x is the four-

dimensional radial coordinate and R is a constant that
characterizes the radius of the nucleating bubble. The
bounce action is given by [16]

B = 2π2

∫ ∞
0

dr r3

[
1

2

(
∂rϕ

)2
+
λ

4!
ϕ4

]
= − 16π2

λ
(6)

and is independent of R, as a consequence of classical
scale invariance. These results should give a first ap-
proximation to the tunneling rate per unit volume

Γ/V ∼ e−B/~ , (7)

whenever m � R−1, which is what we will also find ex-
plicitly when including radiative corrections, cf. the re-
sults for the bounce solutions shown in Sec. VI.

Now, radiative corrections will, in general, break clas-
sical scale invariance, and the field experiences these al-
ready in the false vacuum, where ϕ = 0. We choose a
nonvanishing mass at the symmetric point as a renormal-
ization condition and thereby as the unique renormaliza-
tion scale, i.e. we take m 6= 0 in Eq. (2) and the renor-
malization condition U ren′′

eff (ϕ)|ϕ= 0 = m2. More details
on this procedure are presented in App. A. The existence
of a bounce solution then requires the presence of radia-
tive corrections [16] and, when these are small, there is
the hierarchy m� R−1, such that mR is perturbatively
small. Since the inverse radius is much larger than the
scale m, we can consider the present setup as a classi-
cally scale-invariant model, albeit with a small breaking
provided by the parameter m. We will confirm the per-
turbative deviation from scale invariance explicitly in the
numerical studies of Sec. VI.

From this perspective, and without a symmetry to pro-
tect the vanishing of the mass of the scalar field when
ϕ = 0, m appears as a dimensionful scale that is neces-
sarily introduced by radiative corrections, similar to the
scale µ at which Coleman and Weinberg fix the quar-
tic coupling in their original work on radiative symmetry
breaking [17]. We note that the present setup would not
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change substantially when choosing the tree-level param-
eter m2 = 0 , while still maintaining U ren′′

eff (ϕ)|ϕ= 0 = m2,
but we prefer the above choice for calculational simplic-
ity.

The present model is reminiscent of approximately
scale-invariant theories that may be trapped in a false
vacuum at some point during the cosmological evolution.
Depending on the exact masses of the Higgs boson and
the top quark, the Standard Model may be the most im-
portant example of such a theory. Nevertheless, there
are important qualitative differences in the running of
the quartic coupling and in the way in which the poten-
tial barrier between false and true vacuum is generated.
We will comment on these matters in the Conclusions.

We also include here the effect from Nχ extra fields χi
of mass mχ:

L → L +

Nχ∑
i= 1

{
1

2
(∂µχi)

2 +
1

2
m2
χχ

2
i +

1

4
αΦ2χ2

i

}
.

(8)

These additional fields are useful for controlling the
amount of radiative breaking of the scale invariance. The
effective potential resulting from our choice of renormal-
ization conditions is given by (see App. A)

U ren
eff (ϕ) =

1

2
m2ϕ2 +

λ

4!
ϕ4

+
1

256π2

{(
2m2 + λϕ2

)2
ln

2m2 + λϕ2

2m2

− 2λm2ϕ2 − 3

2
λ2ϕ4

}
+

Nχ
256π2

{(
2m2

χ + αϕ2
)2

ln
2m2

χ + αϕ2

2m2
χ

− 2αm2
χϕ

2 − 3

2
α2ϕ4

}
. (9)

We note that since λ < 0, this radiative contribution
to the effective potential develops an imaginary part for
ϕ >

√
− 2/λ. This is due to the tachyonic instability of

the field Φ in that region. Nevertheless, the effective ac-
tion remains real when evaluated at the bounce solution.
Namely, the imaginary part present in the effective po-
tential — which assumes a constant, homogeneous field
configuration — is removed when we account for the gra-
dients of the field.

III. SPECTRUM OF FLUCTUATIONS

We aim to compute radiative corrections to tunneling
transitions using Green’s functions. While these can be
obtained as direct solutions to their defining equations,
additional insights can be gained through consideration
of the particular contributions from the fluctuation spec-
trum. Unfortunately, in the Fubini-Lipatov case, where
m2 = 0 and λ < 0, the problem of finding the complete

eigenspectrum and all eigenmodes of the fluctuation op-
erator is not fully analytically tractable.

It is therefore instructive to compare with the archety-
pal example of tunneling in quantum field theory: the
case m2 = −µ2 < 0 and λ > 0, as studied in the semi-
nal works by Coleman and Callan [1, 2]. When the Z2-
breaking term (gΦ3/3!) is small, the minima are quasi-
degenerate and the radius of the critical bubble is ex-
tremely large compared to the width of the bubble wall:
µR = 2

√
3µλ/g � 1. This is the thin-wall regime, which

leads to simplifications such that the full spectral decom-
position can be carried out in an analytic calculation.
Moreover, it turns out that the Green’s functions for the
Fubini-Lipatov and the thin-wall cases agree up to pref-
actors and the dependence of the radial part on the total
angular momentum quantum number j. We will there-
fore present a transformation from the basis of the fluc-
tuation operator for the thin-wall problem to the Fubini-
Lipatov case. We shall refer to the respective bases as
the thin-wall and Fubini-Lipatov bases.

In order to deal with the fluctuations in the four-
dimensional spherically symmetric situation, we separate
the angular dependence as

φλXj{`}(x) = φλXj(r)Yj{`}(ex) . (10)

The radial eigenfunctions φλXj(r) carry labels for the

radial eigenvalue λX (which may be discrete or part of
a continuum), as well as the total angular momentum
j. The Yj{`} are hyperspherical harmonics, where ` ≡
{`1, `2}, with `1 = 0, 1, . . . j and `2 = −`1,−`1+1, . . . , `1,
and ex ≡ x/|x| is a four-dimensional unit vector. The
radial eigenvalue equation is[

− d2

dr2
− 3

r

d

dr
+

j(j + 2)

r2

+ U ′′(ϕ)

]
φλXj = λXφλXj . (11)

This applies to both the Fubini-Lipatov and the thin-
wall cases, which differ in the particular form of U(ϕ).
In the Fubini-Lipatov case, the operator on the left-hand
side of Eq. (11) has a set of eigenfunctions that can be
expressed in either the thin-wall basis X = TW or the
Fubini-Lipatov basis X = FL, see Sec. III C.

In both cases m2 = −µ2 < 0, λ > 0 (thin wall) and
m = 0, λ < 0 (Fubini-Lipatov), we can exploit the O(4)
symmetry of the bounce. Working in hyperspherical co-
ordinates, this allows us to expand the Green’s functions
as follows:

G(x, x′) =
1

2π2

∞∑
j= 0

(j + 1)Uj(cos θ)Gj(r, r
′) , (12)

where cos θ = x · x′/(|x| |x′|) and the Uj are Chebyshev
polynomials of the second kind. The hyperradial Green’s
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function Gj(r, r
′) satisfies the equation[

− d2

dr2
− 3

r

d

dr
+

j(j + 2)

r2
+ U ′′(ϕ)

]
Gj(r, r

′)

=
δ(r − r′)
r′3

. (13)

In the presence of zero modes, the Green’s function can
only be defined in the subspace perpendicular to these,
implying that such modes need to be subtracted. There-
fore, and in order to gain further insight into the nature of
the radiative effects, it is useful to represent the Green’s
function as a spectral sum, which can be written in the
following form:

G(x, x′) =
1

2π2

∞∑
j= 0

(j + 1)Uj(cos θ)

×

 ∑
λX ∈LXdj

+

∫
λX ∈LXcj

dλX

2π

 φ−λXj(r′)φ+
λXj

(r)

λX
, (14)

where the sum runs over the set of discrete eigenvalues
LXdj and the integral over the continuum LXcj . The + and
− indicate the basis and reciprocal basis. Note that the
discrete and continuum eigenmodes have different dimen-
sionality, since∫

dr r3 φ−
λX′j

(r)φ+
λXj

(r) = δλXλX′

for λX , λX′ ∈ LXdj ,

(15a)∫
dr r3 φ−

λX′j
(r)φ+

λXj
(r) = 2πδ(λX − λX′)

for λX , λX′ ∈ LXcj ,

(15b)

i.e. the former are normalizable and the latter normaliz-
able in the improper sense. For the real scalar field con-
sidered here, the basis and reciprocal basis are the same
in the case of the discrete modes, and we will therefore
drop the distinction and the superscripts + and − in
what follows. Note that the basis and its reciprocal are
distinct for the continuum modes.

A. Zero and negative modes

We first consider the eigenmodes with zero and nega-
tive eigenvalues. The zero modes are associated with the
spontaneous breakdown of symmetries: translations in
both the Fubini-Lipatov and thin-wall cases, and, in ad-
dition, dilatations around the tree-level Fubini-Lipatov
instantons. A negative eigenmode is a hallmark of
metastable states, reflecting the fact that the bounce is
a saddle-point solution, such that it is present in both
cases. We will show that the negative mode can approx-
imately be associated with a dilatation of the bounce

in the thin-wall case, whereas, about the Fubini-Lipatov
instanton, it does not correspond to dilatations, which
yield, in contrast, a nonnormalizable zero mode.

1. Thin wall

In the thin-wall regime, the gradients of the bounce
are negligible everywhere except in the vicinity of the
bubble wall. We can therefore make the following series
of approximations for the damping term in the equation
of motion (4):

− 3

r

d

dr
ϕ(r) ≈ − 3

R

d

dr
ϕ(r) ≈ 0 , (16)

and the bounce is given by the well-known kink solution

ϕ(r) = v tanh[γ(r −R)] , γ ≡ µ/
√

2 . (17)

The four-dimensional translational invariance of the
action leads to four eigenmodes of zero eigenvalue. Since
the multiplicity of the j-th angular momentum mode is
(j + 1)2 (in four dimensions), these translational zero
modes must have the angular quantum number j = 1.
This may readily be verified by acting on the equation of
motion for the bounce with the infinitesimal generator of
translations Pµ = − i∂µ:

Pµ

[
− d2

dr2
ϕ − 3

r

d

dr
ϕ + U ′(ϕ)

]
= 0

⇔
[
− d2

dr2
− 3

r

d

dr
+

3

r2
+ U ′′(ϕ)

]
Pµϕ(r) = 0 .

(18)

It follows that the four zero modes have the explicit forms

φµ(r) ∝ Pµϕ(r) ∝ xµ
r

sech2[γ(r −R)] , (19)

where µ ∈ {1, 2, 3, 4}.
The negative eigenmode owes its existence to the in-

stability. More specifically, in the thin-wall case, it arises
because the bounce action is a maximum with respect to
the radius of the critical bubble R. In fact, the negative
eigenvalue is given by [14]

λTW
20 =

1

B

δ2B

δR2
= − 3

R2
, (20)

where TW stands for “thin wall”, and the subscripts will
be clarified in Sec. III B 1. We may therefore anticipate
that the negative eigenmode is to be associated with di-
latations of the critical bubble in the present case, that
is with ∂rϕ = − ∂Rϕ. Acting on the equation of motion
for the bounce with the operator ∂r, we find

∂r

[
− d2

dr2
ϕ − 3

r

d

dr
ϕ + U ′(ϕ)

]
= 0

⇔
[
− d2

dr2
− 3

r

d

dr
+

3

r2
+ U ′′(ϕ)

]
∂rϕ(r) = 0 ,

(21)
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which we can immediately relate to the eigenvalue equa-
tion of the translational zero modes (j = 1), cf. Eq. (18).
When we apply the thin-wall approximation for the cen-
tripetal term, replacing in Eq. (21)

3

r2
∂rϕ(r) ≈ 3

R2
∂rϕ , (22)

(as is appropriate because the field gradients are peaked
at r ∼ R) and comparing with Eq. (11), we indeed re-
cover the negative eigenvalue (20). We therefore conclude
that the negative eigenmode can be associated with di-
latations in the thin-wall regime.

To understand further whether dilatations generally
pertain to the negative eigenvalue, we act on the bounce
with the infinitesimal generator of dilatations. A geo-
metric dilatation is generated by D̄ = xµ∂µ, and taking
account of the scaling dimension one for the scalar field,
a scale transformation is generated by D = 1 + D̄ =
1 + xµ∂µ, which we refer to as a dilatation (without the
adjective geometric), in the same way this term is used
in recent literature [5, 18]. Spherical symmetry then im-
plies that D̄ϕ(r) = r∂rϕ(r) ≈ R∂Rϕ(r), where the latter
approximation holds only in the thin-wall regime, since
sech2[γ(r − R)] is strongly peaked at r ∼ R, which con-
firms that the shape of the negative mode is close to a di-
latation. Note further that in the thin-wall regime, where
R � γ−1, Dϕ(r) ≈ D̄ϕ(r). However, acting instead on
the equation of motion for the bounce, we find

D̄

[
− d2

dr2
ϕ − 3

r

d

dr
ϕ + U ′(ϕ)

]
= 0

⇔
[
− d2

dr2
− 1

r

d

dr
+

4

r2
+ U ′′(ϕ)

]
D̄ϕ = 0 , (23)

illustrating that one cannot conclude that geometric di-
latations correspond to eigenmodes of any eigenvalue.

Finally, note that in the thin-wall limit, the negative
and zero eigenmodes do not contribute to the Green’s
function because of a vanishing integration measure.
Nevertheless, for each j, there are two discrete eigen-
values and a continuum starting for positive energies in
the corresponding quantum mechanical problem [14].

2. Fubini-Lipatov instanton

We now turn our attention to the spectrum of fluctu-
ations over the Fubini-Lipatov instanton in Eq. (5). For
this given background, the eigenvalue equation (11) has
the form[

− d2

dr2
− 3

r

d

dr
+

j(j + 2)

r2

− 24R2

(r2 +R2)2
− λFL

]
φλFLj(r) = 0 . (24)

The classical action is invariant under both four-dimen-
sional translations and dilatations, and the dilatational

and translational zero modes are given in terms of the
associated Legendre polynomials Pωn (z) of degree n = 2
and order ω = j + 1 = 1, 2.

The translational symmetry leads to four zero eigen-
modes, as before, and we can readily verify that these
are given by the action of the infinitesimal generator
Pµ = −i∂µ on the Fubini-Lipatov instanton itself. Specif-
ically, we find

φµ(r) ∝ Pµ ϕ(r) ∝ xµ
r2

P 2
2

(
1− r2/R2

1 + r2/R2

)
∝ xµ

(1 + r2/R2)2
, (25)

where we use the spacetime index µ in favour of the pair
{λFL, j}, as in Eq. (11), in order to label the transla-
tional modes. These modes have no nodes in the radial
direction, such that there are no lower-lying modes for
j = 1, and, as per the original argument by Coleman
and Callan [2], there must therefore exist a lower eigen-
mode, whose eigenvalue is negative and whose angular
momentum is j = 0.

The action is also invariant under scale transforma-
tions, and there exists an additional, but nonnorm-
alizable, zero mode with j = 0:

Dϕ ∝ ∂R ϕ(r) ∝ 1

r
P 1

2

(
1− r2/R2

1 + r2/R2

)
∝ 1− r2/R2

(1 + r2/R2)2
,

(26)
associated with dilatations of the critical bubble, but hav-
ing nothing to do with geometric dilatation transforma-
tions, as per Eq. (23). We note also that applying the
dilatation to the equation of motion and comparing with
Eq. (11) for j = 0 and λFL = 0, we find

D

[(
− d2

dr2
− 3

r

d

dr

)
ϕ + U ′(ϕ)

]
−
(
− d2

dr2
− 3

r

d

dr
+ U ′′(ϕ)

)
Dϕ

= 2
d2

dr2
ϕ +

6

r

d

dr
ϕ + U ′(ϕ) − ϕU ′′(ϕ) = 0 .

(27)

Using the equation of motion (4), we then obtain

3U ′(ϕ) = ϕU ′′(ϕ) , (28)

as we expect because the quartic potential is the unique
scale-invariant interaction term in four dimensions.

We note that, because the mode (26) has a single node
and zero eigenvalue, there also is, as anticipated, a nega-
tive mode for j = 0, which is associated with the metasta-
bility of the false vacuum state [19]. This negative eigen-
mode satisfies the eigenvalue equation[
− d2

dr2
− 3

r

d

dr
− 24R2

(r2 +R2)2
+ |λFL

20 |
]
φ0(r) = 0 . (29)

For the sake of notational congruence with its thin-wall
counterpart (20), we have attached the subscript 20 to
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FIG. 1. Plot of the [10/10] Padé approximant of the normal-
ized negative eigenmode (dotted) versus the numerical esti-
mate (dashed) and the “apparent” negative mode, as appears
in the Green’s function (dot-dashed). The value of the neg-
ative eigenvalue for the approximate analytic solution was
taken from the numerical estimate.

the negative eigenvalue λFL
20 and, for simplicity, we label

the pertaining lowest-lying mode with the index 0 rather
than the pair {λFL, j}. Introducing the dimensionless
variable z = r/R and defining f(z) ≡ (1 + z2)2φ0(r), we
are looking for the solution to

− z (1 + z2)f ′′(z) + (5z2 − 3)f ′(z)

+ z(|λFL
20 | − 8 + |λFL

20 | z2)f(z) = 0 . (30)

By the Frobenius method, we obtain the following series
solution:

f(z) = N

∞∑
n= 0

an z
n , (31)

where N is a constant and with coefficients satisfying the
fourth-order homogeneous recurrence relation

a0 = 1 , (32a)

a1 =
|λFL

20 | − 8

8
a0 , (32b)

an+4 =
[|λFL

20 | − n(n− 2)] an+2 + |λFL
20 | an

(n+ 4)(n+ 6)
. (32c)

For λFL
20 = 0, this series truncates at first order, and we

recover the dilatational zero mode in Eq. (26). For a
range of λFL

20 < 0, the coefficients of this series alternate
in sign. While we have been unable to find the solution to
this recurrence relation in closed form, we can extend the
radius of convergence of a finite truncation of this series
by forming the Padé approximant. Figure 1 shows the
approximate analytic (dotted) and numerical (dashed)
estimates of the normalized negative eigenmode, com-
pared to the form one might naively extract from the
Green’s function (dot-dashed) (see Sec. III B).

We note that in the Fubini-Lipatov case, for each j,
there is a continuum of positive eigenvalues starting at

zero because these are the positive-energy solutions in
the corresponding Schrödinger problem. It follows that
the translational and dilatational zero modes are not dis-
crete. Moreover, we notice that for j > 1, the effective
potential in the Schrödinger problem is positive semi-
definite, such that there cannot be any negative modes.
For j = 0, we observe that the dilatational mode has one
node and the negative mode has zero, such that these
cover all modes with eigenvalues ≤ 0. For j = 1, the
translational modes have eigenvalue zero and no nodes,
such that there can be now lower-lying modes. In sum-
mary, the spectrum that appears in Eq. (14) takes the
form:

LFL
d0 =

{
λFL

20

}
, (33a)

LFL
dj = ∅ for j > 0 , (33b)

LFL
cj =

{
λFL | λFL > 0

}
, (33c)

where the superscript FL indicates the basis of the op-
erator in the eigenvalue equation (24) for fluctuations
around the Fubini-Lipatov instanton. The above spec-
trum is also summarized and compared with the thin-wall
case in Table I.

For a self-consistent solution with radiative corrections
and m2 > 0, the continua begin in contrast at the point
m2. While in that case, the translational eigenvalues
that are protected by Goldstone’s theorem remain zero,
the first nonnegative eigenvalue for j = 0, i.e. the one
associated with an approximate dilatation, is lifted to
m2. The negative mode that is present for j = 0 due
to the metastability remains negative and discrete also
after taking account of the radiative corrections. In that
situation, the above spectrum is modified to

LFL
d0 =

{
λFL

20

}
, (34a)

LFL
d1 = {0} , (34b)

LFL
dj = ∅ for j > 1 , (34c)

LFL
cj =

{
λFL | λFL > m2

}
. (34d)

B. Green’s function

1. Thin wall

In the thin-wall regime, we can make the approxima-
tions (see Ref. [14])

j(j + 2)

r2
−→ j(j + 2)

R2
, (35a)

− 3

r

d

dr
−→ − 3

R

d

dr
−→ 0 , (35b)

and consistently replace

δ(r − r′)
r′3

−→ δ(r − r′)
R3

. (36)
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Subsequently, we move to a coordinate aligned with the
kink solution itself, via the change of variables

u(′) ≡ u(′)(r(′)) = tanh[γ(r(′) −R)
]
∈ (−1, 1) , (37)

which yields[
d

du
(1− u2)

d

du
− ω2

1− u2
+ 6

]
Fj(u, u

′)

= − δ(u− u′) , (38)

where Fj(u, u
′) ≡ γR3Gj(r, r

′) and

ω =

(
4 +

j(j + 2)

γ2R2

)1/2

. (39)

In this way, one finds the Green’s function to be [14]

Gj(r, r
′) =

1

2γR3ω

[
ϑ(u− u′)

(
1− u
1 + u

)ω
2
(

1 + u′

1− u′

)ω
2

×
(

1− 3
(1− u)(1 + ω + u)

(1 + ω)(2 + ω)

)
×
(

1− 3
(1− u′)(1− ω + u′)

(1− ω)(2− ω)

)
+ (u↔ u′)

]
, (40)

where ϑ(z) is the generalized unit-step function.
It is helpful, however, to proceed slightly differently,

by substituting for the function G̃j(r, r
′) ≡ r3Gj(r, r

′)
before making the thin-wall approximation. Doing the
former yields the hyperradial equation[
− d2

dr2
+

3

r

d

dr
+

j(j + 2)− 3

r2
+ U ′′(ϕ)

]
Gj(r, r

′)

=
r3

r′3
δ(r − r′) , (41)

where we emphasize the change in sign of the first-order
derivative, the shift in the centrifugal potential and the
appearance of the dimensionless ratio of the two hyper-
radial coordinates on the right-hand side. Making the
thin-wall approximations

j(j + 2)− 3

r2
−→ j(j + 2)− 3

R2
, (42a)

+
3

r

d

dr
−→ +

3

R

d

dr
−→ 0 , (42b)

and consistently replacing

r3

r′3
δ(r − r′) → δ(r − r′) , (43)

we recover the differential equation (38) and the solution
in Eq. (40) but with

ω =

(
4 +

j(j + 2)− 3

γ2R2

)1/2

. (44)

While the difference between Eqs. (39) and (44) is im-
material in the thin-wall regime (because there we take
R→∞ while keeping the tangential momentum k ≈ j/R
finite, implying that j → ∞ for fixed k), the latter ap-
proach allows us to make contact with the true eigen-
spectrum. Specifically, the coincident limit of the Green’s
function is

G(r, r) =
γ

4π2R3

∞∑
j= 0

(j + 1)2

ω

[
1

γ2

+ 3
(
1− u2

) 2∑
n= 1

(−1)n(n− 1− u2)

γ2(ω2 − n2)

]
,

(45)

where the denominators

λTW
nj = γ2(ω2−n2) = γ2(4−n2) +

j(j + 2)− 3

R2
(46)

are the discrete eigenvalues [cf. Eq. (70) below], as one
would naively expect from the contribution of the asso-
ciated modes to the spectral representation (14) of the
Green’s function. At this point, it is tempting to “read
off” the functional forms of the discrete eigenfunctions.
We will return to this point shortly. We notice that
the contribution from j = 1, n = 2 is singular. This
contribution corresponds to the four translational zero
eigenmodes. As described in Sec. IV, these eigenmodes
should be excluded from the Green’s function, and we
will discuss this further for the Fubini-Lipatov instanton
below. Note that, in the analysis of Ref. [14], the sum
over discrete angular momenta was traded for a contin-
uous momentum integral in the planar-wall approxima-
tion. In this case, the contributions from the zero modes
are measure zero, and it is therefore not necessary to
exclude them explicitly, cf. Ref. [14].

2. Fubini-Lipatov instanton

For the classically scale-invariant model, we factor out
the 1/r dependence of the Green’s function, defining

G̃j(r, r
′) = rr′Gj(r, r

′) . (47)

We then have[
− d2

dr2
− 1

r

d

dr
+

(1 + j)2

r2
− 24R2(

r2 +R2
)2
]
G̃j(r, r

′)

=
r

r′2
δ(r − r′) . (48)

We again move to coordinates aligned with the back-
ground field configuration — this time the Fubini-Lipatov
instanton — making the change of variables

u(′) ≡ u(′)(r(′)) =
1− r2/R2

1 + r2/R2
= 2

ϕ(r)

ϕ(0)
−1 ∈ (−1, 1] ,

(49)
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with u → −1 corresponding to r → ∞. Rearranging
Eq. (49), we have

r(′) = R

(
1− u(′)

1 + u(′)

)1/2

. (50)

This change of variables leads to[
d

du
(1− u2)

d

du
− ω2

1− u2
+ 6

]
Fj(u, u

′)

= −
(

1− u
1 + u

)(
1 + u′

1− u′

)
δ(u− u′) , (51)

where Fj(u, u
′) ≡ R2 G̃j(r, r

′) and

ω = j + 1 . (52)

We note that the homogeneous part of the differential
equation (51) is of precisely the same form as for the
thin-wall case in Eq. (38). Proceeding as described in
App. B, we find the hyperradial Green’s function

Gj(r, r
′) =

1

2R2ω

[
ϑ(u− u′)

(
1− u
1 + u

)j
2
(

1 + u′

1− u′

)j+2
2

×
(

1− 3
(1− u)(1 + ω + u)

(1 + ω)(2 + ω)

)
×
(

1− 3
(1− u′)(1− ω + u′)

(1− ω)(2− ω)

)
+ (u ↔ u′)

]
. (53)

It follows then that the coincident limit of the Green’s
function is

G(r, r) =
1

4π2R2

(
1 + u

1− u

) ∞∑
j= 0

(j + 1)2

ω

[
1

+ 3
(
1− u2

) 2∑
n= 1

(−1)n(n− 1− u2)

ω2 − n2

]
,

(54)

differing from Eq. (45) in the form of ω, the dimensionful
prefactors and an overall factor of 1/r2. From this ex-
pression, one might suspect that there are discrete eigen-
values proportional to

ω2 − n2 = (j + 1)2 − n2 . (55)

However, this is misleading because it is in disagreement
with the spectrum discussed in Sec. III A 2. We may rec-
ognize zero modes for j = 0, n = 1 and j = 1, n = 2,
which correspond to the five Goldstone modes that arise
from the spontaneous breakdown of symmetries in pres-
ence of the bounce solutions: one (j = 0) arises from
broken dilatational and four (j = 1) from broken trans-
lational invariance. In addition, there is one negative

mode for j = 0, n = 2, but we cannot directly infer its
value from Eq. (54). We emphasize, however, that the
zero modes are not discrete, and there are no discrete
modes at all for j > 0, whereas Eq. (54) might suggest
otherwise.

C. Spectral sum

In order to understand the apparent mismatch between
the eigenspectra and the form of the coincident Green’s
function in the Fubini-Lipatov background (54), it would
be interesting to compare with an explicit construction
via a spectral sum in the form of Eq. (14). However,
this cannot be carried out analytically for the Fubini-
Lipatov case in terms of the eigenmodes of the operator
in Eq. (11), i.e. in the Fubini-Lipatov basis.

However, we notice that the left-hand side of Eq. (51)
for the Green’s function of the Fubini-Lipatov case is of
precisely the same form as Eq. (38) for the thin-wall case.
As a result, we can transform the problem of finding the
spectral sum in the Fubini-Lipatov case to a thin-wall
basis, such that it becomes analytically tractable. More-
over, this relation between the two problems clarifies why
the apparent modes in the Fubini-Lipatov Green’s func-
tion (54) agree with those of the thin-wall case (45). It is
important though to emphasize that the eigenfunctions
of the thin-wall basis are not directly related to the true
eigenfunctions over the Fubini-Lipatov instanton, and we
give an overview of the basis transformation in App. D.
This is the case for the true negative eigenfunction, and
the coefficients of the transformation cannot be found in
analytic form.

In the thin-wall case, we will see that there are nontriv-
ial cancellations between contributions from the true dis-
crete and continuum spectra, which obscures the origin
of the particular contributions to the Green’s function.
This strongly hints at the possibility that similar can-
cellations occur for the Fubini-Lipatov case also without
applying the transformation to the thin-wall basis, such
that this may explain why the true negative eigenmode
is not directly apparent in Eq. (54).

We can cast the problem of finding the spectral sum
representation for the thin-wall case in a convenient form
by making the following (judicious) rescaling of the eigen-
functions:

φ̃±
λTWj

(u) ≡ (r/R)3γ1/2R3/2φ±
λTWj

(r) . (56)

The eigenvalue equation (11) then takes the form[
− d2

dr2
+

3

r

d

dr
+

j(j + 2)− 3

r2

+ U ′′(ϕ) − λTW

]
φ̃±
λTWj

(u) = 0 , (57)

where we again emphasize the change of sign in the damp-
ing term and the shift in the numerator of the centrifu-
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gal potential. After making the thin-wall approximation1

via Eq. (42) and changing coordinates via Eq. (37), the
eigenproblem becomes[

d

du
(1− u2)

d

du
− $2

1− u2
+ 6

]
φ̃±
λTWj

(u) = 0 , (58)

where

$2 ≡ ω2 − λ̄TW , (59)

λ̄TW ≡ λTW/γ2 are the dimensionless eigenvalues and ω
is given by Eq. (44). Equation (58) is the associated Leg-
endre differential equation, and the solutions are the as-
sociated Legendre functions of degree 2 and order $. Set-
ting $ = n ∈ {1, 2}, we immediately recover the discrete
eigenmodes discussed earlier. The order of these func-
tions becomes imaginary when λ̄TW > ω2, $2 < 0, im-
plying positive energies in the corresponding Schrödinger
problem, and this marks the beginning of the positive
continuum.2 However, rather than dealing with the as-
sociated Legendre functions of imaginary order, we can
define

f±
λTWj

(u) =

(
1− u
1 + u

)±$/2
φ̃±
λTWj

(u) (60)

and recast the eigenvalue problem in terms of the Jacobi
differential equation[

(1−u2)
d2

du2
− 2
(
u∓$

) d

du
+ 6

]
f±
λTWj

(u) = 0 . (61)

With these manipulations, the spectral sum representa-
tion of the Green’s function is given by

GTW(x, x′) =
1

2π2γR3

∞∑
j= 0

(j + 1)Uj(cos θ)

×

 ∑
λ̄TW ∈ L̄TW

dj

+

∫
λ̄TW ∈ L̄TW

cj

dλ̄TW

2π

(1 + u

1− u

)+$
2
(

1 + u′

1− u

)−$2

×
f−
λTWj

(u′)f+
λTWj

(u)

λ̄TW
. (62)

In the Fubini-Lipatov case, the (judiciously) rescaled
eigenfunctions are

φ̃±
λFLj

(u) ≡ rφ±
λFLj

(r) . (63)

1 Note that (r/R)3φ±
λTWj

→ φ±
λTWj

in the thin-wall approxima-

tion.
2 In Ref. [14], it is incorrectly stated that the continuum begins

at λ10 = 2γ2. In the thin-wall regime, the continuum instead
begins at λTW

00 ≈ λTW
01 = 4γ2, cf. Ref. [20].

After transforming to the thin-wall basis (see App. D), we
can write the spectral sum representation of the Green’s
function as

GFL(x, x′) =
1

2π2R2

∞∑
j= 0

(j + 1)Uj(cos θ)

×

 ∑
λ̄TW ∈ L̄TW

dj

+

∫
λ̄TW ∈ L̄TW

cj

dλ̄TW

2π

(1 + u

1− u

)+$+1
2

×
(

1 + u′

1− u

)−$−1
2 f−

λTWj
(u′)f+

λTWj
(u)

λ̄TW
. (64)

Here, the dimensionless eigenvalues are λ̄TW ≡ λTWR2,
and the superscript TW indicates that we are working in
the thin-wall basis. These λ̄TW = $2 − ω2 of the thin-
wall basis should not be confused with those of the thin-
wall case, which differ in the value of ω. We emphasize
that the Fubini-Lipatov value of ω = j + 1 [cf. Eq. (44)
for the thin-wall case] does not change under the basis
transformation.

In order to see that the eigenfunctions of the thin-
wall basis are not directly related to the true eigenfunc-
tions over the Fubini-Lipatov instanton, we note that the
eigenvalue equation in Eq. (11) becomes[

d

du
(1− u2)

d

du
− ω2

1− u2

+
λ̄FL

(1 + u)2
+ 6

]
φ̃±
λFLj

(u) = 0 . (65)

This differs from Eq. (58) for the thin-wall problem, due
to the extra dependence on u in the term pertaining to
the eigenvalue λFL. Hence, while the Green’s functions
for the Fubini-Lipatov and the thin-wall cases are iden-
tical up to algebraic prefactors and the different form of
ω in Eqs. (44) and (52), their true eigenspectra are very
different, with the exception of the zero modes. When
λ̄FL = 0, we see from Eq. (58) and the definition of $
in Eq. (59) that λ̄TW also vanishes and the eigenvalue
equations coincide in the thin-wall and Fubini-Lipatov
bases. Thus, for the Fubini-Lipatov case, the zero modes
(translational and dilatational) coincide in the thin-wall
and Fubini-Lipatov bases.

The apparent disparity between the eigenspectra of the
two bases originates from their differing normalizations;
namely, for the discrete modes,

R2

∫
du

1− u2
φ̃−
λTWj

(u)φ̃+
λTWj

(u) = 1 , (66a)

R2

∫
du

(1 + u)2
φ̃−
λFLj

(u)φ̃+
λFLj

(u) = 1 , (66b)

with analogous expressions holding for the continuum
modes, which are normalized in the improper sense. This
difference in normalization is the reason why the dilata-
tional mode, which is nonnormalizable in the Fubini-
Lipatov basis, becomes an apparent normalizable mode
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in the thin-wall basis. Moreover, it indicates that the
transformation, described here and in App. D for illustra-
tive purposes, is not a basis transformation in the proper
sense, since the two bases span different Hilbert spaces.

Returning to the problem of finding the spectral
sum representations in the thin-wall basis, the solutions
to Eq. (61) are the Jacobi polynomials of degree 2:
P

(∓$,±$)
2 (u). For $ = n ∈ {1, 2}, we can show that

these are normalizable (see App. C)∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+n
2
(
u+ 1

u− 1

)−n′2
P

(−n,+n)
2 (u)

× P (+n′,−n′)
2 (u) =

(−1)nπ

4 sin(nπ)
(4− n2)(1− n2) δnn′

=

{
− 3

2 δnn′ , n = 1

3 δnn′ , n = 2
. (67)

For λ̄TW > ω2, the continuum is specified by $ = iξ
(ξ ∈ R), and we can show that (see App. C)∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+ iξ
2
(
u+ 1

u− 1

)− iξ′2
P

(−iξ,+iξ)
2 (u)

× P (+iξ′,−iξ′)
2 (u) =

π

2
(4 + ξ2)(1 + ξ2) δ(ξ − ξ′) . (68)

Hence, the sets of (dimensionless) discrete and continu-
ous eigenvalues that appear in the spectral sum in the
thin-wall basis can be specified as follows:

L̄TW
dj =

{
λ̄TW

2j , λ̄TW
1j

}
, (69a)

L̄TW
cj =

{
λ̄TW | λ̄TW > ω2

}
, (69b)

where

λ̄TW
nj = ω2 − n2 . (70)

The apparent discrete modes, which are the true eigen-
modes in the thin-wall case, contribute to the Green’s
functions as

Gd(r, r) =
1

4π2R2


1
γR(
1+u
1−u

)
∞∑
j= 0

(j + 1)2

× 3(1− u2)

2∑
n= 1

(−1)n(n− 1− u2)

n(ω2 − n2)
, (71)

where the upper alternative applies to the thin-wall case
and the lower to the Fubini-Lipatov case. The contribu-
tions of the apparent continuum modes to the Green’s
functions are

Gc(r, r) =
1

2π2R2


1
γR(
1+u
1−u

)
×
∞∑
j= 0

(j + 1)2

∫ +∞

−∞

dξ

2π

4

(4 + ξ2)(1 + ξ2)

× P
(−iξ,+iξ)
2 (u)P

(+iξ,−iξ)
2 (u)

ω2 + ξ2
. (72)

Integrating over ξ (see App. D, where the case r′ 6= r is
also treated), we obtain

Gc(r, r) =
1

4π2R2


1
γR(
1+u
1−u

)
∞∑
j= 0

(j + 1)2

[
1

ω

+ 3(1− u2)

2∑
n= 1

(−1)n(n− 1− u2)

ω(ω2 − n2)

− 3(1− u2)

2∑
n= 1

(−1)n(n− 1− u2)

n(ω2 − n2)

]
.

(73)

Despite having integrated over the continuum part of the
spectrum, there appear terms involving sums over n and
matching denominators to the discrete eigenvalues. Fur-
thermore, we see that the final line of Eq. (73) cancels
against the contribution from the discrete eigenmodes in
Eq. (71), leaving the results already quoted in Eqs. (45)
and (54). Therefore, while we can still “read off” the
functional form of the discrete eigenmodes from the fi-
nal Green’s function in the thin-wall case, we see that
there is a nontrivial interplay between the discrete and
continuum parts of the spectrum.

In the Fubini-Lipatov case, while we can read off the
functional forms of the zero modes, we cannot read off
the true functional form of any other modes due to the
transformation of the eigenvalue problem. Notice, for
instance, that the functional form of the negative mode
that one would read off from the Green’s function does
not coincide with the true negative eigenfunction, as can
be seen in Fig. 1. Moreover, by considering the trans-
formed eigenproblem, one might be led to conclude that
there are two infinite towers of discrete modes also for the
Fubini-Lipatov case. This is not correct, and we reiter-
ate that, in the Fubini-Lipatov case, the λ̄TW

nj in Eq. (70)
do not compose the true discrete eigenspectrum. The
eigenspectra for both cases are summarized in Table I.

We remark that, while one might be tempted to re-
move the apparent discrete zero modes in the thin-wall
basis, this will not eliminate the infrared divergences,
since these reside also in the continuum, as is clear from
the interplay of the apparent discrete and continuum
modes described above. Since the one-loop fluctuation
determinant can be related to the Green’s function, the
same subtraction in the transformed problem may also
be problematic there, cf. Ref. [5], and we leave further
study of this point for future work.

IV. ZERO MODES

In order to deal with the translational zero modes, we
first decompose the field as

Φ(x) = ϕ(x−y) +

4∑
µ= 1

aµφµ(x−y) + Φ′(x−y) , (74)
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j
U = − 1

2
|µ2|Φ2 + 1

4!
|λ|Φ4 U = − 1

4!
|λ|Φ4

λTW
nj = (4−n2)γ2+ j(j+2)−3

R2 λFL
nj ∝ (j + 1)2 − n2

0
λTW
20 = − 3

R2 < 0 λFL
20 < 0

negative-definite mode negative-definite mode

0
λTW
10 = 3γ2 − 3

R2 λFL
10 = 0

positive-definite mode dilatational mode

0 λTW ≥ 4γ2 − 3
R2 > 0 λFL > 0

1
λTW
21 = 0 λFL

21 = 0

translational zero mode translational zero mode

1 λTW
11 = 3γ2 λFL > 0

1 λTW ≥ 4γ2

> 1 λTW
2j = j(j+2)−3

R2 λFL > 0

> 1 λTW
1j = 3γ2 + j(j+2)−3

R2

> 1 λTW ≥ 4γ2 + j(j+2)−3

R2

TABLE I. Comparison of the eigenspectra for the archetypal
(thin-wall case) and scale-invariant (Fubini-Lipatov case with
m = 0) theories over their respective tunneling configurations.
Modes that are part of the discrete spectrum are in white cells;
parts of the continuum spectrum are in grey-shaded cells.
Note that when lifting the mass parameter to m2 > 0 and
including radiative corrections, the translational zero modes
become discrete in the Fubini-Lipatov spectrum, whereas the
approximate dilatational mode remains at the end point of
the continuum, with its eigenvalue lifted to λFL

10 = m2.

where ϕ(x− y) is the bounce, y is its coordinate centre,
Φ′(x− y) contains the contributions of the negative- and
positive-definite (discrete and continuum) eigenmodes,
and

φµ(x− y) = N∂(x)
µ ϕ(x− y) (75)

are the translational zero eigenmodes with the normal-
ization factor

N =

[∫
d4x (∂µϕ(x))2

]−1/2

. (76)

Note that in the case of the tree-level bounce, N =
B−1/2, where B is the bounce action [see Eq. (6)]. The
zero eigenmodes satisfy the orthonormality relations∫

d4x φ∗µ(x)φν(x) = δµν , (77a)∫
d4x Φ′

∗
(x)φµ(x) = 0 . (77b)

We emphasize that, while all the eigenmodes depend on
y,3 the original field Φ ≡ Φ(x) is independent of y.

3 This can be shown explicitly by considering the eigenvalue prob-
lem directly, which can be expressed entirely in terms of x− y.

With this decomposition, the functional integral can
be written in the form∫

DΦ =

∫
DΦ′

4∏
µ= 1

[
(2π~)−1/2

∫
daµ

]
, (78)

where we have isolated the problematic integrals over the
zero modes. These integrals can be performed by means
of a Faddeev-Popov-type method [21–24]. Specifically,
we insert unity in the form

1 =

4∏
µ= 1

∫
dyµ

∣∣∂(y)
µ fµ(y)

∣∣δ(fµ(y)
)
, (79)

in order to trade the integrals over the aµ for integrals
over the collective coordinates yµ. We take

fµ(y) =

∫
d4x Φ(x)∂(x)

µ ϕ(x− y) , (80)

from which it follows that

∂(y)
µ fµ(y) = −

∫
d4x Φ(x)∂(x)

µ ∂(x)
µ ϕ(x− y) . (81)

By virtue of the orthogonality of the eigenmodes, we can
quickly show that

fµ(y) = N−1aµ , (82)

such that the delta function in Eq. (79) can be written
as

δ
(
fµ(y)

)
= N δ(aµ) . (83)

As a result, the Jacobian becomes

∂(y)
µ fµ(y)

∣∣
aµ=0

=

∫
d4x

[
∂(x)
µ ϕ(x− y)

]2
−
∫

d4x Φ′(x− y) ∂(x)
µ ∂(x)

µ ϕ(x− y) . (84)

The first term is just the normalization N−2, and we find

1 =

4∏
µ= 1

[ ∫
dyµ N−1δ(aµ)

×
(

1−N 2

∫
d4x Φ′(x− y)∂(x)

µ ∂(x)
µ ϕ(x− y)

)]
.

(85)

Inserting this result into the original functional integral
in Eq. (78) gives∫
DΦ =

(
1

2π~N 2

)2 ∫
DΦ′

∫
d4y

×
4∏

µ= 1

(
1−N 2

∫
d4x Φ′(x− y)∂(x)

µ ∂(x)
µ ϕ(x− y)

)
.

(86)
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The integral within the parentheses is independent of y,
and we can write∫

DΦ = V T

(
1

2π~N 2

)2 ∫
DΦ′

×
4∏

µ= 1

(
1−N 2

∫
d4x Φ′(x)∂µ∂µϕ(x)

)
, (87)

where the four-volume factor V T has arisen from the
integral over the collective coordinates.

We now apply this decomposition in positive- or
negative-definite and zero modes to the path integral
in order to determine the radiative corrections to the
bounce from the generating functional

Z[J ] =

∫
DΦ exp

[
− 1

~

∫
d4x

(
1

2
∂µΦ(x) ∂µΦ(x)

+
λ

4!
Φ4(x) − J(x)Φ(x)

)]
. (88)

For the evaluation, we first expand around the classical
solution ϕ(0) as Φ = ϕ(0) + ~1/2

∑4
µ= 1 aµφ

(0)
µ + ~1/2Φ′.

A superscript (0) has been attached here to the zero
modes φµ in order to indicate that they are obtained from

substituting the tree-level bounce ϕ(0) into Eq. (75).
The Faddeev-Popov procedure described above then

leads to (We use the more compact index notation where,
e.g., f(x) ≡ fx for functions and

∫
d4x ≡

∫
x

for integrals.)

Z[J ] = V T
B2

(2π~)2

×

[
4∏

µ= 1

(
1 − ~

B

∫
x

δ

δJx
∂µ∂µϕ

(0)
x

)]
Z ′[J ] ,

(89)

where

Z ′[J ] = exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]

×
∫
DΦ′ exp

[
−
∫
xy

1

2
Φ′xG

−1
xy Φ′y − ~−1/2

∫
x

JxΦ′x

− ~1/2

∫
x

λ

3!
ϕ(0)
x Φ′3x − ~

∫
x

λ

4!
Φ′4x

]
(90)

and

G−1
xy = δ4

xy

[
− ∂2

y + U ′′
(
ϕ(0)
y

)]
(91)

is the Klein-Gordon operator. In the full Hilbert space,
this operator is not invertible because of the zero modes
∂µϕ

(0). Nevertheless, the inversion is well defined in the
subspace perpendicular to the zero modes, where the sub-
tracted two-point function G⊥ is the solution to [22]∫

z

G−1
xz G

⊥
zy = δ4

xy −
4∑

µ= 1

(
φ(0)
µ

)
x

(
φ(0)
µ

)
y
, (92)

with the additional requirement that∫
y

G⊥xy
(
φ(0)
µ

)
y

= 0 . (93)

We refer to G⊥ and to its perturbatively-improved vari-
ants as the subtracted Green’s functions because they
may be thought of as emerging from their spectral sum
representation with the (divergent) contributions from
the zero modes subtracted.

Making the shift Φ′ → Φ′ + ~−1/2
∫
y
G⊥xyJy (Note that

the redefined Φ′ thus remains orthogonal to the zero
modes.), we then recast the object (90) to

Z ′[J ] = exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]

×
∫
DΦ′ exp

[
− ~2

∫
x

λ

3!
ϕ(0)
x

δ3

δJ3
x

− ~3

∫
x

λ

4!

δ4

δJ4
x

]

× exp

[
−
∫
xy

1

2
Φ′xG

−1
xy Φ′y +

1

2~

∫
xy

JxG
⊥
xyJy

]
.

(94)

Next, we make use of the apparent decomposition of
the generating functional (89) into

Z[J ] = Z⊥[J ] + Z )[J ] , (95)

where Z⊥ is the contribution that arises from replacing
the product term (over µ) with 1 and Z ) is the remainder
involving tadpole corrections ∝ ∂µ∂µϕ(0). We then define

ϕ⊥x = ~
1

Z⊥[0]

δ

δJx
Z⊥[J ]

∣∣∣∣
J = 0

, (96a)

~G⊥xy = ~2 1

Z⊥[0]

δ2

δJxδJy
Z⊥[J ]

∣∣∣∣
J = 0

, (96b)

ϕ )x = ~
1

Z[0]

δ

δJx
Z[J ]

∣∣∣∣
J = 0

, (96c)

~G )xy = ~2 1

Z[0]

δ2

δJxδJy
Z[J ]

∣∣∣∣
J = 0

, (96d)

with the superscript ) indicating the inclusion of trans-
lational modes. In the following, we choose to drop the
superscripts on ϕ⊥ and G⊥ because we find these to be
the quantities most useful for the present calculations and
want to keep notation compact. Note that Goldstone’s
theorem implies that not only are ∂µϕ

(0) zero modes of
the inverse Green’s function G−1 at tree-level but that
the same holds true at each order in perturbation theory
up to the exact solutions ∂µϕ

) and G ),−1, as well as ∂µϕ
and G−1.

The large infrared contributions from certain fluctua-
tion modes around the approximately scale-invariant soli-
tons require the resummation of loop corrections to the
Green’s functions. In the subspace perpendicular to the
zero modes, this can be achieved by the coupled system
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of equations of motion for the one-point function and the
Schwinger-Dyson equations for the correlations (Recall
that we have dropped the superscripts ⊥.)

− ∂2
xϕx + U ′(ϕx) + ~Πxxϕx = 0 , (97a)∫

z

[
δxz
(
− ∂2

x + U ′′(ϕx) + ~Πxx

)
+ ~Σxz

]
Gzy

=

∫
z

G−1
xz Gzy = δ4

xy −
4∑

µ= 1

(
φµ
)
x

(
φµ
)
y
, (97b)

where Πxx is the coincident and Σxy the noncoincident
contribution to the proper self-energy. In place of rela-
tion (93), we now impose∫

y

Gxy
(
φµ
)
y

= 0 . (98)

Note that, in order to carry out the inversion of the
Klein-Gordon operator appearing in Eq. (97b), it has
been necessary to define the Green’s function G such that
it acts in the subspace perpendicular to the modes φµ,
which include quantum corrections to the classical soli-
ton, in contrast to the the tree-level Green’s function that

acts in the space perpendicular to φ
(0)
µ . The validity of

this procedure can be confirmed order by order in the
loop expansion of the self energy. To show this, we as-
sume that, in Eq. (97), Π and Σ, as well as the solution ϕ
and G, are given to a certain order in this expansion and
we consider an infinitesimal translation ϕ→ ϕ+ ε∂%ϕ of
Eq. (97a) in the % direction. In this way, we obtain∫

z

[
δxz
(
− ∂2

x + U ′′(ϕx) + ~Πxx

)
+ ϕx

δ

δϕz
~Πxx

]
∂%ϕz = 0 . (99)

The last term can be calculated by applying the following
variation to each propagator appearing in Π:

δ

δϕz
G⊥xy = −

∫
vw

G⊥xv
δG−1

vw

δϕz
G⊥wy = −G⊥xzλϕzG⊥zy ,

(100)

which is a standard identity for the derivative of an in-
verse operator that holds in the present case because G⊥

is the inverse of G−1 in the subspace perpendicular to
the zero modes at a fixed location of the bounce.4

4 In contrast, when we perform the variation of Eq. (92) in the
form of

δ

δϕz

∫
w
G−1
xwG

⊥
wy +

4∑
µ=1

(
φµ
)
x

(
φµ
)
y

 =
δ

δϕz
δxy = 0 ,

(101)

The variation of Π appearing in Eq. (99) therefore leads
to convolutions of the translational modes with all pos-
sible insertions in propagator lines of Π, i.e.∫

z

ϕx
δΠxx

δϕz
∂%ϕz ≡

∫
z

Σxz ∂%ϕz . (105)

This implies that ∂µϕ is a zero mode of the Klein-Gordon
operator in Eq. (97b) such that, indeed, we can invert it
in the subspace perpendicular to ∂µϕ. The system of
equations (97) is then closed when expressing Π and Σ
as two-particle irreducible (2PI) self-energies, i.e. these
are in a diagrammatic form derivable from a 2PI effec-
tive action in terms of the resummed propagators G and
expectation values ϕ.

We have so far focused on computing ϕ, G in the sub-
space perpendicular to the zero modes. The functions ϕ )

or G ) can be obtained to order ~ as

ϕ )x = ϕx −
~
B

∫
y

Gxy (∂2ϕ(0)
y ) , (106a)

G )xy = Gxy −
~
B
λ

∫
vw

Gxv Gvw (∂2ϕ(0)
w )ϕv Gvy .

(106b)

we obtain

δG⊥xy

δϕz
= −G⊥xzλϕzG⊥zy +

4∑
ν =1

∫
w

{
δ

δϕz

(
(φνφν)xwG

⊥
wy

)
−
[(

δ

δϕz
(φνφν)xw

)
G⊥wy + G⊥xw

(
δ

δϕz
(φνφν)wy

)]}
,

(102)

where we suppress the superscript (0) on φµ in this footnote.
Compared to Eq. (100), there appear extra terms collected in
curly brackets. Within these, the first term vanishes because of
the condition (93). In order to interpret the second term, we
perform a spatial translation of Eq. (93), which leads to∫

y

(
G⊥xy +

∫
z

δG⊥xy

δϕz
ε ∂%ϕz

)(
φµ + ε ∂%φµ

)
y

= 0 . (103)

When substituting Eq. (102) and evaluating to order ε, the first
term from Eq. (102) leads here to a vanishing contribution be-
cause of the condition (93) (just like the first term in curly brack-
ets already commented on). The remaining second term in curly
brackets leads to the contribution

−
4∑

ν =1

∫
ywz

[(
(∂%ϕ)z

δ

δϕz
(φνφν)xw

)
G⊥wy

+ G⊥xw

(
(∂%ϕ)z

δ

δϕz
(φνφν)wy

)](
φµ
)
y

= −
∫
w
G⊥xw

(
∂%φµ

)
w
, (104)

where we have repeatedly used Eq. (93), as well as the orthonor-
mality

∫
x(φµ)x(φν)x = δµν . In Eq. (103), this expression cancels

the product of the first term in the first pair of brackets with the
second one in the second pair of brackets. The extra terms in
Eq. (102) are therefore associated with a change of the Hilbert
space over which the path integral is performed, while, in a fixed
space, Eq. (100) is the appropriate translation of the Green’s
function.
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We can check explicitly that ∂µϕ
) is indeed a zero mode

because

G ),−1
xy = G−1

xy +
~
B
λ

∫
w

ϕxGxw
(
∂2ϕ(0)

w

)
δxy

+ ~Πxxδxy + ~Σxy + O(λ2) , (107)

which, to order λ, is orthogonal to

∂µϕ
)
x = ∂µϕx −

~
B
λ

∫
yz

Gxz ϕz (∂µϕz)Gzy
(
∂2ϕ(0)

y

)
,

(108)

derived from Eq. (106a). It would be desirable to derive
a formally exact expression for G ),−1 that also points
to systematic approximations for this quantity to all or-
ders.5 An apparent direction to pursue is the construc-
tion of a 2PI effective action in the presence of the zero
modes. We will address this interesting formal step in
future work.

V. SELF-CONSISTENT SOLUTIONS IN THE
CLASSICALLY SCALE-INVARIANT MODEL

We now apply the more general considerations of the
previous sections in order to obtain solutions in a clas-
sically scale-invariant setup, i.e. self-consistent radiative
corrections of the Fubini-Lipatov instanton. For the con-
tributions j ≥ 2, the Green’s functions can be computed
straightforwardly in the background of either the classi-
cal or loop-improved bounce, with a resulting difference
of higher order in perturbation theory. Instead, for j = 0
and j = 1, a resummation of the loop corrections is re-
quired in order to arrive at a finite result.

A. Modes j ≥ 2

For j ≥ 2, we can proceed straightforwardly, i.e. we
can substitute the Fubini-Lipatov instanton, which is the
tree-level solution for ϕ from Eq. (5), in Eq. (13) for the
Green’s functions. The solutions Gj , to leading accuracy
in the gradient corrections, are presented in Sec. III B
and App. B.

B. Spectator fields

In order to force the action to have an extremum at
the bounce, we add to the model in Eq. (1) Nχ spectator
fields χ, as in Eq. (8). At leading order, the Green’s

5 An expression for the proper self-energy that should appear in
G ),−1 valid to all orders would require some generalization of the
standard diagrammatic expansion because of the tadpole terms
in the generating functional (89) that are not exponentiated.

functions for each of the fields χ are determined as the
solution to[
− d2

dr2
− 3

r

d

dr
+

j(j + 2)

r2
+

α

2
ϕ2(r)

]
Gχj(r, r

′)

=
δ(r − r′)
r′3

. (109)

Summation over j as in Eq. (12) yields Gχ(x, x′). Unlike
the Φ Green’s functiosns, there are no zero or infrared-
enhanced modes that require a particular procedure.

C. Resummation of loop corrections,
renormalization and the local approximation

For the modes j = 0 and j = 1, it is necessary to
account for infrared effects. The required resummation
is carried out through the inclusion of self-energy terms in
the equation of motion (4) for the bounce and in Eq. (13)
for the Green’s function, which acquire loop corrections
as

− d2

dr2
ϕ − 3

r

d

dr
ϕ + U ′(ϕ)

+ ϕ
[
Πren

(
r(ϕ)

)
+ Πren

α

(
r(ϕ)

)]
= 0 , (110a)

Õj Gj(r, r′) + δj1 φ̃
tr(r)φ̃tr(r′) =

δ(r − r′)
r′

,

(110b)

where we have introduced the one-loop-improved, re-
scaled radial Klein-Gordon operator

Õj = − d2

dr2
− 1

r

d

dr
+

(j + 1)2

r2
+ U ′′(ϕ)

+
∂

∂ϕ
ϕ
[
Πren

(
r(ϕ)

)
+ Πren

α

(
r(ϕ)

)]
, (111)

and where a separation of the angular part in analogy
to Eq. (12) is implied. Compared to Eq. (97b), the self-
energy terms are expressed as a derivative with respect to
the background field ϕ. This amounts to a local approx-
imation of the self energy Σ, as we will discuss further
at the end of the present subsection. Moreover, we have
introduced the rescaled translational zero modes

φ̃tr(r) = N r∂rϕ(r) (112)

that include the effects breaking the scale invariance and
are to be subtracted for j = 1.

The loop corrections in Eq. (110a) are contained within
the coincident renormalized self-energies from loops of Φ
and χ, i.e. Πren and Πren

α . The former is given by

Πren(r) =
λ

2
G⊥(r, r) + δm2 +

δλ

6
ϕ2(r) , (113)

where we have introduced counterterms δm2 and δλ.
While we have expressed this in terms of the exact
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Equation of motion:

− d2

dr2
ϕ− 3

r

d

dr
ϕ +

λ

6
ϕ3 +


 +


ϕ = 0

j = 0, 1:

−1
= δ+ +

+ +

j > 1: ≡

FIG. 2. Graphical representation of the approximation
scheme applied in Secs. V and VI. Solid lines represent the
Green’s function for the field Φ; dashed lines represent the
fields χ. Thin lines stand for tree-level Green’s functions (in
the background of the bounce found by solving the equations
of motion); thick lines stand for the partly one-loop-resummed
Green’s functions.

Green’s function G⊥, a suitable approximation in order
to capture the leading quantum corrections for j ≥ 2
is to use the tree-level form from Sec. V A, while, for
j = 0 and j = 1, we need to solve the system (110)
self-consistently, thereby resumming the one-loop effects.
This approximation procedure is summarized in Fig. 2.

As renormalization conditions, we impose that the
mass and the quartic coupling of the one-loop effective
potential in the false vacuum coincide with their tree-
level values, cf. Eq. (A5). In the false vacuum, we eval-
uate the effective potential at a homogeneous field con-
figuration, for which there are closed expressions for the
hyperspherical Green functions:

Ghom
j (m; r, r′) =

1

rr′
ϑ(r − r′)Kj+1 (mr) Ij+1 (mr′)

+ (r ↔ r′) , (114)

where Iν and Kν are the modified Bessel functions.
When summing over j according to Eq. (12), the full
function Ghom(m;x, x′) is obtained. The counterterms
can be expressed conveniently in terms of the Green’s
functions in the homogeneous background by realizing
that the coincident Green’s functions are related to the
derivatives of the Coleman-Weinberg potential (9) as

ϕΠren = ∂U ren
eff /∂ϕ. This leads to

δm2 = − λ

2

∂

∂ϕ
ϕGhom

(√
m2 + λϕ2/2; r, r

)∣∣∣
ϕ= 0

= − λ

2
Ghom(m; r, r) , (115a)

δλ = − λ

2

∂3

∂ϕ3
ϕGhom

(√
m2 + λϕ2/2; r, r

)∣∣∣
ϕ= 0

.

(115b)

The derivatives can be evaluated by making use of the re-
cursion relations of the modified Bessel functions, leading
to closed-form expressions for the counterterms.

Along the same lines, the one-loop effects from the field
χ enter Eqs. (110a) and (110b) through

Πren
α (r) = Nχ

α

2
Gχ(r, r) + δm2

α +
δλα

6
ϕ2(r) , (116)

where we introduce the counterterms

δm2
α = −Nχ

α

2
Ghom(mχ; r, r) , (117a)

δλα = −Nχ
α

2

∂2

∂ϕ3
ϕGhom

(√
m2
χ + αϕ2/2; r, r

)∣∣∣
ϕ= 0

.

(117b)

Here, for all j modes, the propagator Gχ can be taken
at tree level in the background of either the tree-level or
the loop-improved bounce in order to capture the leading
quantum corrections from the field χ in the system (110),
since no problematic infrared effects occur. Again, the
difference between using the tree-level and self-consistent
bounces is of higher perturbative order and will only mat-
ter when aiming for two-loop precision.

The counterterms specified above through Eqs. (115)
and (117) are valid at one-loop order. However, the self-
consistent solution to Eq. (110b) inserts radiative cor-
rections into the Green’s function for j = 0 and j = 1.
This is reminiscent of 2PI effective actions, where it is
well known that the one-loop counterterms are insuffi-
cient to render the one-loop resummed quantities finite.
While there is a proof of principle that 2PI renormaliza-
tion schemes are viable [25, 26], we currently do not find
it feasible to apply these techniques to the present con-
text. Instead of explicitly specifying local counterterms
for j = 0 and j = 1, we therefore make the replacement

Gj(r, r) −→ Gj(r, r) − Re
[
Ghom
j

(
Mϕ(ϕ); r, r

)
− Ghom

j

(√
m2 + λϕ2/2; r, r

)]
,

(118)

where we make use of the Green’s function in the homo-
geneous background (114) and

M2
ϕ(ϕ) ≡ m2 +

λ

2
ϕ2

+
∂

∂ϕ
ϕ
[
Πren

(
r(ϕ)

)
+ Πren

α

(
r(ϕ)

)]
. (119)
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Thus, only the contributions due to the gradients in the
field ϕ are resummed, while those terms that are already
present for ϕ = const. are dropped. Since the gradient
corrections are ultraviolet finite, we can therefore apply
the one-loop counterterms while self-consistently regulat-
ing the infrared enhancement.

We now comment on the local approximation applied
in Eq. (111). When compared with Eq. (97b), it can be
expressed as∫

z

Σxz Gzy = ϕx

∫
z

(
δ

δϕz
Πxx

)
Gzy

≈ ϕx

(
∂

∂ϕ
Πxx

(
r(ϕ)

))
Gxy . (120)

This is a linearization which would correspond to an ex-
act spatial translation if G(x, y) ∝ ∂µϕ(x), but which is
not the case in general. In an adiabatic expansion, the
relative size of the first correction for j = 0 is

(∂µmloop)2

m4
loop

∼ 2(∂µϕ)2

κϕ4
= − λr2

6κR2
, (121)

where m2
loop = (κ/2)ϕ2 and κ = λ, α, depending on

which field we consider in the loop. Alternatively, we
can make this estimate by realizing that, in momentum
space, the coincident limit corresponds to a zero exter-
nal momentum approximation. Taking for the external
momentum (∂µϕ)/ϕ and comparing the square of this
with the squared mass in the loop, we arrive at the same
estimate as in Eq. (121).

At the centre of the bubble, for small r, the local ap-
proximation should therefore be accurate, and, for j 6= 0,
we should replace m2

loop → ω2
loop = (κ/2)ϕ2 + j(j+ 2)/r2

in Eq. (121), such that the approximation further im-
proves for the higher modes. On the other hand, for
large r, the relative size of the nonlocal diagram com-
pared to the coincident contribution κ2ϕ2/κ decreases
because ϕ → 0. We can account for this by adding a
factor to the error estimate (121), which then becomes

λr2

6κR2

κ2ϕ2

κ2ϕ2 + κ
. (122)

We find this to be smaller than, e.g., 25% for all values
of r and the parameters chosen in Sec. VI.

While the local approximation is a considerable sim-
plification in the derivation of the first numerical results
presented in this work, we will address an improvement
on this procedure (at least for loops from small j) in the
future.

D. Mode j = 1

The case j = 1 requires special treatment because of
the apparent singularity in the tree-level Green’s func-
tion (53) and because of the presence of the translational

zero modes. Besides the divergence in the denominator,
we also note that P−j−1

2 (u) is proportional to P j+1
2 (u) in

the limit j → 1, such that we cannot use it along with P 2
2

in order to construct the Green’s function as in Eq. (B9).

One may instead choose to work with Qj+1
2 (u) as an ad-

ditional basis solution. Explicitly, these functions read

P 2
2 (u) = 3(1− u2) , P−2

2 (u) =
1

8
(1− u2) , (123a)

Q2
2(u) =

5u− 3u3

1− u2
+

3

2
(1− u2) ln

1 + u

1− u
, (123b)

but we note that Q2
2 does not satisfy the boundary condi-

tions, i.e. it diverges at both ends of the interval (−1, 1).
Nevertheless, these functions are useful in order to con-
struct an approximation to the full solution that only re-
lies on a single numerical coefficient, and we will return
to this point at the end of this section.

The subtraction of the translational zero modes turns
out to be possible only when accounting for the deviation
of the bounce from the scale-invariant Fubini-Lipatov
form. Note that in the scale-invariant limit ϕ ≡ ϕ(0),
φ̃tr(r) = P 2

2 (u)/(2
√

6R), such that we recover the trans-
lational zero mode given in Eq. (25).

Next, we need to solve Eq. (110b) for j = 1. The
solution takes the general form

G̃1(r, r′) = − ϑ(u− u′)
[
f−(u)φ̃tr(r′) + f+(u′)φ̃tr(r)

]
− ϑ(u′ − u)

[
f−(u′)φ̃tr(r) + f+(u)φ̃tr(r′)

]
+ a φ̃tr(r)φ̃tr(r′) , (124)

where G̃ is defined in analogy with Eq. (47), f± are solu-
tions to the inhomogeneous equation

Õj= 1f±(u) = φ̃tr(r) , (125)

with f+(u) being regular for u → 1 and f−(u) for u →
−1. The solutions f± can be obtained numerically and

are, in general, not orthogonal to φ̃tr. The coefficient a
can be determined by imposing orthogonality to the zero
mode

∞∫
0

dr rφ̃tr(r)G̃1(r, r′) = 0 . (126)

This condition can be solved for a as

a =
1

φ̃tr(r)

{[
C+(r) + C−(r)

]
φ̃tr(r)

+ f−(u)D+(r) + f+(u)D−(r)
}
, (127)

which is independent of r and where

C+,−(r) =

r,∞∫
0,r

dr′ r′f+,−(r′)φ̃tr(r′) , (128a)

D+,−(r) =

r,∞∫
0,r

dr′ r′
[
φ̃tr(r′)

]2
. (128b)
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We can now comment on why this procedure is not ap-
plicable to the solutions in the tree-level Fubini-Lipatov
background, where the scaled translational mode is

φ̃tr(r) =

√
3

8

1− u2

R
(129)

and where the inhomogeneous equation can be cast to[
d

du
(1− u2)

d

du
− 4

1− u2
+ 6

]
f±(u) =

√
3

8

1− u
1 + u

.

(130)

The particular solutions observing the boundary condi-
tions are

f+(u) = −
√

3

8

1− u
1 + u

5u2 + 10u+ 3

12
, (131a)

f−(u) = f+(u) − 1√
24
Q2

2(u) . (131b)

Note that Q2
2(u) is a nonnormalizable solution to the ho-

mogeneous equation. We can substitute these results into
Eq. (124). However, it is now not possible to project out
the zero mode because the integral

u′∫
−1

du

(1 + u)2
f−(u)φ̃tr(r) (132)

is logarithmically divergent. This problem does not oc-
cur when we account for the deviation from the Fubini-
Lipatov form. In particular, the mass term leads to an
exponential decay of the modes for r →∞, such that the
integral Eq. (126) is convergent.

Nevertheless, we can compare the result (124) for G̃1,
based on the numerical solutions f±(u), with one where
we use the solutions (129) and (131) and determine the
parameter a by matching with the numerical G1, cf. Fig. 5
below.

E. Mode j = 0

If the case j = 0 were to be treated in complete analogy
with j = 1, we would need to subtract the contribution
from the dilatational zero mode from the j = 0 Green’s
function and integrate over the dilatations of the critical
bubble as a collective coordinate, implying that bubbles
of all radii are nucleated at the same rate. Such a proce-
dure can, however, not be valid because the scale invari-
ance is broken by radiative effects. As a consequence, a
unique extremum of the action corresponding to a soli-
ton configuration may emerge or, in the opposite case, no
such solution may exist. In the former case, a Gaußian
evaluation of the functional integral over the dilatational
mode becomes possible.

Since, in the perturbatively well-defined case (where,
at the point when ϕ = 0, an infrared divergence in

the quartic coupling arising at one-loop order should be
avoided), radiative corrections necessarily imply m2 > 0
in the renormalized potential, there is no zero mode for
j = 0 once these effects are included. Therefore, there is
no ambiguity in the solution to Eq. (110b).

The numerical calculation of the Green’s function for
j = 0, including the effects breaking scale invariance, is
straightforward, up to matters concerning the renormal-
ization that require special care and that are explained
in Sec. V C. Similar to the case j = 1, it is nonetheless
interesting to construct approximate solutions that rely
on a single numerical parameter only. We can find these
when considering

Õj= 0 G̃0(r, r′) =
δ(r − r′)

r′
(133)

and the dilatational mode at tree-level

ϕ̃dil
0 (r) = ∂Rϕ(r) = −

√
−12

λ

u(1 + u)

R2
. (134)

Now, this mode is not normalizable, i.e.

1∫
−1

du

(1 + u)2

[
r∂Rϕ(r)

]2
(135)

diverges logarithmically for u → −1 (r → ∞). Even so,
when neglecting radiative corrections, Eq. (133) is solved
by

G̃0(u, u′) = ϑ(u− u′)1

6
P 1

2 (u)Q1
2(u′)

+ ϑ(u′ − u)
1

6
P 1

2 (u′)Q1
2(u) + b P 1

2 (u)P 1
2 (u′) .

(136)

Note that rr′G̃0(r, r′) is regular everywhere, but the pa-
rameter b remains arbitrary. The zero mode cannot be
projected out because it is not normalizable. However,
by comparing with the numerical result accounting for ef-
fects breaking scale invariance, b can be determined such
that we obtain an approximate solution that only relies
on a single numerical parameter, cf. Figs. 6 and 7 below.

F. The negative eigenmode in the loop expansion

The functional integral over the negative eigenmode
can be defined only by analytic continuation via the
method of steepest descent. One might be concerned that
this will lead to subtleties in the diagrammatic expan-
sion with respect to the contributions from the negative
eigenmode in the j = 0 mode of the (subtracted) Green’s
function. As we will now describe, however, there are no
modifications necessary.

We can isolate the contribution from the negative
eigenmode by coupling it to an independent source J0.
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We expand the field as

Φ = ϕ(0) + ~1/2
4∑

µ= 0

aµφµ + ~1/2Φ′′ , (137)

where µ = 0 corresponds to the negative eigenmode φ0.
We drop the superscript (0) on the tree-level zero modes
in this subsection for notational convenience. The gen-
erating functional Z ′[J ] → Z ′[J, J0] (in which the zero
modes have been taken care of, see Sec. IV) can then be
written as

Z ′[J, J0] = exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]
×
∫
DΦ′′

∫
da0√

2π
exp

[
−
∫
xy

1

2
Φ′′xG

−1
xy Φ′′y −

1

2
λ0 a

2
0

+ ~−1/2

∫
x

JxΦ′′x + ~−1/2a0

∫
x

(J0)x(φ0)x

− ~1/2

∫
x

λ

3!
ϕ(0)
x

(
a0φ0 + Φ′′)3

x

− ~
∫
x

λ

4!

(
a0φ0 + Φ′′)4

x

]
, (138)

where λ0 < 0 is the negative eigenvalue. The contribu-
tion from the negative eigenmode to the tree-level sub-
tracted Green’s function G⊥ [cf. Eq. (96b)] can now be
obtained straightforwardly by functional differentiation:

~ (G⊥0 )xy =
~2

Z ′(0)[0, 0]

δ

δ(J0)x

δ

δ(J0)y
Z ′(0)[J, J−]

∣∣∣∣
J,J0 = 0

.

(139)
The superscript (0) on Z ′ indicates that the interactions
between the fluctuations have been set to zero. Proceed-
ing in this way, we obtain

~ (G⊥0 )xy = ~ (φ0)x(φ0)y

× 1

Z ′(0)[0, 0]
exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]
×
(
det′′G−1

)−1/2
∫

da0√
2π

a2
0 exp

[
− 1

2
λ0 a

2
0

]
,

(140)

where det′′ is the determinant over the positive-definite
eigenmodes. Applying the method of steepest descent,
we obtain 1/2 of the integral over a′0 = −ia0 ∈ (−∞,∞):

~ (G⊥0 )xy = ~ (φ0)x(φ0)y

× 1

Z ′(0)[0, 0]

{
i

2
exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]
×
(
det′′G−1

)−1/2
}∫

da′0√
2π

(
− a′20

)
exp

[
− 1

2
|λ0| a′20

]
.

(141)

Performing the remaining Gaussian integral over a′0
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FIG. 3. Plots of the numerical bounce (solid black), including
the corrections from the breaking of scale invariance, versus
the Fubini-Lipatov instanton (dashed black). The dotted lines
are the positive (blue) and negative (red) difference between
the former and the latter.

yields

~ (G⊥0 )xy = ~ (−1)
(φ0)x(φ0)y
|λ0|

× 1

Z ′(0)[0, 0]

{
i

2
exp

[
− 1

~

(
S[ϕ(0)] −

∫
x

Jxϕ
(0)
x

)]
×
(
det′′G−1

)−1/2|λ0|−1/2

}
. (142)

Recognizing the content of the braces as Z ′(0)[0, 0], we
therefore find

~ (G⊥0 )xy = ~
(φ0)x(φ0)y

λ0
, (143)

which is the expected contribution from the negative
eigenmode.

On including the interactions between the fluctuations,
we find that each Wick contraction of a2

0 gives a factor
of 1/|λ0| and an additional factor of −1 from the ana-
lytic continuation. Thus, the diagrammatic expansion is
built straightforwardly out of G⊥, without any modifica-
tions to the contributions from the negative eigenmode
in Eq. (143).

VI. PARAMETRIC EXAMPLE

Now, we numerically solve Eq. (4) for the bounce and
Eqs. (109) and (110b) for the Green’s functions self-
consistently by running several iterations over these equa-
tions. For the parametric example, we use λ = −1,
m = 1, α = 1, mχ = 1 and N = 7.

In Fig. 3, we show the numerical solution for the
bounce in comparison with the Fubini-Lipatov instan-
ton. The radius R of the Fubini-Lipatov instanton is
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FIG. 4. Plots of the renormalized self-energy Πren(ϕ) with
(solid black) and without (black dashed) gradients, and from
the Cartesian-space computation (red dotted) in Eq. (144).

fixed by matching to the release value of the numerical
bounce. The scale-invariance breaking effects are small
in accord with what we expect from the perturbative ex-
pansion. Various versions of the renormalized self-energy
are shown in Fig. 4. The variant without gradients is
based on Re[Ghom

j ] given in Eq. (114). We also compare
with the self-energy evaluated as an integral in Cartesian
space and without gradients, which is given by

Πren,hom =
λ

32π2

[
− λ

2
ϕ2

+

(
m2 +

λ

2
ϕ2

)
ln

(
m2 + λ

2ϕ
2

m2

)]
. (144)

Apparently, the only residual difference between the two
gradient-free versions is due to the different regulariza-
tion schemes applied in spherical and Cartesian coordi-
nates, and it goes to zero when the respective cutoffs are
taken to infinity.

In Fig. 5, we present variants of the j = 1 contribu-
tion to the renormalized self-energy Πren

j= 1(ϕ). We verify
that the gradient effects can be largely isolated in terms
of a contribution from the squared translational modes
normalized by the parameter a, as obtained by a fit to
the numerical result. The corresponding results for j = 0
are presented in Fig. 6, and we compare the self-energies
without gradient corrections in Fig. 7 in order to appre-
ciate the size of the gradient effects and the accuracy of
the analytic approximations.

Next, in Fig. 8, we make the comparison for the con-
tributions from j ≥ 2. By comparing with Fig. 7, we
observe that the lion’s share of the radiative corrections
can be attributed to j = 0, such that the sector j ≥ 2 is
subdominant. Thus, also the comparably large relative
discrepancy apparent in Fig. 8 does not invalidate the
overall applicability of the analytic approximations.

Finally, in Fig. 9, we show a comparison of Πren
α (ϕ)

with and without gradient corrections, where the latter
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FIG. 5. Plots of the j = 1 contribution to the renormal-
ized self-energy Πren

j=1(ϕ) with (solid) and without (dashed)
gradients. The dotted line corresponds to the analytic solu-
tion based on Eqs. (124) and (131) with a fitted value for the
parameter a.
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FIG. 6. Plots of the j = 0 contribution to the renormalized
self-energy Πren

j=0(ϕ) with (solid) and without (dashed) gradi-
ents. In the case with gradients (solid), the dilatational zero
mode has been subtracted by means of the fitted amplitude.
The dotted line corresponds to the analytic solution based on
Eq. (136) with b = 0.

quantity is given by

Πren,hom
α =

Nχα

32π2

[
− α

2
ϕ2

+

(
m2
χ +

α

2
ϕ2

)
ln

(
m2
χ + α

2ϕ
2

m2
χ

)]
. (145)

The gradient effects are considerably smaller than for
Πren. This can be attributed to the fact that, unlike the
field Φ, the fields χ do not become tachyonic for large
values of ϕ, since α > 0.
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FIG. 7. Plots of the j = 0 contribution to the renormalized
self-energy Πren

j=0(ϕ) with (solid) and without (dashed) gra-
dients. The dotted line corresponds to the analytic solution
based on Eq. (136) with a fitted value for the parameter b.
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FIG. 8. Plots of the contributions to the renormalized self-
energy from j ≥ 2, i.e. Πren

j≥ 2(ϕ) with (solid black) and with-
out (black dashed) gradients, and using the analytic results
for the Green’s function in the Fubini-Lipatov background
(black dotted).

VII. CONCLUSIONS

In this paper, we have presented a Green’s function
method for calculating loop-improved bounce solutions
in classically scale-invariant models.

While the problem of tunneling in classically scale-
invariant scalar theory has been addressed in a number
of earlier articles [3–6, 18], the present method is com-
plementary in the following aspects:

• Detemination of the bubble radius. Since the bub-
ble radius is not fixed at the classical level, we
have determined it through a self-consistent solu-
tion for the bounce and the quantum fluctuations
in its background, which are expressed in terms
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FIG. 9. Top panel: Plot of the renormalized self-energy
Πren
α (ϕ) from the self-consistent numerical procedure (black

dashed) and based on the analytical results for the Green’s
function without gradients (red dotted). Bottom panel: Dif-
ference between Πren

α (ϕ) with and without gradients.

of Green’s functions. This allows us to find so-
lutions that cannot be constructed perturbatively
from classical solutions in the present case because
the parameter R for the Fubini-Lipatov instanton
is unknown a priori. In contrast, previous meth-
ods determine the radius R by selecting the scale
where the running scalar coupling reaches its mini-
mum, which then also minimizes the tunneling ac-
tion [3, 5, 6]. Note that such an approach is not
applicable to the example discussed in this paper,
where only scalar loops are included, such that the
scalar coupling is monotonically increasing. While
this exemplifies the complementarity of the differ-
ent methods, it would be interesting to compare
these when applied to precisely the same models.

• Role of the approximate dilatational mode in the
fluctuation spectrum. While the main scope of the
present paper is to find self-consistent solutions
for the bounce, a number of articles compute the
one-loop determinant around the Fubini-Lipatov
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instanton using the Gel’fand-Yaglom method. In
both approaches, zero modes must be subtracted.
However, we find here that the dilatational mode
resides at the end point of a continuum spec-
trum, such that common regulation procedures
for the functional determinant in the Gel’fand-
Yaglom approach that stipulate this mode to be
discrete [3, 5, 6] may need to be revisited.

• Resummation of infrared effects. Directly related
to the previous point, our approach to dealing with
the large infrared effects for approximate dilata-
tions is to perform a one-loop resummation of the
Green’s function for the angular momentum j = 0.
In contrast, earlier approaches trade the dilata-
tions for R as a collective coordinate, such that
the integration over R leads to the infrared cor-
rections [3, 5, 6]. In the future, it would be very
interesting to compare the two approaches and to
chart the respective ranges of applicability. In addi-
tion, we also find large infrared effects in the j = 1
sector.

• Size of gradient corrections. Aside from the in-
frared effects, we confirm that the bounce solu-
tions receive contributions from the running cou-
pling that can be computed when neglecting gradi-
ent corrections. The latter are typically consistent
with higher-order effects, cf. Refs. [14, 20] for the
thin-wall case. In the classically scale-invariant ex-
ample of Sec. VI, the gradient corrections for the
spectator fields, as well as corrections from angular
momentum modes j > 1 in general, appear to be
perturbatively suppressed compared to the leading-
order running of the couplings. However, close to
scale invariance, the infrared-enhanced contribu-
tions can become of equal significance compared to
the running of the couplings. It would be interest-
ing to identify the functional form of the infrared
enhancement in future work.

• Higher-order terms from using translational collec-
tive coordinates. The present method accounts for
the next-to-leading-order effects from the Jacobian
associated with the change to translational collec-
tive coordinates, which are known from quantum-
mechanical problems [22, 23]. However, due to the
decomposition (95) of the generating functional, we
find a self-consistent solution to the Green’s func-
tion and the bounce in the subspace excluding the
fluctuations associated with translations. The solu-
tions in the full Hilbert space can be obtained from
these solutions by applying the corrections from the
Jacobian. These should be included in the future
when, e.g., aiming to compute the decay rate to
leading-loop order.

• Analytic form of the Green’s functions and fluctu-
ation spectra. We have found an intriguing con-
nection between the archetypal example for tun-

neling between quasi-degenerate vacua in field the-
ories [1, 2] and for the classically scale-invariant
models. More precisely, while the Green’s func-
tions for both problems agree up to the form of ω,
cf. Eqs. (44) and (52), and an algebraic prefactor,
the eigenspectra and eigenfunctions are very differ-
ent, which has a profound impact when handling
the translational zero modes and the approximate
dilatations.

Apart from the comparison between different methods,
further desirable developments in the present framework
include the following points:

• The local truncation of the convolution integrals
appearing in the Schwinger-Dyson equations should
be replaced by an improved approximation.

• Fermion and gauge fields should be coupled to
the tunneling scalars, requiring the computation
of their Green’s functions in the spherically sym-
metric background of the bounce. This will allow
to investigate the effects of a barrier generated by
a negative running of the quartic coupling toward
high scales induced by fermion loops, which is of
particular interest because, in the one-loop effec-
tive potential for such a model, no bounces can be
found. As for including the gauge fields, based on
the present methods, one may aim for transition
rates that are manifestly gauge invariant up to a
certain order in perturbation theory [27].

• The functional determinant should be computed,
possibly using methods similar to those in Ref. [11],
applied there to a thin-wall example.

• Due to the importance of self-consistent solutions
for the bounce, a formulation of the present prob-
lem in the framework of a two-particle-irreducible
effective action would be of utility. Because of the
presence of the zero modes in the Green’s functions,
this may amount to a nontrivial technical step of
general interest.

Once these points are partly addressed, the present
method will be applicable to a wider class of models and
parameter ranges. Examples are the question of metasta-
bility in Φ4 theory without couplings to extra spectator
fields, but for different renormalization conditions, and
also a more direct comparison with earlier approaches
that includes gauge and Yukawa interactions will be pos-
sible. Of obvious interest is the application to the Stan-
dard Model and other variants of electroweak symmetry
breaking.
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Appendix A: Coleman-Weinberg effective potential

The renormalized one-loop Coleman-Weinberg effec-
tive potential for the model in Eq. (1) with m2 = 0 and
g = 0 takes the form

U ren
eff = U + δU +

1

2

∫
d4k

(2π)4

[
ln
(
k2 + λϕ2/2

)
− ln k2

]
,

(A1)
where the one-loop corrections have been normalized
with respect to the false vacuum. For the ultraviolet
regularization, we apply an ultraviolet cut-off Λ to the
three-momentum integral.

Now, we first consider the renormalization conditions

∂2U ren
eff (ϕ)

∂ϕ2

∣∣∣∣∣
ϕ= 0

= 0 ,
∂4U ren

eff (ϕ)

∂ϕ4

∣∣∣∣∣
ϕ=µ

= λ ,

(A2)
following Coleman and Weinberg [17], which yield the
counterterms

δm2 = − λ

16π2
Λ2 , (A3a)

δλ = − 3λ2

32π2

(
ln

∣∣∣∣λµ2

8Λ2

∣∣∣∣+
14

3
+ iπ

)
. (A3b)

Note that the coupling-constant counterterm δλ is com-
plex, since λ < 0. The renormalized one-loop effective
potential is

U ren
eff (ϕ) =

1

4!
λϕ4 +

1

256π2
λ2 ϕ4

(
ln
ϕ2

µ2
− 25

6

)
. (A4)

The potential in Eq. (A4) receives loop corrections
∼ ϕ4λn+1 lnn(ϕ/µ) at n-loop order. Therefore, the
straightforward perturbation expansion cannot be ap-
plied close to the false vacuum around ϕ = 0, and the
tunneling problem is not well defined for these renormal-
ization conditions.

Due to this problem, instead of Eq. (A2), we take m2 6=
0 and make the choice

∂2U ren
eff (ϕ)

∂ϕ2

∣∣∣∣∣
ϕ= 0

= m2 ,
∂4U ren

eff (ϕ)

∂ϕ4

∣∣∣∣∣
ϕ= 0

= λ ,

(A5)

yielding the counterterms

δm2 = − λ

32π2

(
2Λ2 +m2 ln

m2

4Λ2
−m2

)
− Nχα

32π2

(
2Λ2 +m2

χ ln
m2
χ

4Λ2
−m2

χ

)
, (A6a)

δλ = − 3λ2

32π2

(
ln
m2

4Λ2
+ 2

)
− 3Nχα

2

32π2

(
ln
m2
χ

4Λ2
+ 2

)
. (A6b)

Substituting these into Eq. (A1) yields the result in
Eq. (9).

We emphasize that the radiative corrections necessar-
ily require the introduction of one dimensionful scale,
which is µ in Eq. (A2) and m in Eq. (9). As long as there
are no additional scales introduced, we can therefore refer
to a breaking of scale invariance due to radiative effects in
both cases. For the potential in Eq. (9), this is especially
true of field configurations for which ϕ2 � −m2/λ.

Appendix B: Fubini-Lipatov Green’s function

In this appendix, we outline the calculation of the
Green’s function in the Fubini-Lipatov background. Be-
ginning from the transformed problem in Eq. (51) with
ω = j + 1, we recognize the homogeneous equation[

d

du
(1− u2)

d

du
− ω2

1− u2
+ 6

]
Fj(u, u

′) = 0 (B1)

as the associated Legendre differential equation. Split-
ting around the discontinuity, the general solutions for
u ≷ u′ are therefore of the form

F
≷
j (u, u′) = A≷(u′)P j+1

2 (u) + B≷(u′)Qj+1
2 (u) , (B2)

where Pµν and Qµν are the associated Legendre polyno-
mials. Note that Eq. (B2) is strictly the general solu-
tion only for j = 0 and j = 1, since Pµν and Qµν are
defined only for µ ≤ ν. Nevertheless, we will later be
able to extend the solution to j > 1 by means of the
Jacobi polynomials. For the time being, however, it is
technically simpler to deal with the associated Legendre
polynomials.

Matching around the discontinuity, we require

F>j (u′, u′) = F<j (u′, u′) , (B3a)

lim
u→u′

[
d

du
F>j (u, u′)− d

du
F<j (u, u′)

]
= − 1

1− u′2
,

(B3b)
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from which it follows that

A> − A< =
Q1+j

2 (u′)

(2− j)2(1+j)
, (B4a)

B< − B> =
P 1+j

2 (u′)

(2− j)2(1+j)
. (B4b)

Here, we have made use of the Wronskian

W [Pµν (u), Qµν (u)] =
(ν − µ+ 1)2µ

1− u2
, (B5)

where (z)ν is the Pochhammer symbol, defined as

(z)ν =
Γ(z + ν)

Γ(z)
. (B6)

We also require that Fj(u, u
′) vanish as u → ± 1, which

implies

A>

B>
= − π

2
cot(1 + j)π , B< = 0 . (B7)

Using the identity

π(ν − µ+ 1)2µ

2 sin(πµ)
P−µν (u) =

π

2
cot(πµ)Pµν (u) − Qµν (u) ,

(B8)
we therefore find

F>j (u, u′) = − π

2
csc(jπ)P−j−1

2 (u)P j+1
2 (u′) . (B9)

We can extend this result to j > 1 by reexpressing
Eq. (B9) in terms of the Jacobi polynomials P

(α,β)
ν via

the identity

Pµν (u) =

(
u+ 1

u− 1

)µ
2

(ν − µ+ 1)µ P
(−µ,+µ)
ν (u) , (B10)

which again strictly holds only for j ≤ 1. For ν = 2, the
polynomial expansion terminates, and we have

P
(±µ,∓µ)
2 (u) =

1

2

[
(1± µ)(2± µ)

− 3(2± µ)(1− u) + 3(1− u)2
]

(B11)

for all µ. Substituting this expansion into Eq. (B9) with
µ = ω = j + 1 and after some algebra, we arrive at
the expression for the hyperradial Green’s function in
Eq. (53).

Appendix C: Orthonormality of the Jacobi
polynomials

The associated Legendre polynomials satisfy the famil-
iar orthonormality condition∫ +1

−1

du

1− u2
Pµν (u)Pµ

′

ν (u) =
(ν + µ)!

µ(ν − µ)!
δµµ′ . (C1)

Using the identity

Pµν (u) = (−1)µ
(ν + µ)!

(ν − µ)!
P−µν (u) , (C2)

it follows that∫ +1

−1

du

1− u2
P+µ
ν (u)P−µ

′

ν (u′) =
(−1)µ

µ
δµµ′ . (C3)

This can be reexpressed in terms of the Jacobi polyno-
mials via Eq. (B10), giving

∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+µ
2
(
u+ 1

u− 1

)−µ′2
× P (−µ,+µ)

ν (u)P (+µ′,−µ′)
ν (u)

=
(−1)µ

µ

δµµ′

(ν − µ+ 1)+µ(ν + µ+ 1)−µ
. (C4)

Making use of the fact that when ν ∈ N

(ν − µ+ 1)+µ(ν + µ+ 1)−µ

=
(−1)ν(ν!)2 sin(πµ)

πµ[ν2 − µ2][(ν − 1)2 − µ2] · · · [1− µ2]
, (C5)

we have∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+µ
2
(
u+ 1

u− 1

)−µ′2
× P (−µ,+µ)

ν (u)P (+µ′,−µ′)
ν (u) =

(−1)µ+νπ

(ν!)2 sin(πµ)

× [ν2 − µ2][(ν − 1)2 − µ2] · · · [1− µ2] δµµ′ , (C6)

giving Eq. (67) for ν = 2 and µ = n.
The associated Legendre functions of imaginary order

satisfy the following orthonormality condition for integer
degree ν [28] (see also Refs. [29, 30])∫ +1

−1

du

1− u2
P+iξ
ν (u)P−iξ

′

ν (u) =
2 sinh(πξ)

ξ
δ(ξ − ξ′) .

(C7)
This can be reexpressed in terms of the Jacobi polynomi-
als with imaginary parameters via Eq. (B10). Namely,

∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+ iξ
2
(
u+ 1

u− 1

)− iξ′2
× P (−iξ,+iξ)

ν (u)P (+iξ′,−iξ′)
ν (u)

=
2 sinh(πξ)

ξ

δ(ξ − ξ′)
(ν − iξ + 1)+iξ(ν + iξ + 1)−iξ

. (C8)

For ν ∈ N, we have

(ν − iξ + 1)+iξ(ν + iξ + 1)−iξ

=
(ν!)2 sinh(πξ)

πξ[ν2 + ξ2][(ν − 1)2 + ξ2] · · · [1 + ξ2]
, (C9)
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and therefore∫ +1

−1

du

1− u2

(
u+ 1

u− 1

)+ iξ
2
(
u+ 1

u− 1

)− iξ′2
× P (−iξ,+iξ)

ν (u)P (+iξ′,−iξ′)
ν (u)

=
2π

(ν!)2
[ν2 + ξ2][(ν − 1)2 + ξ2] · · · [1 + ξ2] δ(ξ − ξ′) .

(C10)

We then immediately recover Eq. (68) for ν = 2.

Appendix D: Spectral sum representation

In this appendix, we include further details of the
derivation of the spectral sum representation of the
Green’s functions. We begin by writing the Green’s func-
tion for the Fubini-Lipatov case in the form

GFL(x, x′) =
1

2π2

∞∑
j= 0

(j + 1)Uj(cos θ)

×

 ∑
λFL ∈LFL

dj

+

∫
λFL ∈LFL

cj

dλFL

2π

 φ−λFLj
(r′)φ+

λFLj
(r)

λFL
,

(D1)

where the eigenfunctions φ±
λFLj

(r) compose the true
eigenspectrum. As described in Sec. III C, we now define
φ̃±
λFLj

(u) ≡ rφ±
λFLj

(r) and change variables via Eq. (49).
We then have

GFL(x, x′) =
1

2π2R2

(
1 + u

1− u

)1
2
(

1 + u′

1− u′

)1
2
∞∑
j= 0

(j + 1)

× Uj(cos θ)

 ∑
λ̄FL ∈ L̄FL

dj

+

∫
λ̄FL ∈ L̄FL

cj

dλ̄FL

2π

 φ̃−λFLj
(u′)φ̃+

λFLj
(u)

λ̄FL
,

(D2)

where λ̄FL = R2λFL are the dimensionless eigenvalues.
In terms of the thin-wall eigenbasis, viz. the f±

λTWj
of

Sec. III C, we can write

φ̃±
λFLj

(u) =

 ∑
λ̄TW ∈ L̄TW

dj

+

∫
λ̄TW ∈ L̄TW

cj

dλ̄TW

2π

 a±λFLλTW φ̃±
λTWj

(u) ,

(D3)

where

φ̃±
λTWj

(u) ≡

(
1 + u

1− u

)±$2
f±
λTWj

(u) , (D4)

$ is defined in Eq. (59), and the amplitudes

a±
λFLλTW ≡ R2

∫ +1

−1

du

(1 + u)2

(
1 + u

1− u

)
× φ̃±

λTWj
(u)φ̃±

λFLj
(u) . (D5)

Here, we isolate explicitly in the second parenthesis the
weight function (1 + u)/(1 − u) in the orthogonality of
the thin-wall basis [cf. Eq. (66)]. Now, by virtue of the
completeness of the thin-wall basis, we can also write

GFL(x, x′) =
1

2π2R2

∞∑
j= 0

(j + 1)Uj(cos θ)

×

 ∑
λ̄TW ∈ L̄TW

dj

+

∫
λ̄TW ∈ L̄TW

cj

dλ̄TW

2π

(1 + u

1− u

)+$+1
2

×

(
1 + u′

1− u′

)−$−1
2 f−

λTWj
(u′)f+

λTWj
(u)

λ̄TW
. (D6)

It immediately follows that ∑
λ̄FL ∈Ldj

+

∫
λ̄FL ∈ L̄FL

cj

dλ̄FL

2π

 a−λFLλTW′a
+
λFLλTW

λ̄FL

!
=

1

λ̄TW

{
δλ̄TWλ̄TW′ , λ̄TW, λ̄TW′ ∈ L̄TW

dj ,

2πδ(λ̄TW − λ̄TW′) , λ̄TW, λ̄TW′ ∈ L̄TW
cj .

(D7)

In the thin-wall case, the two bases, of course, coincide,
and Eq. (D7) is trivially satisfied. For the Fubini-Lipatov
case, only the zero modes of the two bases coincide,
as described further in Sec. III C. On the other hand,
the nonzero modes in the Fubini-Lipatov case are a lin-
ear combination of the discrete and continuum thin-wall
eigenfunctions. This situation is summarized in Table I.

We can now write the following representations of both
the thin-wall and Fubini-Lipatov Green’s functions (in
the thin-wall basis) in terms of the dimensionless eigen-
values λ̄TW:

G(x, x′) =
1

2π2R2


1
γR(

1+u
1−u

)(
1+u′

1−u′

)
×
∞∑
j= 0

(j + 1)Uj(cos θ)

 ∑
λ̄TW ∈ L̄TW

dj

+

∫
λ̄TW ∈ L̄TW

cj

dλ̄TW

2π


×

(
1 + u

1− u

)+$
2
(

1 + u′

1− u′

)−$2 f−
λ̄TWj

(u′)f+
λ̄TW(u)

λ̄TW
. (D8)

We emphasize that the λ̄TW differ between the thin-wall
and Fubini-Lipatov cases due to the difference in the val-
ues of ω [cf. Eqs. (44) and (52)]. The f±

λ̄TWj
(u) are the
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solutions of the Jacobi differential equation in Eq. (61);
namely, the Jacobi polynomials of degree 2:

P
(∓$,±$)
2 (u) =

1

2

(
3u2 − 1∓ 3$u+$2

)
. (D9)

The discrete modes correspond to $ = n ∈ {1, 2} and
the continuum modes to $ = iξ (ξ ∈ R).

The normalization of the eigenfunctions follows from
the orthogonality of the Jacobi polynomials, described in
App. C. We find that the contribution from the discrete
modes is

Gd(x, x′) =
1

2π2R2


1
γR(

1+u
1−u

)(
1+u′

1−u′

)
×

∞∑
j= 0

(j + 1)Uj(cos θ)

×
[
− 3

2

uu′

1− ω2

√
1− u2

√
1− u′2

− 3

4

1

4− ω2
(1− u2)(1− u′2)

]
, (D10)

and that from the continuum modes is

Gc(x, x′) =
1

2π2R2


1
γR(

1+u
1−u

)(
1+u′

1−u′

)
×

∞∑
j= 0

(j + 1)Uj(cos θ)I(u, u′) , (D11)

where

I(u, u′) ≡
∫ +∞

−∞

dξ

2π

4

(4 + ξ2)(1 + ξ2)

×

(
u+ 1

u− 1

)+iξ/2(
u′ + 1

u′ − 1

)−iξ/2

× P
(−iξ,+iξ)
2 (u)P

(+iξ,−iξ)
2 (u′)

ω2 + ξ2
. (D12)

Defining

L ≡ ln
1 + u

1− u
− ln

1 + u′

1− u′

{
> 0 , u > u′

< 0 , u < u′
, (D13)

and making use of Eq. (D9), the integral in Eq. (D12)
can be written

I(u, u′) =

∫ +∞

−∞

dξ

2π

eiξL/2

(1 + ξ2)(4 + ξ2)(ω2 + ξ2)

×
(
1 − 3u2 + 3iuξ + ξ2

)(
1 − 3u′2 − 3iu′ξ + ξ2

)
.

(D14)

After partial fractioning, we can decompose this as I =
I1 + I2 + Iω, where

I1 =

∫ +∞

−∞

dξ

2π

3uu′

1− ω2

[
1 − uu′ − i(u− u′)ξ

] eiξL/2
1 + ξ2

,

(D15a)

I2 =

∫ +∞

−∞

dξ

2π

3

4− ω2

[
1 + u2 − 4uu′ + u′2 + u2u′2

− i(u− u′)(1− uu′)ξ
] eiξL/2
4 + ξ2

, (D15b)

Iω =

∫ +∞

−∞

dξ

2π

1

(1− ω2)(4− ω2)

×
[
(1− ω2 − 3u2)(1− ω2 − 3u′2)− 9uu′ω2

+ 3i(u− u′)(1− ω2 + 3uu′)ξ
] eiξL/2
ω2 + ξ2

. (D15c)

Making use of the integrals

∫ +∞

−∞

dξ

2π

1

ξ2 + a2
eiξL/2 =

1

2a
e−a|L|/2 , (D16a)∫ +∞

−∞

dξ

2πi

ξ

ξ2 + a2
eiξL/2 =

1

2
sgn(L) e−a|L|/2 ,

(D16b)

where sgn is the signum function, we find

I1 =
3

2

uu′

1− ω2

√
1− u2

√
1− u′2 , (D17a)

I2 =
3

4

1

4− ω2
(1− u2)(1− u′2) , (D17b)

Iω =
1

2ω
ϑ(u− u′)

(
1− u
1 + u

)ω/2(
1 + u′

1− u′

)ω/2
× 3u2 + 3uω + ω2 − 1

(1 + ω)(2 + ω)

3u′2 − 3u′ω + ω2 − 1

(1− ω)(2− ω)

+ (u↔ u′) . (D17c)

The terms arising from I1 and I2 exactly cancel those
terms arising from the discrete modes in Eq. (D10). No-
tice, in particular, that there are no unit step functions
in I1 and I2. Putting everything together, and taking
the coincident limit, we quickly arrive at the results pre-
sented in Sec. III C.
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