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Abstract

Over the last years, a number of stochastic models have been proposed for analysing the spread of nosocomial
infections in hospital settings. These models often account for a number of factors governing the spread dynamics:
spontaneous patient colonization, patient-staff contamination/colonization, environmental contamination, patient
cohorting, or health-care workers (HCWs) hand-washing compliance levels. For each model, tailor-designed
methods are implemented in order to analyse the dynamics of the nosocomial outbreak, usually by means of
studying quantities of interest such as the reproduction number of each agent in the hospital ward, which is usually
computed by means of stochastic simulations or deterministic approximations. In this work, we propose a highly
versatile stochastic modelling framework that can account for all these factors simultaneously, and which allows for
the exact analysis of the reproduction number of each agent at the hospital ward during a nosocomial outbreak.
By means of five representative case studies, we show how this unified modelling framework comprehends, as
particular cases, many of the existing models in the literature. We implement various numerical studies via which
we: i) highlight the importance of maintaining high hand-hygiene compliance levels by HCWs, ii) support infection
control strategies including to improve environmental cleaning during an outbreak, and iii) show the potential of
some HCWs to act as super-spreaders during nosocomial outbreaks.

Keywords: hospital-acquired or nosocomial infections; antibiotic resistant bacteria; infection control;
stochastic model; Markov chain; reproduction number

1 Introduction1

The risk of acquiring nosocomial infections is a recognised2

problem in health-care facilities worldwide [1]. It has been3

estimated that nosocomial infections affect more than 4 mil-4

lion patients in Europe each year, leading to e7 billion of di-5

rect medical costs [2]. Moreover, the emergence and spread6

of antibiotic resistance among these pathogens has posed7

a second major problem worldwide, stressing the need for8

understanding their transmission routes in health-care fa-9

cilities, and to identify the most effective infection control10

strategies in these settings [3]. A paradigmatic example11

of an antibiotic resistant nosocomial pathogen is bacteria12

Staphylococcus aureus (SA), which is a normal inhabitant13

of the skin and mucosal surfaces, but can cause different14

infections when it flourishes in other areas (e.g., soft tis-15

sue, bloodstream or lung infections). SA resistance against16

Penicillin-like antibiotics arose a few years after the intro-17

duction of Penicillin. Moreover, Methicillin-resistant SA18

(MRSA) strains were reported in Europe after only two19

years of the introduction of Methicillin in 1959 [4]. Cur-20

rently, new strains of MRSA have been reported which are21
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also resistant to Vancomycin [4]. 22

Health-care environments such as hospitals or nursing 23

homes are ideal settings for the spread of multidrug- 24

resistant bacteria (MDRB), due to, among other reasons, 25

opportunities for bacteria to enter into the bloodstream or 26

infect open wounds, the presence of immunocompromised 27

and aged individuals, and the high exposure levels to antibi- 28

otics [5, 6]. The precise mode of transmission is uncertain 29

for many nosocomial pathogens, but usually both exoge- 30

nous (e.g, cross-colonization) and endogenous (e.g. selec- 31

tive pressure of antibiotics) routes are considered as feasible 32

for these pathogens [3]. While for some nosocomial infec- 33

tions most of the transmission is considered to occur via 34

HCW-patient contact routes [7], there is increasing recog- 35

nition in the literature of the potential role played by envi- 36

ronmental contamination and airborne spread [8, 9, 10]. 37

Infection control strategies usually implemented in hospi- 38

tal settings include, among others, hand disinfection proce- 39

dures, environmental cleaning, active screening for coloniza- 40

tion among patients and isolation of colonized individuals, 41

managing staffing levels, antibiotic prescription and decol- 42

onization procedures, or patient cohorting [11]. However, 43

control procedures followed in health-care facilities world- 44
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wide usually amount to combinations of the individual in-45

terventions listed above, so that the efficacy of each indi-46

vidual strategy is hard to measure. On the other hand,47

the application of classical epidemiology procedures for ad-48

dressing this individual efficacy is often not feasible due49

to financial and ethical restrictions [4, 12]. Thus, math-50

ematical modelling is one of the best tools available for51

understanding the role played by different factors on the52

emergence and spread of these pathogens and their antibi-53

otic resistance, while measuring the impact of individual54

interventions [8, 13].55

A wide range of deterministic and stochastic mathemat-56

ical models for the spread of nosocomial pathogens have57

been developed during the last years [2]. Although deter-58

ministic models were originally proposed for capturing the59

main infection dynamics in single wards and hospitals, mod-60

elling efforts were soon redirected towards the stochastic61

perspective due to the small and highly heterogeneous pop-62

ulations usually present in these settings. From a stochastic63

perspective, most of the models proposed in the literature64

are based on Markov processes, where it is assumed that65

inter-event times are exponentially distributed. This sim-66

plifying assumption is usually crucial for analytically and67

computationally treating the processes under study; we re-68

fer the reader to Ref. [3] for a discussion on the advantages69

of stochastic (in particular, Markovian) approaches, and to70

Ref. [2, 14] for systematic reviews in this field. Stochastic71

models in this area can be classified as compartment-based,72

where the population of individuals is classified in groups73

according to their state against the disease, and wide ho-74

mogeneities are assumed among the members within the75

same group, or agent-based, which keep track of the state of76

each individual within the population throughout time and77

allow one to model heterogeneities at the individual level78

[8]. Agent-based models can incorporate heterogeneity in,79

for example, transmission risk profiles of specific patients or80

HCWs [21], but are usually restricted to the implementation81

of stochastic simulations in small wards, and are computa-82

tionally constrained [2].83

When constructing and studying these stochastic mod-84

els, efforts have been focused, and tailor-designed ana-85

lytical and numerical methods have been implemented,86

in order to analyse the dynamics of the nosocomial out-87

break when accounting for spontaneous colonization of88

patients, patient-to-staff and staff-to-patient contamina-89

tion/colonization, environmental contamination, patient90

cohorting, room configuration of the hospital ward, staff91

hand-washing compliance levels, the presence of different92

types of HCWs or specific staff-patient contact network93

structures. This analysis is usually carried out by means94

of studying summary statistics directly related to the noso-95

comial outbreak, such as the reproduction number of each96

particular agent (e.g., of a colonized patient or a contami-97

nated health-care worker) in the hospital ward. This is usu-98

ally computed in an approximative fashion, for example by99

means of stochastic simulations or in terms of determinis-100

tic approximations [15]. On the other hand, the limitations101

of analysing these processes by simulation approaches, and102

the convenience of following exact procedures instead when103

dealing with small populations (such as those usually in-104

volved in nosocomial outbreaks), have been highlighted in 105

Ref. [16]. 106

In this work, we propose a versatile stochastic modelling 107

framework that can simultaneously account for all the fac- 108

tors listed above, and which allows in Section 2 for the 109

exact and analytical study of the reproduction number of 110

each agent at the hospital ward during the nosocomial out- 111

break. We make use of five representative case studies in 112

Section 3, regarding both hypothetical and real nosocomial 113

outbreaks at hospital wards, to show how this unified mod- 114

elling framework comprehend, as particular cases, many of 115

the existing models in the field. We conduct several nu- 116

merical studies and our results in Section 3 highlight the 117

importance of maintaining high hand-hygiene compliance 118

levels by health-care workers, support control strategies in- 119

cluding to improve environmental cleaning during nosoco- 120

mial outbreaks, and show the potential of some health-care 121

workers to act as super-spreaders during these outbreaks. 122

2 A unified stochastic modelling 123

framework 124

In this Section, we propose the unified stochastic mod- 125

elling framework for the spread of nosocomial infections, 126

where agents represented in the model can be of different 127

type (patients, HCWs, surfaces, patients located in different 128

rooms,...). This general framework, which is constructed in 129

terms of a continuous-time Markov chain, allows one to fol- 130

low an exact and analytical approach for computing the 131

reproduction number of each different agent playing a role 132

in the infection spread, which measures the number of in- 133

fections directly caused by this agent until the agent stops 134

spreading the nosocomial pathogen. We also show how this 135

reproduction number can be exactly analysed while deci- 136

phering among which individuals this agent is spreading 137

the disease, so that this becomes a quantitative measure 138

of the infectiousness of a given agent among individuals 139

of different type. This then becomes a useful tool when 140

analysing the role played by different routes of infection 141

during a nosocomial outbreak in a given hospital ward, as 142

shown in numerical results in Section 3. 143

2.1 The model 144

We consider model depicted in Figure 1, which amounts to 145

a stochastic SIS epidemic model with multiple compartmen- 146

tal levels. In Case Studies 1-5 in Section 3, this modelling 147

framework is used to represent the spread of nosocomial in- 148

fections, such as MDRB, within a hospital ward, where the 149

meaning of a compartmental level depends on the particu- 150

lar case study, showing the versatility and flexibility of this 151

unified framework. 152

We consider the stochastic process X = {X(t) = 153

(I1(t), . . . , IM (t)) : t ≥ 0}, where Ij(t) amounts to the 154

number of infectives in compartmental level j at time t ≥ 0. 155

We assume that the number of individuals at each com- 156

partmental level remains constant throughout time, which 157

is directly related to standard assumptions when modelling 158

nosocomial infections; see Section 3. This means that the 159
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number Sj(t) of susceptibles in compartmental level j at160

time t is given by Sj(t) = Nj − Ij(t) for all t ≥ 0. Process161

X evolves among states in S = C ∪ {∆}, where162

C = {(i1, . . . , iM ) ∈ NM0 : 0 ≤ ij ≤ Nj , j ∈ {1, . . . ,M}}.

State (i1, . . . , iM ) represents the presence of ij infected indi-163

viduals at compartmental levels 1 ≤ j ≤M , while the final164

state ∆ represents the detection and declaration of the out-165

break in the hospital ward. In particular, process X transits166

among states in S according to the following transitions:167

• Removal at compartmental level j: (i1, . . . , iM )→168

(i1, . . . , ij−1, . . . , iM ), occurring at rate µj(i1, . . . , iM );169

• Infection at compartmental level j: (i1, . . . , iM )→170

(i1, . . . , ij+1, . . . , iM ), occurring at rate λj(i1, . . . , iM );171

• Detection and declaration of the outbreak:172

(i1, . . . , iM )→ ∆, occurring at rate δ(i1, . . . , iM ).173

This unified model has been developed to account for pa-174

tients, different types of HCWs and/or surfaces involved in175

a nosocomial outbreak in a hospital ward. The generality176

of functions λj(i1, . . . , iM ), µj(i1, . . . , iM ) and δ(i1, . . . , iM )177

allows for incorporating into the model a wide range of fac-178

tors having an impact on the nosocomial spread dynam-179

ics. This means that the particular meaning of each com-180

partmental level 1 ≤ j ≤ M , as well as of each event181

(infections and removals represented by arrows in Figure182

1) depends on the particular hospital ward and pathogen183

under analysis; see Section 3 where compartmental lev-184

els 1 ≤ j ≤ M can represent colonized/non-colonized pa-185

tients, contaminated/non-contaminated HCWs, volunteers186

and surfaces, or can be related to the specific spatial config-187

uration of the hospital ward under analysis, or the particu-188

lar staff-patient contact network (e.g., representing patient189

cohorting).190

Outbreak detection and declaration rate δ(i1, . . . , iM ) al-191

lows one to analyse situations where a nosocomial pathogen192

is introduced for the first time in a given hospital ward (e.g.,193

by admission of a colonized patient), starting an outbreak,194

and the spread dynamics are analysed until the presence195

of this pathogen is detected by HCWs. By conveniently196

specifying the function rate δ(i1, . . . , iM ), different hospital197

surveillance policies (e.g., detection by the first individual198

showing symptoms, by random screening of patients within199

the ward, or by systematic screening upon patient admis-200

sion) can be considered. However, as illustrated in Section201

3, scenarios where the interest is not in the spread dynam-202

ics until detection, but in the long-term infection dynamics203

of the pathogen (e.g., endemic situations) and in assessing204

the infectiousness of each agent within this ward, can be205

analysed by setting δ(i1, . . . , iM ) = 0. We note that set-206

ting δ(i1, . . . , iM ) = 0 means deleting the final state ∆ in207

Figure 1, so that the infection dynamics during the nosoco-208

mial outbreak would amount to the stochastic movement of209

individuals, throughout time, between the susceptible and210

infective compartments at the different compartmental lev-211

els in Figure 1; see case studies 2-5.212

In subsection 2.1, and for a given initial state (I1(0), . . . ,213

IM (0)) = (i1, . . . , iM ), we analyse the exact reproduction214

number for an infective individual in compartmental level 215

j: the number of infections (understood in a broad sense, 216

see Section 3) directly caused by this individual until he/she 217

is removed or until the outbreak is detected, R(j)
(i1,...,iM ); see 218

Refs. [17, 18, 19]. Since an infective individual at compart- 219

mental level j can infect individuals at compartmental levels 220

1 ≤ k ≤M , one can split R(j)
(i1,...,iM ) =

∑M
k=1R

(j)
(i1,...,iM )(k), 221

where R
(j)
(i1,...,iM )(k) is the number of infections directly 222

caused by an infective individual at compartmental level 223

j, among individuals at compartmental level k. In this 224

way, random variables R
(j)
(i1,...,iM )(k), for 1 ≤ j, k ≤ M , 225

allow one to assess the role played by the different poten- 226

tial routes of infection during a nosocomial outbreak in a 227

hospital ward, in our numerical results in Section 3. We 228

note that the global variable R(j)
(i1,...,iM ) measures the infec- 229

tiousness of an infective individual in compartmental level 230

j, until this individual stops spreading the infection (he/she 231

is removed) or until the outbreak is detected and declared 232

(so that control strategies such as antibiotic prescription, 233

isolation of infected individuals, patient cohorting, or en- 234

vironmental cleaning, can be implemented, impacting on 235

the infection spread dynamics). These summary statistics 236

can be studied from the solution of systems of linear equa- 237

tions, by implementing first-step arguments. In the Supple- 238

mentary Material, we explain the corresponding algorithmic 239

procedures designed for solving these systems in a matrix- 240

oriented fashion. 241

2.2 Reproduction number for an individ- 242

ual at compartmental level j, among 243

individuals at compartmental level k 244

For a given compartmental level j and a given initial state 245

(i1, . . . , iM ), we can define the random variable R(j)
(i1,...,iM ), 246

which amounts to the total number of infections directly 247

caused by a marked infective individual at compartmental 248

level j until he/she is removed, or until the outbreak is 249

declared. We note that since quantity R
(j)
(i1,...,iM ) refers to 250

an infective individual at compartmental level j, it is only 251

properly defined for initial states (i1, . . . , iM ) with ij > 0. 252

In case studies 1-5 in Section 3, we focus on initial states of 253

the form 254

(0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0),

representing that the infective individual under study is the 255

one at compartmental level j starting the outbreak. For 256

this initial state, the mean value E[R(j)
(0,...,0,1,0,...,0)] directly 257

relates to the basic reproduction number (measuring the av- 258

erage number of individuals this individual directly infects 259

until he/she is removed –or, in this case, until the outbreak 260

is detected–, for an initially fully susceptible population). 261

We note that R(j)
(i1,...,iM ) is in fact the sum of several con- 262

tributions, 263

R
(j)
(i1,...,iM ) =

M∑
k=1

R
(j)
(i1,...,iM )(k),
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where R
(j)
(i1,...,iM )(k) represents the number of infections264

caused, by this individual who is at compartmental level265

j, only among individuals at compartmental level k. The266

analysis of each variable R(j)
(i1,...,iM )(k) helps to measure not267

only how infectious an individual that belongs to compart-268

mental level j is, but also how much of a risk he/she is for269

individuals at a given compartmental level k. This allows270

us in Section 3 to explore the role played by the different271

potential transmission routes during a nosocomial outbreak.272

The probability distribution of each random variable273

R
(j)
(i1,...,iM )(k) is given in terms of probabilities274

ν
(j)
(i1,...,iM )(k;n) = P(R(j)

(i1,...,iM )(k) = n), n ≥ 0.

Since these probabilities refer to a particular infected in-275

dividual, it is necessary to specify the contribution that276

each infective individual has in the global infection rates277

λj(i1, . . . , iM ), as well as the rate at which this partic-278

ular individual is removed. Thus, we analyse quantities279

R
(j)
(i1,...,iM )(k) and R

(j)
(i1,...,iM ) for the following family of in-280

fection and removal rates:281

µj(i1, i2, . . . , iM ) = µjij ,

λj(i1, i2, . . . , iM ) =

(
λj +

M∑
k=1

λkjik

)
(Nj − ij),

for 1 ≤ j ≤M , and any outbreak detection and declaration282

rate δ(i1, . . . , iM ). This specification of rates is based on283

the following general assumptions:284

• Each infective individual at compartmental level j is285

removed independently at rate µj ;286

• Each susceptible individual at compartmental level j287

can be infected due to an external source of infection,288

with rate λj , or by an infective individual at compart-289

mental level k, with rate λkj .290

We note that these functions have been defined in this way291

so that they can be used in case studies 1-5 for the spread292

of nosocomial pathogens in hospital wards, where events293

related to rates µj , λj and λkj have specific meanings in294

each case study in Section 3, according to different scenarios295

and hypotheses considered in Refs. [18, 20, 21, 22, 23].296

We follow here a first-step argument conditioning on the
next event to occur in the process. In particular, for the
initial state i = (i1, . . . , iM ), we have

P(R(j)
i (k) = n) = P(R(j)

i (k) = n | i→ ∆)P(i→ ∆)

+
M∑
k=1

P(R(j)
i (k) = n | i→ (i1, . . . , ik − 1, . . . , iM ))

× P(i→ (i1, . . . , ik − 1, . . . , iM ))

+
M∑
k=1

P(R(j)
i (k) = n | i→ (i1, . . . , ik + 1, . . . , iM ))

× P(i→ (i1, . . . , ik + 1, . . . , iM )). (1)

Notation i → (i1, . . . , ik − 1, . . . , iM ) represents the event297

that, if the process is at state i at present time, the next298

event that occurs in the process is the transition to state 299

(i1, . . . , ik − 1, . . . , iM ) (i.e., a removal occurs at compart- 300

mental level k). The equation above, if we use notation 301

i = (i1, . . . , iM ),
i+(s) = (i1, . . . , is + 1, . . . , iM ),
i−(s) = (i1, . . . , is − 1, . . . , iM ),

leads to the system of equations

θiν
(j)
i (k;n) = (µj + δ(i))1n=0︸ ︷︷ ︸

Removal of the marked individual,

or outbreak declaration

+ µj(ij − 1)ν(j)
i−(j)(k;n)︸ ︷︷ ︸

Removal of an individual,

–not the marked one–

at compartmental level (CL) j

+ 1n>0λjk(Nk − ik)ν(j)
i+(k)(k;n− 1)︸ ︷︷ ︸

Infection of an individual at CL k,

caused by the marked individual

+
M∑

p=1, p 6=j

µpipν
(j)
i−(p)(k;n)︸ ︷︷ ︸

Removal of an individual

at CL p 6= j

+
M∑

p=1, p 6=k

(Np − ip)

(
λp +

M∑
l=1

λlpil

)
ν

(j)
i+(p)(k;n)︸ ︷︷ ︸

Infection of an individual at CL p 6= k

+ (Nk − ik)

λk + λjk(ij − 1) +
M∑

l=1, l 6=j

λlkil

 ν
(j)
i+(k)(k;n)

︸ ︷︷ ︸
Infection of an individual at CL k, not caused by the marked individual

(2)

for n ≥ 0 and (i1, . . . , iM ) ∈ C, with ij > 0. 1A above is a 302

function equal to 1 if A is satisfied, and 0 otherwise, and 303

θi = δ(i) +
M∑
k=1

(
µkik + (Nk − ik)

(
λk +

M∑
l=1

λlkil

))
.

We note that Eq. (2) is obtained by following arguments in 304

Eq. (1), and conditioning on the next event that can po- 305

tentially occur in the process. For example, let us assume 306

that process is at state i = (i1, . . . , iM ) at present time, 307

and we are computing probability ν(j)
i (k;n) = P(R(j)

i (k) = 308

n), which relates to the reproduction number R(j)
i (k) for 309

a marked infective individual at compartmental level j, 310

among individuals at compartmental level k. A poten- 311

tial event which can occur is the recovery of an individ- 312

ual –different to the marked one– at compartmental level 313

j, which by the theory of Markov processes occurs with 314

probability µj(ij−1)
θ(i1,...,iM )

, moving the process to the new state 315

i−(j) = (i1, . . . , ij − 1, . . . , iM ). This leads to the addend 316

µj(ij − 1)ν(j)
i−(j)(k;n) in Eq. (2), and similar arguments can 317

be applied for the rest of potential possible events that can 318

occur. Finally, we point out that the system of equations 319

given by Eq. (2) can be represented in matrix form, and 320

solved by starting with n = 0, and then sequentially solv- 321

ing the system of equations for any value n ≥ 1 by using 322

previously computed probabilities for n− 1, in an iterative 323

fashion; see the Supplementary Material. 324

It is clear that, since 325

R
(j)
(i1,...,iM ) =

M∑
k=1

R
(j)
(i1,...,iM )(k),
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we can also focus on computing probabilities326

ν
(j)
(i1,...,iM )(n) = P(R(j)

(i1,...,iM ) = n), n ≥ 0,

for any initial state (i1, . . . , iM ) ∈ C with ij > 0. Probabil-
ities ν(j)

(i1,...,iM )(n) satisfy

θiν
(j)
i (n) =

M∑
k=1, k 6=j

µkikν
(j)
i−(k)(n) + µj(ij − 1)ν(j)

i−(j)(n)

+ (µj + δ(i))1n=0 +
M∑
k=1

(Nk − ik)λjkν
(j)
i+(k)(n− 1)1n>0

+
M∑
k=1

(Nk − ik)

λk +
M∑

l=1, l 6=j

λlkil + λjk(ij − 1)

 ν
(j)
i+(k)(n),

(3)

for n ≥ 0 and for any (i1, . . . , iM ) ∈ C, with ij > 0. This327

system is expressed in matrix form, and solved in an itera-328

tive fashion, in the Supplementary Material.329

3 Case studies330

In this Section, we focus on five different representative ex-331

isting models in the literature for the spread of nosocomial332

infections. Our aim is to show how these models can be333

seen as particular cases of the unified stochastic modelling334

framework presented in Section 2, so that the methodology335

in subsection 2.1 can be directly applied, and the infectious-336

ness of each agent in the hospital ward can appropriately337

be quantified. In particular, case studies 1-5 can be rep-338

resented into our framework by specifying the number M339

of compartmental levels and their meaning, as well as the340

meaning of the infection and removal events occurring at341

each compartmental level, and the specifications of rates µj ,342

λj , λjk and δ(i1, . . . , iM ). These rates are general enough343

in Section 2 in order to account for all hypotheses usually344

considered when modelling nosocomial infections (such as345

those considered in Refs. [18, 20, 21, 22, 23] related to case346

studies 1-5), and also allow one to consider different hos-347

pital surveillance policies for outbreak detection and dec-348

laration [24, 25]. A summary of these rates for each case349

study studied in this Section can be found in Table S6 in350

the Supplementary Material.351

3.1 Modelling spread among patients and352

health-care workers353

We focus here on the model by Artalejo (2014) [20], for a354

nosocomial outbreak in a hospital ward with Np patients355

and NHCW HCWs. Patients can be colonized or non-356

colonized at any given time, and are discharged at rate µ,357

regardless of their colonization status. HCWs can have their358

hands contaminated or uncontaminated, and they wash359

their hands at rate µ′. Each colonized patient contami-360

nates (the hands of) each uncontaminated HCW at rate β′,361

while each contaminated HCW colonizes each non-colonized362

patient at rate β. Admission of new patients occurs imme-363

diately after discharge, and newly admitted patients can be364

colonized with probability σ. It is assumed in Ref. [20] that 365

each colonized patient is detected at rate γ, which can be 366

incorporated here by setting δ(i1, i2) = γi1 (i.e., outbreak 367

declaration occurs upon detection of the first colonized pa- 368

tient); see Figure 2. 369

We note that the outbreak detection and declaration rate 370

δ(i1, . . . , iM ) can be set to account for different hypotheses 371

regarding hospital surveillance and screening. By setting 372

δ(i1, i2) = γi1 as above, one can represent random screen- 373

ing being in place as the surveillance policy in the hospital 374

ward, where each patient is screened at an average time 375

γ−1; see Ref. [24] where this screening policy is identified 376

as one of the most efficient ones for the control of noso- 377

comial outbreaks. We also note that outbreak declaration 378

rate δ(i1, i2) = γi1 can also be used to represent the scenario 379

where outbreak is declared after the first colonized patient 380

showing some symptoms, each colonized patient showing 381

symptoms at rate γ (e.g., norovirus outbreaks are declared 382

upon detection of suspected cases, consisting of patients 383

showing symptoms such as diarrhoea and vomiting). On 384

the other hand, if a colonized patient is admitted into a 385

hospital ward, and detection occurs by screening upon ad- 386

mission where laboratory results take an average time δ−1
387

to arrive, one could represent this by setting δ(i1, i2) = δ 388

and with time t = 0 representing the admission of the col- 389

onized patient into the ward. 390

In Figure 2, we show how this model can be repre- 391

sented into our framework, by setting M = 2, N = 392

Np + NHCW , where compartmental level j = 1 amounts 393

to colonized/non-colonized patients and j = 2 amounts 394

to uncontaminated/contaminated HCWs. In order to in- 395

corporate the hypotheses above, rate functions λj(i1, i2), 396

µj(i1, i2) and δ(i1, i2) are defined as in Figure 2, and sum- 397

marised in Table S6 in the Supplementary Material. More- 398

over, summary statistics analysed in Section 2 have spe- 399

cific meanings in this particular case study, as described 400

in Table 1. We note here that an alternative existing ap- 401

proach in the literature, such as the model in Ref. [3], is to 402

consider only colonized/non-colonized patients explicitly in 403

the model, where the role played by contaminated HCWs 404

is only implicitly incorporated via a transmission rate β. 405

Model in Ref. [3] could be represented into our framework 406

by setting M = 1 (colonized/non-colonized patients) and 407

appropriately setting rates µ1(i1), λ1(i1) and δ(i1), which 408

is omitted here for the sake of brevity. 409

We use here parameter values considered in Ref. [20], for
the spread of MRSA in an hypothetical intensive care unit,
which are reported in Table S1 in the Supplementary Ma-
terial. When analysing the infectiousness of colonized pa-
tients and contaminated HCWs, we can focus on computing
the reproduction number of these individuals, as described
in Section 2; see Table 1. While the reproduction number
can be computed, for a contaminated HCW (R(2)

(0,1)), by di-
rect application of Eq. (3), a slight modification needs to
be considered when analysing the reproduction number of
a colonized patient; that is, when computing probabilities
ν

(1)
(i1,i2)

(n) = P(R(1)
(i1,i2)

= n). In particular, Eq. (3) for
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R
(1)
(1,0) = R

(1)
(1,0)(2) Reproduction number of a colonized patient starting the outbreak (among HCWs)

R
(2)
(0,1) = R

(2)
(0,1)(1) Reproduction number of a contaminated HCW starting the outbreak (among patients)

Table 1: Meaning of our summary statistics for model in Figure 2. Case study 1

model and rate functions in Figure 2 leads to

θ(i1,i2)ν
(1)
(i1,i2)

(n) = µ′i2ν
(1)
(i1,i2−1)(n) + 1n=0((1− σ)µ+ γi1)

+ (i1 − 1)
(

(1− σ)µν(1)
(i1−1,i2)

(n) + (N2 − i2)β′ν(1)
(i1,i2+1)(n)

)
+ (N1 − i1)(σµ+ βi2)ν(1)

(i1+1,i2)
(n)

+ 1n>0(N2 − i2)β′ν(1)
(i1,i2+1)(n− 1) (4)

with θ(i1,i2) = µ′i2 + (1 − σ)µ(i1 − 1) + (N1 − i1)(σµ +410

βi2) + (N2 − i2)β′i1 + (1 − σ)µ + γi1. However, we note411

that R(1)
(1,0) should amount to the number of infections (i.e.,412

in this case, HCW hands contaminations) directly caused413

by a given colonized patient starting the outbreak until this414

patient is discharged or the outbreak is detected, regardless415

of the newly admitted patient being or not colonized. This416

means that terms 1n=0(1− σ)µ in Eq. (4) and (1− σ)µ in417

θ(i1,i2) need to be replaced by 1n=0µ and µ, respectively, and418

the same applies when analysing the reproduction number419

of a colonized patient in case studies 2-4.420

In Figure 3, we plot the probability mass functions of the421

reproduction number of a colonized patient (R(1)
(1,0)) and of422

a contaminated HCW (R(2)
(0,1)) starting the outbreak. While423

the average outbreak declaration time is crucial for limiting424

the reproduction number of a colonized patient, this is not425

the case when looking at the reproduction number of a con-426

taminated HCW. This is related to the fact that the main427

limiting factor for the infectiousness of a HCW is his/her428

hand-washing rate, which is something that we explore in429

more depth in the following case studies.430

3.2 Considering different HCW types431

We focus here on the model by Wang et al. (2011) [22],432

which incorporates volunteers working at the hospital ward.433

Authors in Ref. [22] consider the spread of MRSA in the434

Respiratory Intensive Care Unit (RICU) at Beijing Tongren435

Hospital, which is formed by Np patients, NHCW HCWs436

and NV volunteers. As assumed in Ref. [22], patients are437

admitted at rate λ, who can already be colonized upon ad-438

mission with probability ϕ, and discharged at rate δC (if col-439

onized) or δU (if non-colonized). HCW-patient transmission440

rate (1−η)
NP

βPH consists of two contributions: the hygienic441

level η ∈ (0, 1) during each HCW-patient contact, which is442

encoded in a probability (1 − η) of transmission per con-443

tact, and a contact rate βPH , and similar comments apply444

to volunteer-patient transmission rate (1−ξ)
NP

βPV ; see details445

in [22, Page 3] and related equations in [22, Appendix]. In446

Figure 4, we depict how this model is represented into our447

framework, in the asymptotic situation where immediate448

arrival of patients is assumed after discharge (i.e., λ→∞),449

which is a reasonable approximation for hospital wards un-450

der high demand [3, 23]. Since no detection is considered in451

Ref. [22], where the interest is in the long-term dynamics of 452

the nosocomial spread and in analysing the infectiousness 453

of each individual in the ward, we set δ(i1, . . . , iM ) = 0. 454

For parameter values in Table S2 in the Supplementary 455

Material, we plot in Figures 5-6 the mean reproduction 456

numbers of the different agents in this ward, for varying 457

values of model parameters. We compute in Figure 5 the 458

mean reproduction number of a colonized patient start- 459

ing the outbreak, among HCWs (E[R(1)
(1,0,0)(2)]) and volun- 460

teers (E[R(1)
(1,0,0)(3)]), versus (δ−1

C , η) and (δ−1
C , ξ), respec- 461

tively. Our results suggest that transmission from patients 462

to HCWs played a significant role in this outbreak, where a 463

given colonized patient contaminates E[R(1)
(1,0,0)(2)] = 10.05 464

HCWs during his/her stay in the ward. On the other 465

hand, our model suggests little transmission from colo- 466

nized patients to volunteers, with E[R(1)
(1,0,0)(3)] = 0.65. 467

This remains true even though the low hygienic level dur- 468

ing patient-volunteer contacts (ξ = 0.23 for volunteers vs 469

η = 0.46 for HCWs), and seems to be related to the low 470

intensity of these contacts (βPV = 0.2 for volunteers vs 471

βPH = 0.72 for HCWs). Stochastic variability of the repro- 472

duction numbers E[R(1)
(1,0,0)(2)] = 10.05 and E[R(1)

(1,0,0)(3)] = 473

0.65 can also be assessed by our methodology in Section 2, 474

in terms of standard deviations SD[R(1)
(1,0,0)(2)] = 10.50 and 475

SD[R(1)
(1,0,0)(3)] = 0.94. These are readily obtained from the 476

probability distributions computed from Eq. (2). 477

When looking at possible control strategies, it seems clear 478

that the reproduction number of a colonized patient among 479

HCWs can be significantly reduced by improving the hy- 480

gienic level of each HCW-patient contact, while reducing 481

the length of stay of each patient does not significantly re- 482

duce the infectiousness (i.e., contamination ability) of this 483

patient, and similar comments apply to patient-volunteer 484

contacts. 485

In Figure 6, the mean reproduction number of a contam- 486

inated HCW or volunteer is computed for varying values 487

of the hygienic levels during each contact, as well as of 488

the hand-washing rates. The fact that HCWs wash their 489

hands an average of 24 times per day in this ward keeps the 490

reproduction number of these agents low, and only under 491

significantly low hand-washing compliance levels (γH < 5) 492

a substantial increase for this reproduction number is pre- 493

dicted. Thus, for a particular HCW with low hand-washing 494

compliance level, hygienic level during each HCW-patient 495

contact becomes the most important factor determining the 496

infection spread, and similar comments apply to volunteers. 497

3.3 Assessing environmental contamina- 498

tion 499

The important role played by environmental contamina- 500

tion in nosocomial spread has been discussed in recent 501
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works in the field [8, 9], since pathogens such as MRSA502

and Vancomycin-resistant Enterococci (VRE) are able to503

survive on dry surfaces for weeks [27]. We consider here504

the model by Wolkewitz et al. (2008) [23], which incorpo-505

rates contaminated/non-contaminated surfaces. Authors in506

Ref. [23] consider Np patients, Ns HCWs and Ne surfaces507

for analysing an VRE outbreak in the onco-haematological508

unit at the University Medical Center Freiburg in Germany.509

Colonized patients are discharged at rate γ′, while non-510

colonized patients are discharged at rate γ. Discharged511

patients are immediately replaced by newly admitted pa-512

tients, who can be colonized with probability φ. HCWs513

wash their hands at rate µ, while surfaces are decontami-514

nated at rate κ. Transmission between patients, HCWs and515

surfaces occur at rates (βsp, βse, βps, βpe, βes, βep), where s516

stands for staff (HCWs), p for patients and e for environ-517

ment (surfaces). In Figure 7, we show how this model can518

be represented into our framework, with the corresponding519

definition of the function rates. Since no outbreak detection520

is considered in Ref. [23], we set δ(i1, i2, i3) = 0.521

In Figures 8-10 we compute the mean reproduction num-522

ber of all the agents (i.e., patients, HCWs and surfaces)523

in this hospital ward, for parameter values in Table S3524

in the Supplementary Material which are the ones con-525

sidered in Ref. [23] for the VRE outbreak in the onco-526

haematological unit, and carry out a sensitivity analysis527

for several model parameters. In particular, we plot in528

Figure 8 the mean reproduction number of a colonized pa-529

tient among HCWs and among surfaces, versus the patient-530

to-HCW (respectively, patient-to-surface) transmission rate531

βps (βpe), and the average length of stay γ′−1 of any given532

colonized patient. For the VRE outbreak considered in533

Ref. [23], an average number of E[R(1)
(1,0,0)(2)] = 9.09534

HCWs and E[R(1)
(1,0,0)(3)] = 96.83 surfaces are contami-535

nated by a colonized patient during his/her stay in the536

ward, these results suggesting that environmental contam-537

ination might be playing a significant role in the infection538

spread, as suspected by authors in Ref. [23]. Stochastic539

variability of these summary statistics can be represented540

in terms of the standard deviations SD[R(1)
(1,0,0)(2)] = 9.40541

and SD[R(1)
(1,0,0)(3)] = 73.75, these large quantities suggest-542

ing that the corresponding infection processes are highly543

stochastic. We note that for a colonized patient staying in544

the ward for an average of 20 days, and an environmental545

cleaning rate of κ = 1 time/day, the same surface can be546

contaminated several times by this patient during his/her547

stay. According to results in Figure 8, both reducing the548

average length of stay of patients, and decreasing contact549

rates (i.e., avoiding when possible patient-surface contacts,550

or improving the hygienic level during each patient-HCW551

contact) can help to reduce these mean reproduction num-552

bers.553

Once a HCW is contaminated, his/her infectious poten-554

tial can be measured by means of his/her mean repro-555

duction number, which is analysed in Figure 9. It seems556

clear from results in Figure 9 that the hand-washing rate557

µ = 24 times/day allows to keep this mean reproduction558

number, for a contaminated HCW, low among patients, al-559

though it can be still significant (above 1) among surfaces.560

Results in Figure 9 also suggest that HCWs with signifi- 561

cantly low hand-hygiene compliance levels (µ < 10) could 562

lead to reproduction numbers above 1.75 (among patients) 563

and above 30 (among surfaces), so that our results support 564

the fact that a single HCW with relatively low hand-hygiene 565

compliance level could play a significant infectious role by 566

means of contaminating a large amount of surfaces, and col- 567

onizing several patients, until he/she washes his/her hands. 568

In Figure 10, we plot analogous values for a contaminated 569

surface. Although for parameters considered in Ref. [23] 570

the reproduction numbers of any given contaminated sur- 571

face (among HCWs and patients) are relatively low, given 572

the substantial number of surfaces that can be contami- 573

nated by a colonized patient (Figure 8) or a contaminated 574

HCW with a low hand-hygiene compliance level (Figure 9), 575

these numbers should still not be neglected. It seems clear 576

from Figure 10 that decontamination rate κ = 1 time/day 577

can not be considered as optimal during the course of a 578

nosocomial outbreak, since just by increasing this up to 579

κ = 2 times/day a significant reduction in the reproduc- 580

tion number of any contaminated surface could be achieved. 581

This seems to support existing control policies such as the 582

ones recommended within the national guidelines on the 583

management of outbreaks of norovirus infection in health- 584

care settings [26] issued by the National Disease Surveillance 585

Centre in Ireland, which involve cleaning affected areas of 586

the ward twice daily during norovirus outbreaks. Results 587

in Figure 10 also suggest that, if κ = 1 time/day had to be 588

maintained for any reason, then recommendations among 589

HCWs and patients on reducing as much as possible infec- 590

tious contacts with surfaces during an outbreak could still 591

have a significant impact in reducing the infectivity of any 592

given contaminated surface, specially among patients. 593

3.4 Incorporating space through room 594

configuration of the ward 595

The model by López-Garćıa (2016) [18] incorporates room 596

configuration into the nosocomial infection dynamics, where 597

the main hypothesis is that for some nosocomial pathogens, 598

the transmission rate between patients in the same room 599

would be higher than the transmission rate for patients in 600

different rooms (this might be the case, for example, when 601

considering airborne transmission [10], if patients in the 602

same room are treated by the same common HCW [21], 603

or when considering isolation rooms where specific control 604

protocols are followed [18]). Since the infection dynamics 605

in Ref. [18] are model for an intensive care unit with four 606

rooms, by a simple SIR epidemic model, where no discharge 607

and arrival of patients is considered, we analyse a more re- 608

alistic scenario here where patients are discharged at rate 609

ν, and immediately replaced by newly admitted patients, 610

who can be colonized with probability pC . A transmission 611

rate βSR is considered for patients in the same room, while 612

βDR is the transmission rate for patients in different rooms, 613

and HCWs are not explicitly included into the model. A 614

spontaneous colonization rate λ is also considered in Ref. 615

[18], and no outbreak detection and declaration is assumed 616

so that we set δ(i1, i2, i3, i4) = 0; see Figure 11 for the rep- 617

resentation into our framework. 618
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For parameter values considered in Ref. [18], reported619

in Table S4 in the Supplementary Material, we compute in620

Figure 12 the reproduction number of a colonized patient621

starting the outbreak at Room 1 (left) and 2 (right), versus622

transmission rates (βDR, βSR). We note that Rooms 3 and623

4 are equivalent to Room 2, and are thus not analysed. It624

is interesting to note that for parameter values considered625

in Ref. [18] the reproduction number of a patient at Room626

1 is E[R(1)
(1,0,0,0)] = 1.62, while it is E[R(2)

(0,1,0,0)] = 1.54 for a627

patient at Room 2. Stochastic variability of these summary628

statistics can be represented in terms of the standard de-629

viations SD[R(1)
(1,0,0,0)] = 1.73 and SD[R(2)

(0,1,0,0)] = 1.67. A630

threshold behavior can be observed in both plots in Figure631

12, where reducing the contact rate between patients in the632

same room does not seem to have a significant effect on the633

reproduction number of a patient starting the outbreak at634

Room 2. For this room, it is the transmission rate between635

different rooms βDR which has a significant impact. This636

seems to support the idea of implementing patient cohort-637

ing as an infection control strategy, where a given HCW638

treating patients in the same room would avoid, when pos-639

sible, to treat patients in a different room during the course640

of a nosocomial outbreak. On the other hand, a param-641

eter threshold can also be observed for a patient starting642

the outbreak at Room 1, but this threshold depends on a643

non-linear combination of the values (βSR, βDR). In par-644

ticular, both reducing the contact rate between patients in645

the same room and between patients in different rooms can646

move the value of the reproduction number near or below647

1.648

3.5 Modelling HCW-patient contact net-649

work with different HCW infection650

risk profiles651

Finally, we focus here on the model by Temime et al. (2009)652

[21], where the potential of some HCWs in a hospital ward653

to act as super-spreaders during a nosocomial outbreak is654

assessed. Temime et al. [21] consider an hypothetical hospi-655

tal ward with three types of HCWs: AP1 (a profile involv-656

ing frequent contacts with a limited number of patients,657

typically a nurse), AP2 (a profile involving fewer contacts658

with more patients, typically a physician), and a peripatetic659

HCW (involving a single daily contact with all patients, for660

instance a therapist or a radiologist). These different HCW661

profiles lead to different transmission risks, where AP1-662

patient contacts can be considered as high risk, AP2-patient663

contacts have moderate risk, and peripatetic-patient con-664

tacts have low risk; see [21, Figure 1]. This is encoded here665

by considering transmission rates βAP1 > βAP2 > βPeri.666

Authors in Ref. [21] consider an hypothetical hospital ward667

with 18 beds, that all HCWs wash their hands at rate µ,668

and that all patients are discharged at rate γ, being imme-669

diately replaced by new non-colonized admitted patients.670

By means of agent-based stochastic simulations, authors671

simulate the spread of a nosocomial pathogen (using data672

for MRSA and VRE) in this ward while incorporating de-673

tails such as the duration of each HCW-patient contact,674

the probability of pathogen transmission during a 20min675

HCW-patient contact, or the existence of day/night HCW 676

shifts. 677

In Figure 13 we represent a simplified version of this 678

model into our framework, for a smaller hospital ward with 679

8 patients, 4 AP1 HCWs, 2 AP2 HCWs and 1 peripatetic 680

HCW, but when considering the same contact network 681

structure than the one studied in [21, Figure 1]. Transmis- 682

sion rates βAP1, βAP2 and βPeri in Table S5 in the Supple- 683

mentary Material are obtained by taking into account the 684

duration of each HCW-patient contact type, as well as the 685

probability of pathogen transmission during each contact, 686

by using values in [21, Table 1] and following the arguments 687

in [21, Supplementary Material I]. Since no outbreak detec- 688

tion is considered in Ref. [21], we set δ(i1, . . . , i11) = 0 689

and 690

λj(i1, . . . , i11) = (βAP1i4+j + βAP2i9 + βPerii11)(Nj − ij),
1 ≤ j ≤ 2,

λj(i1, . . . , i11) = (βAP1i4+j + βAP2i10 + βPerii11)(Nj − ij),
3 ≤ j ≤ 4,

λj(i1, . . . , i11) = βAP1ij−4(Nj − ij), 5 ≤ j ≤ 8,
691

λ9(i1, . . . , i11) = βAP2(i1 + i2)(N9 − i9),
λ10(i1, . . . , i11) = βAP2(i3 + i4)(N10 − i10),
λ11(i1, . . . , i11) = βPeri(i1 + i2 + i3 + i4)(N11 − i11),
µj(i1, . . . , i11) = γij , 1 ≤ j ≤ 4,
µj(i1, . . . , i11) = µij , 5 ≤ j ≤ 11.

Given the complexity of this model, we report in Ta- 692

ble 2 the meanings of our summary statistics in Section 693

2. In Figure 14 we plot the mean reproduction number of 694

a representative colonized patient (e.g., P1,a) starting the 695

outbreak, among those HCWs that treat him/her (AP11, 696

AP21 and peripatetic). These values are mainly domi- 697

nated by βAP1 and γ−1; that is, by the contact rate for 698

high transmission risk contacts and the length of stay of 699

the patient in the ward. For parameters in Table S5 in 700

the Supplementary Material a colonized patient contami- 701

nates around E[
∑
j∈{5,9,11}R

(1)
(1,0,...,0)(j)] = 5.3 HCWs dur- 702

ing his/her stay, with SD[
∑
j∈{5,9,11}R

(1)
(1,0,...,0)(j)] = 5.78. 703

By analysing values of E[R(1)
(1,0,...,0)(5)], E[R(1)

(1,0,...,0)(9)] and 704

E[R(1)
(1,0,...,0)(11)] separately, one can decipher that this cor- 705

responds to E[R(1)
(1,0,...,0)(5)] = 3.42 contamination events 706

to the AP11, E[R(1)
(1,0,...,0)(9)] = 1.19 to the AP21 and 707

E[R(1)
(1,0,...,0)(11)] = 0.69 to the peripatetic HCW. However, 708

we note that since AP11 only treats two patients, while 709

the peripatetic treats eight patients, the peripatetic HCW 710

might have his/her hands contaminated for longer periods 711

during a nosocomial outbreak. 712

In Figure 15, we plot the mean reproduction num- 713

ber of the AP11 (E[R(5)
(0,0,0,0,1,0,...,0)(1)]), the AP21 714

(E[R(9)
(0,...,0,1,0,0)(1) + R

(9)
(0,...,0,1,0,0)(2)]) and the peripatetic 715

(E[
∑4
j=1R

(11)
(0,...,0,1)(j)]) HCW starting the outbreak. Larger 716

values are found for the peripatetic HCW, even though its 717

low transmission risk per contact (βPeri < βAP2 < βAP1), 718
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R
(1)
(1,0,...,0) = R

(1)
(1,0,...,0)(5) +R

(1)
(1,0,...,0)(9) +R

(1)
(1,0,...,0)(11) Reproduction number of patient P1,a

R
(5)
(0,0,0,0,1,0,...,0) = R

(5)
(0,0,0,0,1,0,...,0)(1) Reproduction number of the AP11 HCW

R
(9)
(0,...,0,1,0,0) = R

(9)
(0,...,0,1,0,0)(1) +R

(9)
(0,...,0,1,0,0)(2) Reproduction number of the AP21 HCW

R
(11)
(0,...,0,1) =

∑4
j=1R

(11)
(0,...,0,1)(j) Reproduction number of the peripatetic HCW

Table 2: Meaning of our summary statistics for model in Figure 13. Case study 5

which is directly related to the large number of patients this719

peripatetic HCW treats. Larger mean reproduction num-720

bers found for AP11 than for AP21 suggest however that721

there exists a trade-off between the transmission risk profile722

of each contact (encoded by rates βAP2 and βAP1) and the723

number of patients that each HCW treats (i.e., the partic-724

ular contact network within the hospital ward). The poten-725

tial for the peripatetic HCW to act as a super-spreader can726

be noticed from a combination of results in Figures 14-15.727

In particular, we note that the infectious potential of the728

peripatetic HCW is enhanced by the fact that this HCW729

might have his/her hands contaminated for long periods,730

since each of the eight patients treated by this HCW, who731

might be colonized, contaminates peripatetic HCW hands732

an average of 0.69 times during their stay. Moreover, it733

is clear from our results that low hygiene levels during734

peripatetic-patient contacts (i.e., increasing values of βPeri)735

might significantly increase the number of patients that this736

HCW colonizes until washing his/her hands, and results in737

Figure 15 suggest that the same applies for his/her hand-738

washing compliance level, which could enhance his/her role739

as a super-spreader during a nosocomial outbreak.740

4 Discussion741

In this work we present a unified stochastic modelling742

framework for the analysis of the spread of nosocomial in-743

fections. This unified model allows one to move from more744

compartment-based models for highly homogeneous scenar-745

ios (M ≈ 1), to agent-based type models when dealing with746

highly heterogeneous settings (M ≈ N). We note that when747

considering the asymptotic case M = N , with Nj = 1 for748

all 1 ≤ j ≤ M , the resulting space of states C contains749 ∏M
j=1(Nj + 1) = 2N states, since in this case one is in fact750

analysing the SIS epidemic model on a network; see Refs.751

[17, 18]. Our unified framework allows for considering dif-752

ferent hypotheses related to the detection and declaration753

of the nosocomial outbreak, or to analyse the long-term in-754

fection spread when this detection is not relevant. The ver-755

satility of this model allows one to consider a wide range of756

agents involved in the nosocomial outbreak, to account for757

hand-washing compliance levels, environmental cleaning,758

patients arrival/discharge, spatial components such as the759

hospital ward room configuration, different types of HCWs760

corresponding to different pathogen transmission risks, as761

well as specific patient-staff contact network topologies.762

Our methodology within this unified framework allows for763

the exact analysis of the probability distribution of the ex-764

act reproduction number of each agent in the ward. More-765

over, this summary statistic can be split into several ones766

accounting for the infections caused by a given individual767

among individuals of a particular type. This translates into 768

analysing the infectiousness of patients, HCWs, volunteers 769

or surfaces among individuals of each of these groups, so 770

that the role played by each potential contact transmis- 771

sion route can be assessed for nosocomial outbreaks corre- 772

sponding to different health-care facilities and pathogens. 773

To the best of our knowledge, this is the first time that 774

this analytical approach, which has been usually neglected 775

when analysing infection spread among individuals in pop- 776

ulations of moderate-to-large sizes –due to computational 777

constraints–, is applied in the area of nosocomial infec- 778

tions where populations are usually small and heteroge- 779

neous, making its implementation feasible. We note that, 780

although the focus here has been on studying the reproduc- 781

tion number of each individual, alternative summary statis- 782

tics of interest allowing for first-step analysis (such as the 783

length or the final size of the outbreak, see Refs. [17, 18]) 784

could be analysed in the same way by means of this unified 785

framework and our methodology in Section 2. 786

Our unified framework, together with the analytical ap- 787

proach in Section 2, allows one to exactly compute the cor- 788

responding reproduction numbers, and to use these to assess 789

the role played by the different routes of infection during a 790

nosocomial outbreak. At the same time, the fact that all 791

scenarios in Section 3 -and potentially others- can be rep- 792

resented into our unified framework, means that computer 793

codes developed for solving Eqs. (2)-(3) for the general 794

model in Figure 1 can be readily applied in all these sce- 795

narios, just by specifying the corresponding µj(i1, . . . , iM ), 796

λj(i1, . . . , iM ) and δ(i1, . . . , iM ) rates. On the other hand, 797

we acknowledge that this unifed stochastic framework rep- 798

resented by the diagram in Figure 1 entails several simpli- 799

fying assumptions and limitations. The constant size as- 800

sumed for each compartmental level means that the total 801

number of agents of each type (patients, HCWs, surfaces, 802

volunteers,...) remains constant during the course of the 803

nosocomial outbreak. When focusing on patients, this is 804

only appropriate under high demand situations, where the 805

time during which any given bed is empty is short enough 806

and can be neglected in the corresponding model. Under 807

moderate demand, and if one needs to incorporate empty 808

beds explicitly in the model, the stochastic process in Sec- 809

tion 2 could be modified so that S1(t) (if j = 1 represents 810

the compartmental level corresponding to patients) is in- 811

corporated as an additional variable into the continuous- 812

time Markov chain X , so that S1(t) + I1(t) is not neces- 813

sarily constant throughout time. Moreover, more complex 814

situations such as nosocomial outbreaks occurring across 815

several hospital wards, with patient movement between 816

wards, or competitive scenarios where several bacterial 817

strains (e.g., antibiotic-sensitive vs antibiotic-susceptible 818

9



[28]) are spreading simultaneously within the same hospital819

ward, cannot be directly represented into our framework820

by just specifying rates µj(i1, . . . , iM ), λj(i1, . . . , iM ) and821

δ(i1, . . . , iM ). Instead, alternative diagramatic representa-822

tions to that in Figure 1 should be explored, potentially823

including movement of agents between different compart-824

mental levels.825

We also note that our methodology directly depends826

on the fact that the model proposed is a continuous-time827

Markov chain, so that events are Markovian and inter-event828

times are assumed to be exponentially distributed. While829

this is a typical assumption in the literature when analysing830

nosocomial outbreaks from a stochastic perspective, we ac-831

knowledge that the exponential distribution might not be832

appropriate for some particular events in these processes,833

such as patients’ lengths of stay. Although relaxing the834

Markovian assumption in these models is out of the scope835

of this paper, it is worth to point out here that some at-836

tempts have already been made in this area, some of them837

based on the use of phase-type distributions for incorporat-838

ing these non-Markovian events [29, 30].839

Finally, we acknowledge here that additional limitations840

of our approach are of computational nature, related to841

solving systems of around #C =
∏M
k=1(Nk + 1) linear equa-842

tions. However, populations usually involved in nosoco-843

mial outbreaks are small enough for this methodology to844

be efficiently implemented, where specific procedures for845

dealing with systems of equations involving highly sparse846

matrices can be specially useful. We also note that while847

N = 20+5+100 = 125 individuals in case study 3 (patients,848

HCWs and surfaces) lead to analysing a stochastic process849

with #C = 12726 states, only N = 2 + 2 + 2 + 2 + 1 + 1 +850

1 + 1 + 1 + 1 + 1 = 15 individuals in case study 5 (patients,851

AP1, AP2 and peripatetic HCWs) lead to #C = 10368852

states, which is directly related to the high level of individ-853

ual heterogeneity introduced into this model (encoded by854

the number of compartmental levelsM = 3 versusM = 11).855

These comments suggest that while agent-based simulation856

approaches should prevail under highly heterogeneous sce-857

narios, such as the complete model by Temime et al. (2009)858

[21], more homogeneous or low-to-moderate heterogeneous859

settings allow for this exact approach to be implemented.860
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993 Figure captions 994

Figure 1: Diagram representing the epidemic dynamics among
M different compartmental levels.

Figure 2: Model by Artalejo (2014) [20] and its corresponding
representation in our framework. Our representation leads to
the same stochastic process to that in Ref. [20]. Case study 1

Figure 3: Probability mass functions of the reproduction number
of a colonized patient (R

(1)

(1,0), left) and of a contaminated HCW

(R
(2)

(0,1), right) starting the outbreak. Average detection time of

each patient γ−1 ∈ {1, 2, 3, 4} days. Case study 1

Figure 4: Model by Wang et al. (2011) [22] and its corresponding
representation in our framework. Our representation leads to the
same stochastic process to that in Ref. [22], when λ→∞. Case
study 2

Figure 5: Mean reproduction number of a colonized patient
starting the outbreak, among HCWs (E[R

(1)

(1,0,0)(2)], left) and

volunteers (E[R
(1)

(1,0,0)(3)], right), versus δ−1
C , η and ξ. Blue dot

corresponds to parameter values (η, ξ, δ−1
C ) = (0.46, 0.23, 13.0)

in Table S2 in Supplementary Material, leading to values
E[R

(1)

(1,0,0)(2)] = 10.05 and E[R
(1)

(1,0,0)(3)] = 0.65. Case study
2

Figure 6: Mean reproduction number of a HCW (E[R
(2)

(0,1,0)],

left) and a volunteer (E[R
(3)

(0,0,1)], right), versus γH , η, γV , and

ξ. Blue dot corresponds to parameter values (γH , η, γV , ξ) =
(24.0, 0.46, 12.0, 0.23) in Table S2 in Supplementary Material,

leading to values E[R
(2)

(0,1,0)] = 0.02 and E[R
(3)

(0,0,1)] = 0.01. Case
study 2

Figure 7: Model by Wolkewitz et al. (2008) [23] and its corre-
sponding representation in our framework. Our representation
leads to the same stochastic process to that in Ref. [23]. Case
study 3

Figure 8: Mean reproduction number of a colonized pa-
tient among HCWs (E[R

(1)

(1,0,0)(2)], left) and among surfaces

(E[R
(1)

(1,0,0)(3)], right), versus γ′−1, βps and βpe. Blue dot cor-

responds to parameter values (βps, βpe, γ
′−1) = (2.0, 2.0, 20.0)

in Table S3 in Supplementary Material, leading to values
E[R

(1)

(1,0,0)(2)] = 9.09 and E[R
(1)

(1,0,0)(3)] = 96.83. Case study
3
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Figure 9: Mean reproduction number of a HCW among pa-
tients (E[R

(2)

(0,1,0)(1)], left) and among surfaces (E[R
(2)

(0,1,0)(3)],

right), versus µ, βse and βsp. Blue dot corresponds to param-
eter values (βsp, βse, µ) = (0.3, 2.0, 24.0) in Table S3 in Supple-

mentary Material, leading to values E[R
(2)

(0,1,0)(1)] = 0.05 and

E[R
(2)

(0,1,0)(3)] = 1.64. Case study 3

Figure 10: Mean reproduction number of a surface among pa-
tients (E[R

(3)

(0,0,1)(1)], left) and among HCWs (E[R
(3)

(0,0,1)(2)],

right), versus κ, βes and βep. Blue dot corresponds to param-
eter values (βes, βep, κ) = (2.0, 0.3, 1.0) in Table S3 in Supple-

mentary Material, leading to values E[R
(3)

(0,0,1)(1)] = 0.06 and

E[R
(3)

(0,0,1)(2)] = 0.10. Case study 3

Figure 11: Hospital ward room configuration from López-Garćıa
(2016) [18] and its representation in our framework. Our repre-
sentation leads to an arguably more realistic stochastic process
to that in Ref. [18], where patients arrival and discharge are
incorporated. Case study 4

Figure 12: Mean reproduction number of a colonized patient at
Room 1 (E[R

(1)

(1,0,0,0)], left) and at Room 2 (E[R
(2)

(0,1,0,0)], right)

starting the outbreak, versus (βSR, βDR). Blue dot corresponds
to parameter values (βSR, βDR) = (0.0366, 0.0238) in Table S4

in Supplementary Material, leading to values E[R
(1)

(1,0,0,0)] = 1.62

and E[R
(2)

(0,1,0,0)] = 1.54. Case study 4

Figure 13: Staff-patient contact network from Temime et al.
(2009) [21] and representation in our framework. Our represen-
tation leads to a simplified version of the stochastic process in
Ref. [21], for a reduced version of the hospital ward represented
in Ref. [21, Figure 1]. Case study 5

Figure 14: Mean reproduction number of patient P1a among
all HCWs treating him/her (E[

P
j∈{5,9,11}R

(1)

(1,0,...,0)(j)]), ver-

sus γ−1, βAP1, βAP2 and βPeri, for µ = 24 times/day. Blue
dot corresponds to parameter values (βAP1, βAP2, βPeri) =
(0.35, 0.12, 0.07) in Table S5 in Supplementary Material, lead-

ing to value E[
P

j∈{5,9,11}R
(1)

(1,0,...,0)(j)] = 5.3. Case study 5

Figure 15: Mean reproduction number of an AP1
(E[R

(5)

(0,0,0,0,1,0,...,0)(1)], left), an AP2 (E[R
(9)

(0,...,0,1,0,0)(1) +

R
(9)

(0,...,0,1,0,0)(2)], middle) and the peripatetic

(E[
P4

j=1R
(11)

(0,...,0,1)(j)], right) HCW starting the outbreak,
among the patients that they treat, versus µ, βAP1, βAP2 and
βPeri. Blue line corresponds to parameter values explored in
Table S5 in Supplementary Material. Case study 5
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