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Abstract

This paper investigates the dynamic behaviour of capacitive ring-based Coriolis
Vibrating Gyroscopes (CVGs) under severe shock conditions. A general analytical
model is developed for a multi-supported ring resonator by describing the in-plane ring
response as a finite sum of modes of a perfect ring and the electrostatic force as a Tay-
lor series expansion. It is shown that the number of supports can induce mode coupling
and that mode coupling occurs when the shock is severe and the electrostatic forces
are nonlinear. The influence of electrostatic nonlinearity is investigated by numerically
simulating the governing equations of motion. For the severe shock cases investigated,
when the electrode gap reduces by ∼ 60%, it is found that three ring modes of vibra-
tion (1θ, 2θ and 3θ) and a 9th order force expansion are needed to obtain converged
results for the global shock behaviour. Numerical results when the 2θ mode is driven
at resonance indicate that electrostatic nonlinearity introduces mode coupling which
has potential to reduce sensor performance under operating conditions. Under some
circumstances it is also found that severe shocks can cause the vibrating response to
jump to another stable state with much lower vibration amplitude. This behaviour is
mainly a function of shock amplitude and rigid-body motion damping.

Keywords: Vibrating ring gyroscope, electrostatic forcing, shock response, nonlinear
dynamics

1. Introduction

Coriolis Vibrating Gyroscopic sensors (CVGs) are used to measure angular veloc-
ity (rate) of a body about a particular axis based on the harmonic vibration response
of a degenerate resonator subjected to Coriolis forces. Micro-engineered CVGs are
used increasingly in inertial guidance applications due to their small size and low cost,5

and on-going research is focused on improving the accuracy of these Micro-Electro-
Mechanical Systems (MEMS) for high performance applications. CVGs are required
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to operate in increasingly harsh environmental conditions [1] and it is important to
ensure external shock inputs do not affect the accuracy of rate measurements made.
For resonators operating in the linear regime, sensors based on axi-symmetric res-10

onators, such as rings and slotted discs [2], are advantageous because the in-plane
flexural modes of vibration occur in degenerate pairs and a shock input does not induce
any coupling between modes [3] . However, under severe shock inputs the resonator
response is nonlinear and this advantage is lost. In practice, numerous sources of me-
chanical nonlinearity are present in resonators, but the dominant source of nonlinearity15

in state-of-the-art capacitive MEMS sensors is caused by electrostatic forces used to
drive and sense the response of the resonator. Under normal operating conditions the
resonator vibrates with small amplitude causing the electrode gap size to vary by a
small amount and ensuring the system operates within the linear regime. However,
under severe shock conditions the electrode gap size can vary significantly due to large20

amplitude in-plane rigid body motions of the resonator, causing the electrostatic forces
to vary nonlinearly.

The aim of this paper is to develop and apply an analytical model to quantify and
understand the effect of nonlinear electrostatic forces on the dynamic response and
mode coupling in capacitive ring based CVGs under severe shock conditions. Previous25

work [4, 5] has investigated the effect of nonlinear electrostatic forces on mode cou-
pling under pure shock conditions. The model used to achieve this involved expressing
the ring response in terms of the modes for an unsupported ring and expanding the
electrostatic force as a Taylor series. This approach is generalised here and used to
investigate the influence of severe shocks when the ring is driven at resonance under30

normal operating conditions. The simulation results obtained demonstrate the pres-
ence of mode coupling under severe shock conditions and suggest the possibility of
jump phenomenon when the ring is driven hard under particular conditions of shock
amplitude and damping, which both have potential to diminish sensor performance
momentarily.35

The paper is structured as follows. Section 2 develops a model to describe the vi-
bration response of the ring resonator taking into account nonlinear electrostatic forces,
including the presence of supports uniformly spaced around the ring circumference.
This model generalises the model presented in [4] to any number of supports, investi-
gates the influence of the number of support legs on mode coupling, and confirms the40

so-called frequency splitting rules [6, 7]. Section 3 presents a systematic study into the
nonlinear response of ring resonators under severe shock conditions for a device re-
cently reported in the literature [1]. The analysis includes convergence studies for the
number of expansion terms and modes to accurately model the nonlinear behaviour,
time-history and spectrogram results to demonstrate the rich nonlinear dynamics and45

mode coupling under severe shock conditions, and an investigation into the impact of
using inner and outer electrodes. It is anticipated that the model and results presented
will guide future development of high performance capacitive CVGs.

2. Ring resonator modelling

In this section, a general linear mechanical model is developed for a supported ring50

resonator surrounded by capacitive electrodes subjected to combined harmonic and
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shock excitations.
Different vibrating ring gyroscopes designs are reported in the literature [1, 4, 8, 9].

All designs consist of a ring resonator supported by flexible support legs and sur-
rounded by electrodes. The support legs can be fixed to a rigid base via a central55

hub or externally to the ring, and are uniformly spaced around the ring circumference.
Figure 1 shows a schematic diagram of the gyroscope that will be studied in detail in
Section 3 in which the vibrating ring is surrounded by electrodes for driving and sens-
ing, and the ring is supported by legs connected to a fixed rigid hub. This device only
includes electrodes outside the ring, but the model will have the option to incorporate60

inner electrodes. In operation the in-plane ring 2θ-mode of the resonator is driven into
resonance and the device is subjected to external shock excitations. The resulting mo-
tion of the resonator causes the support legs to deform and the radial spacing between
the ring and surrounding electrodes to change. The in-plane ring motion is limited by
the capacitor gap size, which is much smaller than the ring radial thickness. As the65

rigid body displacement and elastic deformations of the ring are small, a linear model
of the ring and supports is used to describe the ring motion. No attempt is made to
model ring-electrode contact.

Electrodes

Supporting legs

Ring resonator

Figure 1: Schematic view of the studied vibrating ring gyroscope [1]

The ring is modelled as a thin, perfect ring having mean radius r, radial thickness
h, axial length l, and cross-sectional area A = hl. The in-plane ring displacement is70

expressed as the sum of in-plane rigid body and flexural mode shapes for a perfect ring
whose modes occur in degenerate pairs [3]. The support legs connecting the ring and
base consist of thin beam (straight or curved) structures, and are modelled as radial and
tangential springs for the assumed range of ring deflections. For the resonator shown
in Fig. 1, the legs are arranged in pairs and the legs pair can be represented as a single75

leg having linear radial and tangential springs. The inertia of the legs is modelled
as point masses ml. The electrostatic forces associated with electrodes located inside
and outside the ring are modelled as parallel plate capacitors. The shock excitation is
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modelled as base excitation and the equations of motion for the system are obtained
using Lagrange’s equation.80

In general, the absolute displacement z(θ) of an element of the ring located at angle
θ can be expressed as:

z(θ) = zb + Ru, (1)

where vector z(θ) =
[
x y

]T
represents the absolute displacement of the element, vec-

tor zb =
[
xb yb

]T
represents the absolute rigid body displacements of the ring centre,

vector u =
[
w u

]T
represents the flexural displacements of the ring element in radial85

(w) and tangential (u) directions, and rotation matrix R resolves the radial and tan-
gential components with the absolute displacement components. Assuming the ring is
thin and in-extensible, such that w = −∂u/∂θ, and using a Ritz approach, vector u is
expressed in its most general form as:

u(θ, t) = ΨT(θ)Λ(t), (2)

where90

ΨT =

[
. . . . . . cos nθ sin nθ . . . . . .
. . . . . . −1/n sin nθ 1/n cos nθ . . . . . .

]
, (3)

and
Λ =

[
. . . . . .

[
q(1)

n q(2)
n

]
. . . . . .

]T
, (4)

where n = 1, 2, . . . , NR and q(1)
n , q(2)

n are pairs of generalised coordinates associated
with orthogonal shape functions having n nodal diameters – these shape functions are
referred to as the nθ-modes. NR defines the number of generalised coordinate pairs
used to describe the flexural ring deformation in the Ritz approach, and will be referred95

to as the Ritz order of approximation in what follows.

2.1. Kinetic energy

The kinetic energy of the ring is given by:

T =
1
2

∫
V
ρ żT ż dV, (5)

where ρ is the material density and V the ring volume.
Using Eqs. (1) to (5) it can be shown that the kinetic energy can be expressed as:100

T =
1
2

ḣT Mḣ, (6)
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where vector h is equal to h =

[
Λ

zb

]
and mass matrix M is

M = mr



1 0 0 0 . . . . . . 0 0 1 0
0 1 0 0 . . . . . . 0 0 0 1
0 0 5/8 0 . . . . . . 0 0 0 0
0 0 0 5/8 . . . . . . 0 0 0 0
...

...
...

...
. . .

. . .
...

...
...

...

0 0 0 0 . . . . . .
NR

2 + 1
2NR

2 0 0 0

0 0 0 0 . . . . . . 0
NR

2 + 1
2NR

2 0 0

1 0 0 0 . . . . . . 0 0 1 0
0 1 0 0 . . . . . . 0 0 0 1



, (7)

where mr is the physical mass of the ring. It is convenient to express the mass matrix
in the following compact form:

M =

[
Mr Mbr

Mbr
T mI2×2

]
, (8)

where Mr is a 2NR × 2NR diagonal matrix whose 2n’th and (2n − 1)’th entries are
mr(n2 + 1)/(2n2) i.e. the generalised mass for the nθ-mode and105

Mbr = mr

[
I2×2

02(NR−1)×2

]
. (9)

It is clear from Eqs. (8) and (17) that for a perfect unsupported ring, the ring centre
displacement only couples to the rigid body motion of the ring described via gener-
alised coordinates q(1)

1 and q(2)
1 .

2.2. Ring strain energy

The strain energy in a thin, in-extensible ring is given by [10]:110

Ur =
EI
2r3

∫ 2π

0

(
∂2w
∂θ2 + w

)2

dθ, (10)

where EI is the in-plane flexural rigidity of the ring.
Using the Ritz expansion of the radial component (Eqs. (2) to (4)) in this equation,

it can be shown that the strain energy can be expressed as:

Ur =
1
2
ΛTKrΛ, (11)

where Kr is a 2NR × 2NR diagonal stiffness matrix whose 2n’th and (2n − 1)’th entries
are EIπ(n2 − 1)2/r3 i.e. the generalised ring stiffness for the nθ-mode. For rigid body115

motions of the ring (n = 1), the ring stiffness is zero.
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2.3. Support leg strain and kinetic energies

It is assumed there are Nl identical supporting legs uniformly spaced around the
ring circumference and each support leg provides constant stiffness restoring forces in
the radial and tangential directions and a point mass inertia. Numerical values for the120

equivalent stiffnesses in the radial kr and tangential kt directions, and inertia ml can be
obtained using the finite element or alternative methods of analysis.

Using Eq. (2), the total strain energy in the support legs is given by:

Ul =

Nl∑
j=1

U j
l =

1
2
ΛT

Nl∑
j=1

K j
lΛ =

1
2
ΛTKlΛ, (12)

where U j
l and K j

l are the strain energy and stiffness matrix respectively for the j’th
support leg and:125

K j
l = Ψ

(
2 jπ
Nl

+ α

) [
kr 0
0 kt

]
ΨT

(
2 jπ
Nl

+ α

)
. (13)

Angle α defines the angular position of the last leg (case j = Nl) relative to the
reference frame used.

The properties of the total stiffness matrix Kl depend on summing the terms in
Eq. (12). It is shown in the Appendix that terms associated with the nθ and pθ-modes
in the total stiffness matrix are not coupled provided that (n ± p)/Nl , integer. For130

all other cases non-zero terms are present and the non-zero terms depend on angle
α. A consequence of this is that the total stiffness matrix is diagonal if and only if
NR < Nl/2. However, recalling that NR is the Ritz order of approximation, selecting
NR < Nl/2 ignores high order mode coupling introduced by the support legs.

To demonstrate these properties, consider the case when Nl is even and NR = Nl/2.135

In this case the total stiffness matrix can be expressed as follows:

Kl =


Kl1,1 0

Kl2,2
. . .

0 KlNl/2,Nl/2

 , (14)

where:

Kln,n =

[Nl
2 (kr + kt

n2 ) 0
0 Nl

2 (kr + kt
n2 )

]
, for n ∈ J1, Nl

2 − 1K

Kl Nl
2 ,

Nl
2

=

Nlkr cos2 Nlα
2 + 4kt

Nl
sin2 Nlα

2

(
Nlkr −

4kt
Nl

)
cos Nlα

2 sin Nlα
2(

Nlkr −
4kt
Nl

)
cos Nlα

2 sin Nlα
2 Nlkr sin2 Nlα

2 + 4kt
Nl

cos2 Nlα
2

 ,
for n = Nl

2 .

(15)

With the exception of the last two rows and columns, the matrix Kl is diagonal
with terms occurring in equal pairs and all terms independent of α. In contrast the
last two rows and columns, which correspond to the case when n = Nl/2, depend140
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(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)q(1)
1 q(1)

2 q(1)
3 q(1)

4 q(1)
5 q(1)

6 q(1)
7 q(1)

8 q(1)
9 q(1)

10 q(1)
11q(2)

1 q(2)
2 q(2)

3 q(2)
4 q(2)

5 q(2)
6 q(2)

7 q(2)
8 q(2)

9 q(2)
10 q(2)
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q(1)
1

q(1)
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q(1)
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5

q(1)
6

q(1)
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9
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5
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6

q(2)
7

q(2)
8

q(2)
9

q(2)
10

q(2)
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Figure 2: Illustration of stiffness matrix Kl showing the position of non-zero values, with Nl = 9 and NR = 11

on α and have non-zero off-diagonal terms and unequal diagonal terms (even when
α = 0). A consequence of this is that the natural frequencies for the nθ-modes of a ring
with attached supports will split when n = Nl/2. This is consistent with the so-called
splitting rules [6, 7] which indicate that frequency splits occur when 2n/Nl is an integer.
The vibrating gyroscope shown in Fig. 1 has eight supports (Nl = 8) and operates in145

the 2θ-mode (n = 2), and so the number of supports does not split the 2θ frequencies.
However, using eight supports will split the 4θ, 8θ, 12θ, . . . modes.

An example illustrating when non-zero coupling terms occur in the total stiffness
matrix is shown in Fig. 2 for the case when Nl = 9, NR = 11 and α , 0. Each
cell represents the calculated value in the total stiffness matrix — white cells indicate150

zero values, shaded/coloured cells indicate non-zero values. The presence of coupling
is clear. For example, the (n =)1θ and (p =)8θ-modes, the (n =)4θ and (p =)5θ-
modes, and the (n =)2θ and (p =)11θ-modes all couple because (n± p)/Nl are integers.
Along the main diagonal, the stiffness values occur in equal pairs, except when n = 9
when the support legs induce frequency splitting. In practice the presence of coupling155

when n is not equal to p is expected to have a much smaller influence on frequency
splitting than when n is equal to p. This is because the frequencies for different modes
of unsupported rings are normally well separated. For this reason, these terms are
neglected in simulation studies performed later.
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Similar reasoning can be used to determine the overall mass matrix including sup-160

port leg inertia. The total kinetic energy in the support legs is given by:

Tl =
1
2

ḣT
[

Ml Mbl
Mbl

T NlmlI2×2

]
ḣ, (16)

where Ml is a 2NR × 2NR matrix having the same structure as Kl and whose first
diagonal terms have the same form as Eq. (15) but with kr and kt replaced by ml. These
terms are simply equal to Nlml(n2 + 1)/(2n2) for n < Nl/2. All of the Ml terms can
be found by using the same replacement in the Appendix. The coupling effect of the165

support masses on the kinetic energy is defined by:

Mbl = Nlml

[
I2×2

02(NR−1)×2

]
. (17)

2.4. Electrostatic energy

As the mean radius of the electrodes is normally large compared to the nominal
capacitor gap size, the electrode capacitors are approximated as parallel plate capaci-
tors. The voltages applied across the inner and outer capacitors are denoted Vi and Vo170

respectively, and the electrostatic energy stored by a differential element of the parallel
plate capacitor is given by:

dEc =
ε0εV2

2d
dAc, (18)

where ε is the relative permittivity of the ring material, ε0 is the absolute permittivity, V
is the electrical potential across the electrode-ring capacitor, d is the gap size between
the capacitor and the ring, and dAc is the differential capacitor area. The gap size175

between the inner or outer capacitor and the ring depends of the nominal gap size
(denoted dg) and the radial displacement w(θ), such that:

d = dg ± w(θ). (19)

Substituting Eq. (19) in Eq. (18) and expanding the denominator of the resulting
equation as a Taylor series in terms of w/dg gives:

dEc =
ε0εV2

2dg

NT∑
k=0

(∓1)k
(

w
dg

)k

dAc (20)

where NT is the number of terms used in the Taylor series expansion.180

The differential capacitor area dAc is defined as either lri dθ for the inner capacitor
or lro dθ for the outer capacitor, where ri and r0 are the inner and outer mean radii of
the capacitor respectively.

Neighbouring electrodes are normally separated from each other by circumferential
gaps to help isolate the electrodes and allow space for the support legs. These gaps are185

small compared to the span of the electrodes and can be neglected [5]. This assumption
allows the electrodes to be merged together to form one continuous electrode around
the complete ring circumference. The electrostatic energy stored by the inner or outer
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capacitors is obtained by integrating (20) around the circumference of the ring. The
total electrostatic energy is obtained by summing the energy from both electrodes and190

results in:

Ec = Aε

NT∑
k=0

 roV2
o + (−1)kriV2

i

dg
k

∫ 2π

0
wk dθ

 (21)

with
Aε =

εε0l
2dg

(22)

Using the Ritz expansion of the radial displacement (Eqs. (2) to (4)), Eq. (21) pro-
vides a polynomial expansion for the electrostatic energy in terms of generalised coor-
dinates q(1)

n , q(2)
n up to order NT .195

2.5. Equation of motion
Lagrange’s equation is used to determine the equation of motion of the supported

ring resonator:
d
dt

(
∂T
∂q̇ j

)
+
∂(Ur + Ul)

∂q j
=
∂Ec

∂q j
. (23)

Using the results developed earlier, the equation of motion can be written as:

(Mr + Ml)Λ̈ + (Kr + Kl + Kc)Λ + F̄nl = Fb. (24)

In this expression, Fb = −(Mbr + Mbl) z̈b represents the base excitation force ap-200

plied to the central ring hub, indicating that for a perfect unsupported ring, the ring
centre displacement resulting from an applied shock only couples to the rigid body
motion of the ring. The first two entries of this vector are equal to −(mr + Nlml) z̈b
and all other entries are zero. F̄nl represents the nonlinear electrostatic force and is
a polynomial function of Λ. This term arises from differentiating Ec with respect to205

generalised coordinates q(1)
n , q(2)

n , i.e.:

F̄nl =



. . .

. . .

−Aε
∑NT

k=3
k(roV2

o +(−1)kriV2
i )

dg
k

∫ 2π
0 wk−1 cos jθ dθ

−Aε
∑NT

k=3
k(roV2

o +(−1)kriV2
i )

dg
k

∫ 2π
0 wk−1 sin jθ dθ

. . .

. . .


. (25)

The linear electrostatic stiffness terms have been separated from the nonlinear elec-
trostatic terms and are incorporated in the linear stiffness matrix Kc. The linear terms
are evaluated by setting k = 2 in (21) to yield diagonal matrix:

Kc = −2πAε

roV2
o + riV2

i

dg
2 I. (26)

The linear electrostatic forces provided by the outer and inner capacitors change210

the total stiffness of the system by applying a softening effect (Kc is a negative definite
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matrix). This softening effect increases as the electrode voltages increase, and the
overall stiffness matrix of the system can become negative, making the system unstable,
if the voltage is sufficiently large.

Some observations regarding the nonlinear electrostatic force are:215

• If the electrode voltages are chosen such that roV2
o = riV2

i , all even power terms
in the generalised coordinates (i.e. k odd) in Eq. (25) cancel out, thereby elimi-
nating some coupling mechanisms.

• Different terms in the nonlinear electrostatic force expansion exhibit softening
or hardening behaviour (e.g. hardening occurs when riV2

i > roV2
o ).220

• The expression developed for the nonlinear electrostatic force can be expanded
analytically, but becomes cumbersome as the number of terms in the Taylor se-
ries expansion NT increases and the Ritz order of approximation NR increases.
Symbolic calculation software can be used without much difficulty to generate
high order terms and evaluate the required integral terms.225

Equation of motion (24) is rewritten by pre-multiplying by matrix (Mr + Ml)−1 and
including a modal damping matrix D to give:

IΛ̈ + DΛ̇ +ΩΛ + Fnl =

[
− z̈b

0

]
(27)

In this expression, matrix Ω defines the undamped linear natural frequencies (in-
cluding linear electrostatic effects) of the modes provided the stiffness (Kl) and mass
(Ml) matrices associated with the supports are diagonal – this occurs if the number of230

modes included in the model is relatively low (NR < Nl/2) or the linear coupling is
simply neglected because it is small. For the device shown in Fig. 1, which will be
analyzed later, the stiffness and mass matrices contain coupling terms for the 4θ, 8θ,
12θ, . . . modes. However, this coupling can be avoided by selecting support leg angle
α = 0. Coupling also exists between different mode pairs, as discussed in the previous235

section (see Fig. 2). For example, coupling exists between 3θ and 5θ-modes and this
coupling can not be eliminated by selecting a particular value of α. This coupling is
neglected in the current study on the basis that it will be weak and to simplify the anal-
ysis. The damping matrix D is normally assumed to be diagonal and contains terms
ωn/Qn, where Qn is the quality factor (or Q-factor) and ωn is the undamped natural240

frequency for each mode. Fnl defines the influence of the nonlinear electrostatic forces
including any coupling between generalised coordinates.

In summary, the equation of motion for the nθ-mode can be expressed as:

q̈(1)
n +

ωn

Qn
q̇(1)

n + ω2
nq(1)

n + Fnlq(1)
n

= Fextq(1)
n

(28)

Similarly, the equation of motion for the companion nθ orthogonal mode is obtained
by replacing q(1)

n by q(2)
n in (28). The external forces Fextq(1)

1
and Fextq(2)

1
correspond to245

the external base excitation forces applied to the ring and only excite the 1θ-modes.
Additional sources of excitation can be applied directly to the generalised coordinates.
For example, harmonic forces are assumed to be applied to one of the 2θ-modes in
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later studies by setting Fextq(1)
2

= cosωt to replicate standard operating conditions for a
Coriolis vibrating ring based gyroscope.250

The nonlinear term Fnlq(1)
n

depends on the modal mass for the nth mode. For the
purpose of simplicity, the contribution from support leg inertia on this nonlinear term
has been neglected in later numerical simulations. This simplification will have a small
influence on the amplitude of the nonlinear force but the general behaviour illustrated
in Section 3 will be unaffected.255

In Eq. (28), the electrostatic force provides the only source of nonlinearity. Under
standard operating conditions, Fnl can be neglected on the basis that the displacement
of the ring is small compared to the gap size. However, in this study severe shock
conditions are investigated which induce ring displacement in the order of the nominal
gap size, and it is necessary to model the nonlinear electrostatic forces. As described260

earlier, the nonlinearity is expressed in power series form and the level of approxima-
tion depends on the number of terms used in the Taylor expansion NT . The polynomial
order of the nonlinear force is NT − 1 and including these nonlinear forces introduces
a physical mechanism for mode coupling to occur. Depending on the selected value of
NT , coupling can occur between several generalised coordinates.265

3. Shock simulations

3.1. Simulation data

Numerical results are presented here for a recently reported device, manufactured
and tested by Yoon et al. [1]. The dimensions of the ring are: mean radius r = 1.5mm,
radial thickness h = 18µm, and axial length l = 150µm. The nominal gap between270

capacitor and ring is dg = 10µm. The material properties are: Young’s modulus
E = 150GPa and density ρ = 2330kg/m3. The ring is supported by 8 pairs of legs.
Using Eq. (28), the stiffnesses of the legs are accounted for within the natural frequen-
cies ωn. These frequencies were obtained from a modal analysis of the resonator using
a commercial Finite Element (FE) software package and the results are presented in275

Table 1. The electrostatic forces are quite week and in practice make only a small
modification to the frequencies. On this basis it is justifiable to neglect their contribu-
tion to the linear frequencies. The natural frequency calculated for the 2θ-mode (i.e.
ω2) is in agreement with the results presented in [1]. The mode shapes obtained from
the FE analysis for n ≤ 3 are shown in Fig. 3. Mode n = 1 describes the 1θ ring rigid280

body motion, whilst the other modes (n = 2, n = 3) describe the 2θ and 3θ flexural
modes of the ring. The frequencies calculated for the 4θ and 5θ-modes are provided.
There are two 4θ frequencies because the eight support legs split the 4θ frequencies. In
simulations, the high-frequency 4θ-mode is used as it aligns with the support legs and
satisfies the α = 0 condition. In practice, the modal analysis produces an assortment of285

leg dominated modes in addition to the 1θ-mode, but these modes are not considered
in the current model (28).

To simulate the dynamics of the gyroscope using Eq. (28), the damping for each
mode is required and these are specified in (28) as Q-factors. The Q-factors used in
the simulations are presented in Table 1 and were obtained as explained below. The290

rigid body motion Q-value is often difficult to estimate because it depends on the bond
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(a) (b) (c)

Figure 3: Undeformed shape and deformed mode shape of the ring gyroscope for (a) n = 1, (b) n = 2 and
(c) n = 3.

mode number Frequency (kHz) Q-factor
1θ 11.2 between 5 000 and 180 000
2θ 15.8 64 700 from [1]
3θ 22.0 170 000 (estimated)
4θ 25.7, 36.3 180 000, 80 000 (estimated)
5θ 59.2 50 000 (estimated)

Table 1: Undamped natural frequencies and associated Q-factors for the first five ring modes.

connecting the central hub to the device and thermoelastic damping. In numerical
simulations, a range of values of Q1 is used. The 2θ-mode Q-value was measured
experimentally in [1] and the same value is kept within the simulations. The Q-values
for the other flexural modes were not presented in [1] and so were calculated based on295

the assumption that thermoelastic damping is the only source of dissipation. The values
presented in Table 1 were calculated using Zener’s theory [11]. Using this approach it
can be shown [12] that the Q-factor of each ring mode can be calculated using:

1
Q

=
1

Qr

Vr

Vr + Vl
+

1
Ql

Vl

Vr + Vl
, (29)

where Qr and Ql are respectively the Q-factors for the ring and legs considered inde-
pendently (see Eq. (30)), Vl and Vr are respectively the energy stored in the support legs300

and the ring for the mode considered – these quantities are obtain from an FE model of
the undamped system. Qr and Ql are given by [12]:

Qr,l =
1 +

(
τr,l ωi

)2

∆M
(30)

where ωi is the fundamental undamped natural frequency of the supported ring for
the mode considered, τr,l and ∆M are respectively the effective relaxation time and
relaxation strength defined as:305

τr,l =
Cvh2

r,l

kπ2 and ∆M =
Eα2T0

Cv
. (31)
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Here hr,l is either the radial ring thickness (hr = 18µm) or the leg width (hl = 10µm);
Cv = ρCp (with Cp = 700J.kg−1.K−1 the specific heat for silicon) is the specific heat
capacity at constant volume; k = 130W.m−1.K−1 is the thermal conductivity for silicon;
α = 2.6× 10−6K−1 is the coefficient of thermal expansion for silicon; T0 = 300K is the
reference temperature.310

The applied shock corresponds to an imposed acceleration of the base of the sensor
and is accounted for in the definition of z̈b in Eq. (27). In the model it is represented
as an applied external force on the 1θ rigid body mode and will be referred to as Fs

later. The applied shock is assumed to be a half-sine pulse [13] and is applied along the
α = 0 direction to eliminate any coupling in the stiffness matrix. As such, acceleration315

z̈b is expressed as:

z̈b =

[
Fs

0

]
=


{

As sin πt
Ts

for t ≤ Ts

0 for t > Ts

0

 , (32)

where As and Ts are respectively the amplitude and duration time of the applied shock.
Throughout the following study, Ts is chosen to be one tenth of the period of the 2θ-
mode. In severe shock conditions, the amplitude of the shock can be very high and for
the device analyzed the maximum amplitude considered is 10 000g (a shock of 15 000g320

was applied by Yoon et al. in [1] but the shock duration was not mentioned) which
causes the ring-electrode gap to reduce to approximately 60% of its nominal value. For
higher levels of deformation the so-called ”pull-in” phenomenon [14] is likely to occur,
in which the ring would be pulled into contact with the electrode. The developed model
focuses on investigating the dynamic behaviour under nonlinear electrostatic forcing325

and does not consider contact with the electrode.
The nonlinear coupling terms provide the only means of coupling the generalised

coordinates. By aligning the external forcing with α = 0, there is no coupling with the
orthogonal companion modes q(2)

n . This halves the number of generalised coordinates
that need to be included in the equations of motion, and in what follows only gen-330

eralised coordinates q(1)
n , corresponding to the nθ-mode, are considered without their

orthogonal companion. To simplify notation, superscript (1) will be removed and the
generalised coordinates considered will be referred to as qn.

Except when stated otherwise, the inner electrode is deactivated (Vi = 0) in below
simulations.335

3.2. Preliminary study: influence of the nonlinear force order
As the applied shock considered is severe (As=10 000g), strong nonlinear effects

are expected and the order of the Taylor series expansion (20) must be considered
carefully to correctly predict these nonlinear effects. Initially a convergence study is
performed to show the influence of using a different number of terms in the Taylor340

series expansion for the nonlinear electrostatic force.
Figure 4 shows the backbone curve for the nonlinear 1θ-mode calculated using

different values for the number of terms of NT in the Taylor expansion. A nonlinear
mode is defined as a harmonic solution of the underlying autonomous conservative
system of Eq. (27):345

IΛ̈ +ΩΛ + Fnl = 0 (33)
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The Harmonic Balance Method (HBM) is employed to calculate the nonlinear mode
(see [15] for a detailed explanation how to compute nonlinear modes). Non trivial
solution of Eq. (33) are sought in the form of a Fourier ansatz:

Λ(t) = a0 +

Nh∑
k=1

(
ak cos(kωt) + bk sin(kωt)

)
, (34)

where Nh is the number of harmonics retained. Inserting Eq. (34) into (33) and eval-
uating Fourier-Galerkin projections with respect to the base functions gives rise to a350

system of nonlinear algebraic equations with unknowns a0, ak, bk and ω (k ∈ J1,NhK).
To determine the nonlinear 1θ-mode, this system of equations is solved by an arc-length
continuation scheme [16] initiated with the linear frequency ω1 and a small value of Λ.
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Figure 4: Nonlinear normal mode q1 for different values of NT

At low energy levels (low amplitude), the natural frequency of the nonlinear mode
is equal to the linear natural frequency (11.2kHz for the 1θ-mode). However as the355

energy in the system increases, or in our case as the 1θ vibration increases, the natu-
ral frequency decreases. This corresponds to a global softening effect induced by the
nonlinear electrostatic forces.
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The advantage of studying nonlinear modes is that they show how the loci of the
maximum response changes under harmonic forcing. This is depicted in Fig. 4 by360

frequency response functions (FRFs) plotted on top of the nonlinear modes. FRFs of
the system for NT = 4 – dashed lines, and NT = 10 – dotted lines, are illustrated.
These forced responses were obtained using arbitrary (but equal) forcing amplitudes
to demonstrate that the bent peak follows the nonlinear modes. It is clear that de-
pending on the NT -value, the response, be it forced or free, is different. Convergence365

for a maximum amplitude of approximately 6µm (corresponding to the 60% gap size
displacement under applied severe shock) is obtained for NT ≥ 10.

In the following simulations, the number of terms in the Taylor series will be se-
lected to be NT = 10, corresponding to a polynomial nonlinear force of order 9.

3.3. Free response after shock: influence of the number of modes370

In the first set of simulations, the resonator is considered to be at rest initially and is
then subjected to a 10 000g shock on q1 at t = 0 as defined in Eq. (32). The amplitude
of the shock is large and causes the ring-electrode gap to reduce to approximately 60%
of its nominal value.

Figure 5 illustrates the radial displacement (defined in Eq. (2)) as a function of375

time for different Ritz orders of approximation NR. For clarity, only the positive en-
velope of the response time-history is plotted to illustrate the global behaviour of the
response over several seconds. The envelope was calculated by identifying local max-
ima in short duration windows of the multi-frequency time-history and then manually
combining and refining these maxima to achieve maxima points that encapsulate the380

global response behaviour. A sample showing the time response and positive envelope
is illustrated as an embedded figure in Fig. 5 for a zoom on the NR = 5 simulation. The
results in Fig. 5 show that the radial displacement envelope after shock is accurately
simulated using the first 3-modes of vibration (rigid body motion and 2θ and 3θ flex-
ural modes). The main reason for this is that the modal amplitude decreases quickly385

as the mode number increases and the q1 response dominates the response amplitude.
For NR = 5, direct linear coupling between the q5 and q3 coordinates caused by the
extra-diagonal terms in Kl and Ml matrices has been neglected.

Fig. 6 shows the positive envelope for modal amplitude q5 calculated with NR = 5
together with a sample showing the time response and positive envelope for a zoom390

on the simulation. The results show a non-smooth behaviour and a rapid increase
in amplitude at t ≈ 0.28s. To fully understand this singularity in the response, it is
instructive to consider the evolution of the frequencies contained in the response over
time. This is achieved by computing the spectrogram of the modal displacements. To
calculate the spectrograms, the time-varying response is segmented into short periods395

and an FFT-based spectral estimate is performed over sliding windows [17]. The color
and shades of the spectrograms encode frequency power levels. Dark color indicates
frequency content with higher power, and a strong line (or ray) indicates for instance
the existence of a particular frequency and shows its evolution over time. Figs. 7 and 8
show spectrograms for the q1 and q5 responses, respectively.400

In Fig. 7, the spectrum of the response contains different rays, namely its fundamen-
tal natural frequency ω1 (around 11kHz) and harmonics and combination of harmonics
(for instance ω1 − ω2, 3ω1, ω1 + ω2, etc.). The complexity of the spectrum is well
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Figure 5: Shock simulations with structure initially at rest. Positive envelope of the radial displacement for
different values of NR.

known to be a consequence of nonlinear effects. The zoom shows how ω1 slowly in-
creases over time from 10.6kHz to 11.2kHz as amplitude q1 decays. This behavour is405

caused by the softening effect of the nonlinear forces which also explains the increase
in frequency over time of combinations of harmonics.

Figure 8 shows even richer dynamics. In addition to the different harmonics or
combination of harmonics, there is clear evidence of modal interaction at t ≈ 0.3s and
ω ≈ 60kHz. This modal interaction occurs when ω5 = 2ω1 + ω2 + ω3 and creates an410

additional means of mode coupling. This energy exchange induces a peak in the q5
response (see Fig. 6), but as the amplitude is relatively small compared to the ampli-
tude of q1, the peak is not visible in the global response of Fig. 5. Depending on the
resonator dimensions, additional modal interactions are expected to occur.

3.4. Forced harmonic response with applied shock415

Under operating conditions, one of the 2θ-modes of a vibrating gyroscope is driven
at resonance and the response of the companion 2θ-mode is measured to provide a
measure of the angular rate [18]. In this section the conditions when an applied shock
significantly affects the forced vibration of the 2θ-mode via inter-modal coupling are
investigated when there is no applied rate.420

A constant amplitude harmonic force is applied to the 2θ-mode i.e. Fextq2
= Ae cosωt

where ω is the excitation frequency. Figure 9 plots the amplitude of q2 against excita-
tion frequency ω near its linear resonant frequency. The excitation amplitude has been
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Figure 6: Shock simulations with structure initially at rest. Positive envelope of the modal displacement q5
calculated with NR = 5.

chosen such that the drive amplitude q2 is approximately 4% of the nominal gap size
(≈ 0.4µm) and three modes (NR = 3) are sufficient to characterize the global dynamics,425

see Section 3.3. In a way similar to the calculation of the nonlinear mode (see Sec-
tion 3.2), the nonlinear response curve was found using a Harmonic Balance Method
(HBM) that solves directly for the harmonic steady-state solutions, combined with an
alternating frequency-time procedure (AFT) [19] to compute the projection of the non-
linear forces in the frequency domain, and arc-length continuation techniques [16] to430

follow a continuous branch of solution as the excitation frequency varies. Due to the
presence of nonlinearity, the system presents two stable solutions over some frequency
ranges, the top and bottom branches on Fig. 9. The results illustrate the softening
behaviour of the nonlinear forces.

In the following simulation case studies, the 2θ-mode only is driven at a frequency435

close to the peak of the nonlinear resonance (the actual frequency corresponds to the
marker shown in Fig. 9, w ≈ 15.7983kHz). Initially the system is maintained at its
top stable branch solution (q2 ≈ 0.39µm). A shock is then applied to the 1θ-mode, at
t = 0s. The shock causes the ring to vibrate as a rigid body but also influences the
flexural vibration of the 2θ-mode because of the coupling provided by the nonlinear440

electrostatic forces. Time-histories of the positive envelopes for the modal displace-
ments are plotted in Figs. 10 to 13. The results presented are for particular cases using
different values of shock excitation amplitude (As) and 1θ damping (Q1). The details
for the individual cases are as follows:
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Case 1. For this case the shock amplitude is relatively small (As = 2 000g) and 1θ445

damping low (Q1 = 120 000), and the results are shown in Fig. 10. After a short tran-
sient response of approximately 7s, the system returns to its initial conditions where q2
is at its top stable branch (round marker in Fig. 9). q1 shows a slow exponential decay
from damping.

450

Case 2. In this case the shock amplitude is large (As = 10 000g) and the damping
low (Q1 = 120 000). Due to the increased shock amplitude, which increases the ring
deformation to 55% of its nominal gap size, the choice of NT -value is important to
achieve convergence, see Section 3.2. The results are shown in Fig. 11, where it can
be seen that q2 displays particularly interesting dynamic behaviour. After an initial455

transient response (up to approximately 5s), q2 appears to stabilise on its bottom branch
q2 ≈ 0.03µm (yellow cross marker of Fig. 9). However, while q1 displacement slowly
decays due to damping, q2 returns to its initial condition on the top stable branch.

Case 3. In this case the shock amplitude is large (As = 10 000g as in Case 2)
but the damping on the 1θ-mode is increased by a factor of 3 (Q1 = 40 000). The460

results are shown in Fig. 12. It can be see that increasing the damping reduces the q1
displacement more rapidly so it is negligible at around 7s. Also, after an initial transient
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q2 stabilises and remains on the bottom stable branch. These results demonstrate the
jump phenomenon from one branch to the other, as depicted by the arrow in Fig. 9.

Case 4. In this case the conditions necessary to cause the jump phenomenon ob-465

served in Case 3 are investigated by varying Q1. As in Case 3, the shock amplitude
is large but Q1 is varied from 5 000 to 180 000. The results for the 2θ response only
are shown in Fig. 13. These results confirm the previous findings where the q2 solu-
tion jumps to the bottom branch when the damping is high (low Q1-value) but returns
to the top branch after a sufficient stabilisation time when the damping is low (high470

Q1-value).
The main conclusion drawn from this case studies is that for particular values of

shock amplitude and damping the system exhibits jump behaviour from the high ampli-
tude resonant driving state to a much lower amplitude. Even if the 2θ drive amplitude
is maintained initially, a shock applied to the rigid body 1θ-mode can cause the ring475

amplitude to reduce suddenly. The jump phenomenon is caused by coupling between
modes of vibration created by nonlinear effects that are normally not accounted for
at the design stage. Furthermore, it has been shown that the abrupt jump down only
occurs for high 1θ damping levels, which are often considered to be desirable as they
quickly damp the rigid body motion. In practical applications, a control system may be480

used to maintain the 2θ drive response amplitude. In this case it is likely that the shock
would reduce the drive response amplitude momentarily before eventually returning to
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Figure 11: Positive envelope of the modal displacements as a function of time for a severe shock – Case 2.

the required steady-state amplitude.

3.5. Influence of the inner electrode
In all previous simulations, the inner voltage was set equal to 0 to simulate ring485

resonators with outer electrodes only. To gain some understanding of the benefits or
otherwise of using inner as well as outer electrodes, it is necessary to reconsider the
equations of motion. With the assumption that NR = 2, and NT = 5, the equations of
motion (28) can be expressed as: q̈1 + ω1

Q1
q̇1 + ω1

2q1 + αq1q2 − βq1(q1
2 + 2q2

2) + γq1q2(4q2
1 + 3q2

2) = Fs

q̈2 + ω2
Q2

q̇2 + ω2
2q2 + 4α

5 q2
1 −

8
5βq2(q2

2 + 2q1
2) +

4γ
5 q2

1(2q2
1 + 9q2

2) = 0
, (35)

with:

α =
3(riV2

i − roV2
o )Aεπ

(mr + 8ml)dg
3 , β =

3(riV2
i + roV2

o )Aεπ

(mr + 8ml)dg
4 , γ =

5α
6d2

g

In this expression, there is no harmonic forcing applied to the 2θ-mode.490

As mentioned in Section 2.5, imposing the condition riV2
i = roV2

o causes all of the
even order terms in the nonlinear force expression to cancel out and eliminates some
coupling mechanisms. Under these conditions the nonlinear force terms only include
odd order terms and the above equation simplifies to:{

q̈1 + ω1
Q1

q̇1 + ω1
2q1 − βq1(q1

2 + 2q2
2) = Fs

q̈2 + ω2
Q2

q̇2 + ω2
2q2 −

8
5βq2(q2

2 + 2q1
2) = 0 (36)
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Figure 12: Positive envelope of the modal displacements as a function of time for a severe shock but with
high damping – Case 3.

These equations indicate that if the system has zero initial conditions when the shock495

is applied, there is no coupling between q1 and q2 and q2 = 0 is the solution to Eq. (36)
for all values of t and all Fs. This means that a shock applied to q1 will not excite q2.
Simulation results for this case are shown in Fig. 14 and were obtained using NR = 3
and NT = 10. These results confirm that the applied shock does not produce any q2
response for a more general form of equations. This phenomenon of ”no coupling500

when the inner and outer voltages are symmetric” was previously mentioned in [4].
For the case when the initial conditions for q2 are non-zero, like those considered in

Section 3.4 where the 2θ-mode is harmonically excited, the shock produces some cou-
pling between generalised coordinates. Simulation results illustrating this behaviour
are shown in Fig. 15. The results show the positive envelopes of the modal displace-505

ments after the applied shock with a harmonic forcing applied to q2. It can be seen
that q2 varies after the shock is applied and shows a jump behaviour similar to those
illustrated in Fig. 13. A nonlinear modal interaction between q1 and q3 is also seen
at approximately t = 0.1s when there is a sudden increase in q3 and decrease in q1,
indicating the transfer of vibrational energy from nonlinear coupling between q1 and510

q3.
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4. Conclusions

A mathematical model has been developed and used to investigate the dynamic
behaviour of ring resonators under severe shock conditions and nonlinear electrostatic
forcing. The model describes the ring response in terms of the modes of a perfect ring,515

indicates that the nonlinear electrostatic forces induce mode coupling, and is used to
simulate the resulting physical response.

The nonlinear electrostatic force was approximated using a Taylor series expan-
sion and a study was performed to investigate the order of approximation required to
achieve converged results. For the severe shocks considered, when the electrode gap520

reduces by ∼ 60%, it is necessary to use a 9th order approximation of the nonlinear
electrostatic force and three modes of flexural vibration (1θ, 2θ and 3θ) to achieve con-
verged results for the global shock behaviour. Only three modes are required because
the ring natural frequencies are well separated from each other; higher order modal
responses decay quickly; and there is no linear coupling between the first ring modes.525

Electrostatic nonlinearity introduces coupling between the modes such that a shock
which principally excites the rigid body mode produces flexural vibration of the ring
and induces coupling between the 1θ and other modes. Under severe shock conditions
sensor performance deteriorates compared to the linear case (without coupling). Fur-
thermore, under operating conditions when the 2θ mode is driven at resonance, it was530

demonstrated that it is possible for an applied shock to cause the vibrating response
to jump to another stable state with much lower vibrating amplitude. The occurrence
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Figure 14: Positive envelopes of the modal displacements as a function of time for a severe shock without
other external forces and with a symmetrical electrodes effect.

of this phenomenon is mainly a function of shock amplitude and rigid-body motion
damping and is likely to reduce sensor performance momentarily. Finally, by incor-
porating both inner and outer electrodes the electrostatic restoring force can be made535

symmetric. This removes some coupling mechanisms between modes, but does not
remove all couplings if the shock occurs when the resonator is vibrating.

A detailed analysis (bifurcation condition and stability studies) could be performed
to more fully understand the complex dynamics created by the nonlinear electrostatic
force. Experimental measurements on CVG devices under severe shock conditions are540

also required to validate the findings and further investigate the conditions when the
jump phenomenon occurs. It is anticipated that the model and results presented will
guide future development of high performance capacitive CVGs.
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[15] M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, J. C. Golinval, Nonlinear nor-
mal modes, part ii: Toward a practical computation using numerical continuation
techniques, Mechanical Systems and Signal Processing 23 (1) (2009) 195–216.
doi:10.1016/j.ymssp.2008.04.003.

[16] E. Sarrouy, J.-J. Sinou, Non-Linear Periodic and Quasi-Periodic Vibrations in590

Mechanical Systems - On the use of the Harmonic Balance Methods, Advances in
Vibration Analysis Research, InTech, 2011, pp. 419–434. doi:10.5772/15638.

[17] MATLAB, version 8.3.0 (R2014a), The MathWorks Inc., Natick, Massachusetts,
USA, 2014.

[18] C. H. J. Fox, D. J. W. Hardie, Vibratory gyroscopic sensors, DGON Symposium595

Gyro Technology, Stuttgart, 1984, pp. 13.0–13.30.

[19] T. M. Cameron, J. H. Griffin, An alternating frequency/time domain method for
calculating the steady-state response of nonlinear dynamic systems, Journal of
Applied Mechanics 56 (1) (1989) 149–154. doi:10.1115/1.3176036.

26

http://dx.doi.org/10.1016/j.jsv.2003.11.034
http://dx.doi.org/10.1109/84.925732
http://dx.doi.org/10.1109/ICSENS.2011.6126998
http://dx.doi.org/10.1103/PhysRev.52.230
http://dx.doi.org/10.1109/JMEMS.2002.1007399
http://dx.doi.org/10.1016/j.sna.2014.04.025
http://dx.doi.org/10.1016/j.ymssp.2008.04.003
http://dx.doi.org/10.5772/15638
http://dx.doi.org/10.1115/1.3176036


Appendix600

K j
l is composed of K j

l n,p matrices (size [2 × 2]) at rows (2n − 1, 2n) and columns
(2p − 1, 2p), with 1 < n < NR and 1 < p < NR.

K j
l =


. . . . . . . . . . . .
. . . . . . . . . . . .

K j
l n,p

. . . . . . . . . . . .

. . . . . . . . . . . .


(37)

One introduces here an angle α that defines the position of the last leg with respect to
the global frame. This angle can be arbitrarily taken. Substituting Ψ

(
2 jπ
Nl

+ α
)

by its
value (3) in (13) gives :605

K j
l n,p =

kra
j
cc + kt

np a j
ss kra

j
cs −

kt
np a j

sc

kra
j
sc −

kt
np a j

cs kra
j
ss + kt

np a j
cc

 (38)

with :

a j
cc = cos

(
2n jπ

Nl
+ nα

)
cos

(
2p jπ

Nl
+ pα

)
(39)

a j
ss = sin

(
2n jπ

Nl
+ nα

)
sin

(
2p jπ

Nl
+ pα

)
(40)

a j
cs = cos

(
2n jπ

Nl
+ nα

)
sin

(
2p jπ

Nl
+ pα

)
(41)

a j
sc = sin

(
2n jπ

Nl
+ nα

)
cos

(
2p jπ

Nl
+ pα

)
(42)

In order to calculate the total strain energy (12), one needs to calculate
∑Nl

j=1 acc
j ,∑Nl

j=1 ass
j ,

∑Nl
j=1 acs

j and
∑Nl

j=1 asc
j . This derivation follows.

Nl∑
j=1

acc
j =

Nl∑
j=1

cos
(

2n jπ
Nl

+ nα
)

cos
(

2p jπ
Nl

+ pα
)

=
1
2

Nl∑
j=1

[
cos

(
2(n + p) jπ

Nl
+ (n + p)α

)
+ cos

(
2(n − p) jπ

Nl
+ (n − p)α

)]
(43)

Utilising the fact that:

Nl∑
j=1

cos
(

2n jπ
Nl

+ nα
)

=

{
Nl cos nα if n/Nl ∈ Z
0 otherwise. (44)
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Equation (43) gives :

Nl∑
j=1

acc
j =


Nl
2 cos(n − p)α if (n − p)/Nl ∈ Z and (n + p)/Nl < Z
Nl
2 cos(n + p)α if (n − p)/Nl < Z and (n + p)/Nl ∈ Z

Nl cos nα cos pα if (n − p)/Nl ∈ Z and (n + p)/Nl ∈ Z
0 otherwise.

(45)

A similar reasoning can be performed for
∑Nl

j=1 ass
j ,

∑Nl
j=1 acs

j , and
∑Nl

j=1 asc
j . The610

value of each sum depends of some conditions on the row and column number (n and
p respectively). These are summaries below.

∑
Condition on p and n

(n − p)/Nl ∈ Z (n − p)/Nl < Z (n − p)/Nl ∈ Z otherwise
and (n + p)/Nl < Z and (n + p)/Nl ∈ Z and (n + p)/Nl ∈ Z

position in Kl positive diag. negative diag. intersection of diag. everywhere else∑Nl
j=1 acc

j
Nl
2 cos(n − p)α Nl

2 cos(n + p)α N cos nα cos pα 0∑Nl
j=1 ass

j
Nl
2 cos(n − p)α −

Nl
2 cos(n + p)α N sin nα sin pα 0∑Nl

j=1 acs
j −

Nl
2 sin(n − p)α Nl

2 sin(n + p)α N cos nα sin pα 0∑Nl
j=1 asc

j
Nl
2 sin(n − p)α Nl

2 sin(n + p)α N sin nα cos pα 0

28


	Introduction
	Ring resonator modelling
	Kinetic energy
	Ring strain energy
	Support leg strain and kinetic energies
	Electrostatic energy
	Equation of motion

	Shock simulations
	Simulation data
	Preliminary study: influence of the nonlinear force order
	Free response after shock: influence of the number of modes
	Forced harmonic response with applied shock
	Influence of the inner electrode

	Conclusions

