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Abstract. The use of ensemble methods to solve inverse problems is attractive

because it is a derivative-free methodology which is also well-adapted to parallelization.

In its basic iterative form the method produces an ensemble of solutions which lie in

the linear span of the initial ensemble. Choice of the parameterization of the unknown

field is thus a key component of the success of the method. We demonstrate how both

geometric ideas and hierarchical ideas can be used to design effective parameterizations

for a number of applied inverse problems arising in electrical impedance tomography,

groundwater flow and source inversion. In particular we show how geometric ideas,

including the level set method, can be used to reconstruct piecewise continuous

fields, and we show how hierarchical methods can be used to learn key parameters

in continuous fields, such as length-scales, resulting in improved reconstructions.

Geometric and hierarchical ideas are combined in the level set method to find piecewise

constant reconstructions with interfaces of unknown topology.

PACS numbers: 62M20, 49N45, G5L09.
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1. Introduction

1.1. Content

Consider finding u from y where

y = G(u) + η, (1)

G is a forward map taking the unknown parameter u into the data space, and η

represents noise. Ensemble Kalman inversion is an attractive technique that has shown

considerable success in the solution of such problems. Whilst it is derived from the

application of Kalman-like thinking, with means and covariances computed from an

empirical ensemble, it essentially acts as a black-box derivative-free optimizer which

requires only evaluation of the forward map G(·); in practice it can often return good

solutions to inverse problems with relatively few forward map evaluations. However

the choice of parameterization of the unknown is key to the success of the method. In

this paper we will demonstrate how carefully thought out parameterizations can have

substantial impact in the quality of the reconstruction.

Although our viewpoint in this paper is to consider Ensemble Kalman inversion

as an optimization method, and evaluate it from this perspective, there is considerable

insight to be gained from the perspective of Bayesian inversion; this is despite the

fact that the the algorithm does not, in general, recover or sample the true Bayesian

posterior distribution of the inverse problem. Algorithms that can, with controllable

error, approximately sample from the true posterior distribution are commonly referred

to as fully Bayesian, with examples including Markov Chain Monte Carlo and sequential

Monte Carlo. Ensemble Kalman inversion is not fully Bayesian but the link to Bayesian

inversion remains important as we now explain. There is considerable literature available

about methods to improve fully Bayesian approaches to the inverse problem through for

example, geometric and hierarchical parameterizations of the unknown. The purpose

of this paper is to demonstrate how these ideas from Bayesian inversion may be used

with some success to improve the capability of ensemble Kalman methods considered as

optimizers. In view of the relatively low computational cost of the ensemble methods,

in comparison with fully Bayesian inversion, this cross-fertilization of ideas has the

potential to be quite fruitful.

1.2. Literature Review

The Kalman filter (KF) [30] was developed to sequentially update the probability

distribution on states of partially observed linear Gaussian systems, and subsequently

generalized to nonlinear problems in the form of the extended Kalman filter. However for

high-dimensional systems the size of covariances makes use of these methods prohibitive.

In 1994 Evensen [19, 20] proposed a Monte-Carlo based nonlinear Kalman filter which

tackled this issue by using an ensemble of particles to represent the covariances and

mean, resulting in what is now known as the ensemble Kalman filter (EnKF). A major
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success story for the EnKF has been in weather prediction models [2, 23], but it has

also been deployed in numerous applications domains, including the reservoir engineering

community [1] and in oceanography [21]. Variants on the idea include the randomized

maximum likelihood (RML) method [40], and algorithms such as the ensemble square-

root Kalman filter [53].

In this paper we are primarily interested in use of ensemble Kalman methods to

study inverse problems for parameter estimation, an approach pioneered for oil industry

applications where the inverse problem is known as history matching [32, 40]; the paper

[18] contains an insightful analysis of the methodology in the large ensemble limit. In

this application domain such inversion methods are sometimes referred to as ensemble

Kalman smoothers, although the nomenclature is not uniform. We will simply refer to

ensemble Kalman inversion (EKI). The methodology is formulated quite generally in

[26], independently of oil industry applications; and in [25] it is shown that the method

performs well as an optimizer but does not capture true posterior uncertainty, in the

context of oil industry applications.

The ideas introduced in this paper concerning parameterization are independent of

the particular implementation of the EKI method used; in all our numerical experiments

we will use the form of iterative regularization proposed by Iglesias [24]. The general

philosophy behind the method is that, as the algorithm is iterated, the solution to the

inverse problem should approach the truth in the small noise limit, and hence that any

regularization introduced should diminish in influence in this limit. However, because

the convergence theory for ensemble Kalman inversion is in its infancy, the choice of

iterative regularization is made by analogy with classical iterative methods that have

been used for inverse problems [5, 6, 22], with the ensemble method using empirical

covariances in place of derivatives or adjoints of the forward solver. The resulting

iterative method is an ensemble version of the Levenberg-Marquardt algorithm with the

inclusion of regularization as in [22].

In the form of EKI that we use the linear span of the initial ensemble is preserved

by the iteration [26, 32]. The initial ensemble thus encodes prior information about the

solution of the problem. This means that choice of the parameterization of the method,

as well as the choice initial subspace, is key to its performance. Based on experience with

(Bayesian) statistical modelling we will introduce geometric and hierarchical priors that

address the issue of making good parameterizations, and we will draw from those priors

to create the initial ensemble. Hierarchical models have been extensively studied in the

fields of computational statistics and machine learning [36, 41, 50]. Their use in the

context of Monte Carlo Markov chain (MCMC) methods for Bayesian inverse problems

is overviewed in [42]; see [16, 46] for application oriented work. One important outcome

of research in this area is that learning parameters such as length-scale, amplitude

and regularity within Gaussian random field priors (such as Whittle-Matérn) can be

of significant value [4, 38, 45]. In a series of recent papers this hierarchical modelling

was extended to allow for length-scale which is itself spatially varying [34, 45]. The

development of hierarchical methods within EKI, rather than fully Bayesian MCMC,
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has been limited to date, with the primary contribution being the work [17] where the

methodology was based on building large ensembles from multiple Gaussians assigned

different weights. However this work requires that the correct hierarchical parameter

is in the ensemble if it is to be successful. We also note that there is some work in

hierarchical EnKF within the context of state estimation; see [51] and the references

therein.

In addition to hierarchical approaches we will also study geometric parameteriza-

tions. These can be of use when the geometric object has known form, such as faults,

channels and inclusions, or when it is of unknown topology the level set method may be

used [47]. We will build on recent Bayesian implementation of these ideas; see [27, 28]

and references therein.

1.3. Contribution of This Work

Our main contribution is to establish the importance of novel parameterizations which

have the potential to substantially improve the performance of EKI. Although our

perspective on EKI is one of optimization, the methods we introduce are all based

on taking established and emerging methods from Bayesian statistics and developing

them in the context of the ensemble methods. The connection to Bayesian statistics is

exploited to provide insights about how to make these methods efficient. The resulting

methods are illustrated by means of examples arising in both electrical impedance

tomography, groundwater flow and source inversion. The contributions are:

• We develop hierarchical approaches for EKI, based on solving for the unknown

function and unknown scalars which parameterize the prior.

• We generalize these hierarchical approaches to EKI to include unknown fields which

parameterize the prior, rather than scalars.

• We demonstrate the key role of choosing non-centered variables when implementing

hierarchical methods.

• We show the potential for geometric hierarchical priors, including the level set

parameterization, for piecewise continuous reconstructions.

1.4. Organization

The layout of the paper is as follows, in section 2 we discuss different approaches to

parameterizing inverse problems. We begin by conveying the main ideas in subsection

2.1 in abstract. In subsection 2.2 we describe these ideas more concretely. In section 3

we describe the hierarchical version of iterative EKI as used in this paper, and section

4 describes the model problems that we use to illustrate the power of the proposed

parameterizations. Numerical results are presented in section 5, whilst in section 6 we

make some concluding remarks.
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1.5. Notation

Throughout the paper we make use of common notation for Hilbert space norms and

inner products, ‖ · ‖, 〈·〉. We will assume that X and Y are two separable Hilbert spaces

which are linked through the forward operator G : X → Y . This nonlinear operator can

be thought of as mapping from the space of unknown parameters X to the observation

space Y . Our additive noise for the inverse problems will be denoted by η ∼ N(0,Γ)

where Γ : Y → Y is a self-adjoint positive operator. For any such operator we define

〈·, ·〉Γ = 〈Γ−1/2·,Γ−1/2·〉 and ‖ · ‖Γ = ‖Γ−1/2 · ‖, and for finite dimensions | · |Γ = |Γ−1/2 · |
with | · |the Euclidean norm. If the Gaussian measure associated to η is supported on Y
then we will require Γ to be trace-class; however we will also consider white noise whose

support is on a larger space than Y and for which the trace-class condition fails in the

infinite dimensional setting.

2. Inverse Problem

2.1. Main Idea

2.1.1. Non-Hierarchical Inverse Problem We are interested in the recovery of u ∈ X
from measurements of y ∈ Y given by equation (1) in which, recall, η is additive Gaussian

noise. In the Bayesian approach to inverse problems we treat each quantity within (1)

as a random variable. Via an application of Bayes’ Theorem ‡ [13] we can characterize

the conditional distribution of u|y via

P(u|y) ∝ P(y|u)× P(u), (2)

where P(u) is the prior distribution, P(u|y) is the posterior distribution and P(y|u)

is the likelihood. Although we view EKI as an optimizer in this paper, the Bayesian

formulation of (1) is important because we derive the initial ensemble from the prior

distribution P(u). From an optimization viewpoint, our goal is to make the following

least squares objective function small:

Φ(u; y) =
1

2
|y − G(u)|2Γ. (3)

This (upto an irrelevant additive constant) is the negative log likelihood since it is

assumed that η is a mean-zero Gaussian with covariance Γ.

2.1.2. Centered Hierarchical Inverse Problem In many applications it can be

advantageous to add additional unknowns θ to the inversion process. In particular

these may enter through the prior, as in hierarchical methods, [42], and we will refer

to such parameters as hyperparameters. The inverse problem is then the recovery of

‡ We write all instances of Bayes’ Theorem in finite dimensions for simplicity; extension to Bayes’

Theorem for functions is straightforward but not central to this paper and so we avoid the extra

notation that would be needed for this.
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(u, θ) from measurements of y given again by (1). The additional parameterization of

the prior results in Bayes’ Theorem in the form

P(u, θ|y) ∝ P(y|u)× P(u, θ). (4)

Prior samples, used to initialize the ensemble smoother, will then be of the pair (u, θ).

What we will term centered hierarchical methods (a terminology we discuss in Section

3) typically involve factorization of the prior in the form P(u, θ) = P(u|θ)P(θ). From an

optimization point of view our goal is again to make the objective function (3) small,

but now using hierarchical parameterization to construct the initial ensemble. §

2.1.3. Non-Centered Hierarchical Inverse Problem Another variant of the inverse

problem that is particularly relevant for hierarchical methods, in which θ enters only the

prior, is non-centered reparameterization (a further terminology discussed in Section 3).

We introduce the transformation T : (ξ, θ)→ u and note that (1) then becomes

y = G(T (ξ, θ)) + η, (5)

and Bayes’ Theorem then reads

P(ξ, θ|y) ∝ P(y|ξ, θ)× P(ξ, θ). (6)

Prior samples, again used to initialize the ensemble smoother, will then be of the pair

(ξ, θ). Typically the change of variables from u to ξ is introduced so that ξ and θ are

independent under the prior: P(ξ, θ) = P(ξ)P(θ). As a result the inverse problem (5) is

different to that appearing in (1), in terms of both the prior and the likelihood. This non-

centered approach is equivalent to the ancillary augmentation technique discussed in [41]

which discusses the decoupling of u and θ through the variable ξ. From an optimization

viewpoint, our goal is to make the following least squares objective function small:

Φ(ξ, θ; y) =
1

2
|y − G(T (ξ, θ))|2Γ. (7)

In this paper we consider the application of EKI for solution of the inverse problems

(1), non-hierarchically and centered-hierarchically, and (5) non-centered hierarchically.

Although this method has a statistical derivation, the work in [26, 35] demonstrates that

the method may be thought of as a derivative-free optimizer that approximates the least

squares problem (3) and (7) rather than sampling from the relevant Bayesian posterior

distribution. We will show that the use of iterative EKI, as proposed by Iglesias in

[24], can effectively solve a wide range of challenging inversion problems, if judiciously

parameterized.

§ We note that hyperparameters θ may also enter the likelihood as well as the prior if the state variable

is re-scaled in a hyperparameter-dependent fashion, as happens in the version of the Bayesian level set

method advocated in [16].
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2.2. Details of Parameterizations

In this section we describe in detail several classes of parameterizations that we

use in this paper. The first and second are geometric parameterizations, ideal for

piecewise continuous reconstructions with unknown interfaces. The third and fourth

are hierarchical methods which introduce an unknown length-scale, and regularity

parameter, into the inversion. For the two geometric problems we initially formulate in

terms of trying to find a function w : D 7→ R, D a subset of Rd, and then reparameterize

w. For the hierarchical problems we initially formulate in terms of trying to find a

function u : D 7→ R, and then append parameters θ and also rewrite in terms of

(ξ, θ) 7→ u.

2.2.1. Geometric Approach – Finite Dimensional Parameterization In many problems

of interest the unknown function w has discontinuities, determination of which forms

part of the solution of the inverse problem. To tackle such problems it may be useful to

write w in the form

w(x) =
n∑
i=1

ui(x)χDi(x). (8)

Here the union of the disjoint sets Di is the whole domain D. If we assume that the

configuration of the Di is determined by a finite set of scalars θ and let u denote the

union of the functions ui and the parameters θ then we may rewrite the inverse problem

in the form (1). The case where the number of subdomains n is unknown would be an

interesting and useful extension of this work; but we do not consider it here.

2.2.2. Geometric Approach – Infinite Dimensional Parameterization If the interface

boundary is not readily described by a finite number of parameters we may use the level

set idea. For example if the field w takes two known values w± with unknown interfaces

between them we may write

w(x) = w+Iu>0(x) + w−Iu<0(x), (9)

and formulate the inverse problem in the form (1) for u. This idea may be generalized to

functions which take an arbitrary number of constant values, through the introduction

of level sets other than u = 0, or through vector level sets functions u.

2.2.3. Scalar-valued Hierarchical Parameterizations To illustrate ideas we will

concentrate on Gaussian priors of Whittle-Matérn type. These are characterized by

a covariance function of the form

c(x, y) = σ2 21−α+d/2

Γ(α− d/2)

(
|x− y|
`

)α−d/2
Kα−d/2

(
|x− y|
`

)
, x, y ∈ Rd, (10)

where K· is a modified Bessel function of the second kind, σ2 > 0 is the variance and

Γ(·) is a Gamma function. We will always ensure that ` > 0 and α > d/2 so that
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draws from the Gaussian are well-defined and continuous. On the unbounded domain

Rd, samples from this process may be generated by solving the stochastic PDE

(I − `24)
α
2 u = `d/2

√
βξ, (11)

where ξ ∈ H−s(D), s > d
2
, is a Gaussian white noise, i.e. ξ ∼ N(0, I), and

β = σ2 2dπd/2Γ(α)

Γ(α− d
2
)
.

In this paper we will work with the scalar hierarchical parameters α and τ = `−1.

Putting ` = τ−1 into (11) gives the stochastic PDE

C−
1
2

α,τ u = ξ, (12)

where the covariance operator Cα,τ has the form Cα,τ = τ 2α−dβ(τ 2I−∆)−α. Throughout

this paper we choose β = τ d−2α so that

Cα,τ = (τ 2I −∆)−α, (13)

and we equip the operator ∆ with Dirichlet boundary conditions on D. These choices

simplify the exposition, but are not an integral part of the methodology; different choices

could be made.

We have thus formulated the inverse problem in the form of the centered hierarchical

inverse problem (1) for (u, θ) with θ = (α, τ). The parameter θ enters only through the

prior as in this particular case it does not appear in the likelihood. In this paper we will

place uniform priors on α and τ , which will be specified in subsection 5.1. We may also

work with the variables (ξ, θ) noting that (12) defines a map T : (ξ, θ) 7→ u and we have

formulated the inverse problem in the form (5), the non-centered hierachical form. In

Figures 1 and 2 we display random samples from (13) with imposed Dirichlet boundary

conditions and varying values of the inverse length scale τ and the regularity α. These

samples are constructed in the domain D = [0, 1]2.

Figure 1. Modified inverse length scale for τ = 10, 25, 50 and 100. Here α = 1.6.

2.2.4. Function-Valued Hierarchical Parameterization In order to represent non-

stationary features it is of interest to allow hierarchical parameters to themselves vary

in space. To this end we will also seek to generalize (11) and work with the form(
I − `(x; v)2∆

)α
2 u = `(x; v)

d
2 ξ. (14)
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Figure 2. Modified regularity for α = 1.1, 1.3, 1.5 and 1.9. Here τ = 15.

(We have set β = 1 for simplicity). In order to ensure that the length-scale is positive

we will write it in the form

`(x; v) = g(v(x)), (15)

for some positive monotonic increasing function g(·). We thus have a formulation as a

centered hierarchical inverse problem in the form (1) noting that hyperparameter θ = v

is here a function and enters only through the prior. We may also formulate inversion in

terms of the variables (ξ, v) giving the inverse problem in the form (5) with θ = v. We

will consider two forms of prior on v. The first is based on a Gaussian random field with

Whittle-Matérn covariance function (10) and we then choose g(v) = exp(v). The second,

which will apply only in one dimension, is to consider a one-dimensional Cauchy process,

as in [34]. In particular we will construct `(x; v) by employing a one-dimensional Cauchy

process v(x), which is an α-stable Lévy motion with α = 1 with Cauchy increments on

the interval δ given by the density function f , and positivity-inducing function g, where

f(x) =
δ

π(δ2 + x2)
, g(s) =

a

b+ c|s|
+ d, (16)

such that a, b, c, d > 0 are constants. ‖ Samples from these two priors on v, and hence

`, are shown in Figures 3 and 4.
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Figure 3. Gaussian random field. Left: Length-scale realization `(x). Right:

Realization of v(x).

‖ We note here that α has a different meaning from the parameter α used in the covariance function

of a Gaussian prior in, for example, (13). We abuse notation in this way because the parameter α is

widely used in the literature in both contexts.
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Figure 4. Cauchy random field. Left: Length-scale realization `(x). Right:

Realization of v(x).

3. Iterative Ensemble Kalman Inversion

In this section we describe iterative EKI as implemented in this paper. We outline it first

for inverse problems as parameterized in equations (1) and then discuss generalizations

to centered hierarchical inversion and the non-centered hierarchical inversion (5). We

briefly mention the continuous time limits of the methods as these provide insight into

how EKI works, and the effect of re-parameterizing; the study of continuous limits

from EKI was introduced in [48] and further details concerning their application to the

problems considered here may be found in [12].

3.1. Formulation for (1)

The form of iterative EKI that we use is that employed in [24]. When applied to the

inverse problem (1) it takes the following form, in which the subscript n denotes the

iteration step, and the superscript (j) the ensemble member:

u
(j)
n+1 = u(j)

n + Cuw
n (Cww

n + ΥnΓ)−1(y − G(u(j)
n )). (17)

The empirical covariances Cuw
n , Cww

n are given by

Cuw
n =

1

J − 1

J∑
j=1

(u(j)
n − ūn)⊗ (G(u(j)

n )− Ḡn) (18)

Cww
n =

1

J − 1

J∑
j=1

(G(u(j)
n )− Ḡn)⊗ (G(u(j)

n )− Ḡn). (19)

Here ūn denotes the average of u
(j)
n over all ensemble members and Ḡn denotes the

average of G(u
(j)
n ) over all ensemble members. The parameter Υn is chosen to ensure

that

‖y − Ḡn‖Γ ≤ ζη, (20)

a form of discrepancy principle which avoids over-fitting.

If we define

d(j,m)
n = 〈(Cww

n + ΥnΓ)−1(G(u(j)
n )− y),G(u(m)

n )− Ḡn〉,
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Algorithm 1 Hierarchical Iterative Kalman Method (Centered Version).

Let {u(j)
0 , θ

(j)
0 }Jj=1 ⊂ X be the initial ensemble with J elements.

Further let ρ ∈ (0, 1) with ζ > 1
ρ

and θ = (α, τ).

Generate {u(j)
0 , θ

(j)
0 } i.i.d. from the prior P(u, θ), with synthetic data

y
(j)
n+1 = y + η

(j)
n+1, η(j) ∼ N(0,Γ) i.i.d.

Then for n = 1, . . .

1. Prediction step: Evaluate the forward map w
(j)
n = G(u

(j)
n ),

and define w̄n = 1
J

∑J
j=1w

(j)
n .

2. Discrepancy principle: If ‖Γ−1/2(y − w̄n)‖Y ≤ ζη, stop!

Output ūn = 1
J

∑J
j=1 u

(j)
n and θ̄n = 1

J

∑J
j=1 θ

(j)
n .

3. Analysis step: Define sample covariances:

Cuw
n = 1

J−1

∑J
j=1(u(j) − ū)⊗ (G(u(j))− Ḡ),

Cθw
n = 1

J−1

∑J
j=1(θ(j) − θ̄)⊗ (G(u(j))− Ḡ),

Cww
n = 1

J−1

∑J
j=1(G(u(j))− Ḡ)⊗ (G(u(j))− Ḡ).

Update each ensemble member as follows

u
(j)
n+1 = u

(j)
n + Cuw

n (Cww
n + ΥnΓ)−1(y

(j)
n+1 − G(u

(j)
n )),

θ
(j)
n+1 = θ

(j)
n + Cθw

n (Cww
n + ΥnΓ)−1(y

(j)
n+1 − G(u

(j)
n )),

where Υn is chosen as Υi+1
n = 2iΥ0

n,

where Υ0
n is an initial guess. We then define Υn ≡ ΥN

n where N is the first integer

such that

ρ‖Γ−1/2(y(j) − w̄n)‖Y ≤ ΥN
n ‖Γ1/2(Cww

n + ΥN
n Γ)−1(y(j) − w̄n)‖Y .
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then we see that

u
(j)
n+1 = u(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n u(m)

n , (21)

and it is apparent that the algorithm will preserve the linear span of the initial ensemble

{u(j)
0 }Jj=1. We describe the details of how Υn is chosen in the next subsection where we

display the algorithm in full for a generalization of the setting of (1) to the hierarchical

setting.

To write down the continuous-time limit of the EKI we consider the setting in which

Υ−1
n ≡ (J − 1)h and view u

(j)
n as approximating a function u(j)(t) at time t = nh. If we

define

d(j,m) = 〈Γ−1(G(u(j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ, then we obtain the continuous-time limit

u̇(j) = −
J∑

m=1

d(j,m)u(m), (22)

where u̇(j) denotes the standard time derivative of u(j) viewed as solving an ordinary

differential equation; because the algorithm preserves the linear span of the initial

ensemble [48] the dynamics take place in a finite dimensional space, even if X is inifnite

dimensional. Note that d(j,m) depends on {u(k)}Jk=1 and that the dynamical system

couples the ensemble members.

3.2. Generalization for Centered Hierarchical Inversion

Algorithm 1 shows the generalization of (17) to the setting of centered hierarchical

inversion. The ensemble is now over both u and θ and cross covariances from the

observational space to both the u and θ spaces are required. Algorithm 1 also spells out

in detail how the parameter Υn is chosen. We now define

d(j,m)
n = 〈(Cww

n + ΥnΓ)−1(G(u(j)
n )− y),G(u(m)

n )− Ḡn〉,

and we see that

u
(j)
n+1 = u(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n u(m)

n , (23)

and

θ
(j)
n+1 = θ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n θ(m)

n . (24)

It is apparent that, once again, the algorithm will preserve the linear span of the initial

ensemble {u(j)
0 , θ

(j)
0 }Jj=1. Furthermore we note that for the centered hierarchical method,

since G does not depend on θ, the algorithm projected onto the u coordinate is identical

to that in the preceding subsection, with the only difference being that the initial span

of {u(j)
0 }Jj=1 is constructed over a diverse set of θ, reflecting the dependency structure
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in P(u, θ); for hierarchical priors as in subsubsections 2.2.3 and 2.2.4, the dependency

structure is typically of the form P(u, θ) = P(u|θ)P(θ). ¶
If we again define

d(j,m) = 〈Γ−1(G(u(j))− y),G(u(m))− Ḡ〉,

with obvious definition of Ḡ, then we obtain the continuous-time limit

u̇(j) = −
J∑

m=1

d(j,m)u(m), (25)

θ̇(j) = −
J∑

m=1

d(j,m)θ(m). (26)

Since d(j,m) depends only on {u(k)}Jk=1 and not on {θ(k)}Jk=1 for the centered hierarchical

method the continuous time limit for u is identical to that in the preceding subsection,

with the only difference being the creation of the initial ensemble using variable θ. This

severely limits the capability of the hierarchical method in the centered case, and is

motivation for the non-centered approach that we now describe.

3.3. Generalization for Non-Centered Hierarchical Parameterization

One of the reasons for using hierarchical parameterizations is that good choices of

parameters such as length scale and regularity of u are not known a priori; this suggests

that they might be learnt from the data. In this context the preservation of the linear

span of the initial ensemble is problematic if the algorithm is formulated in terms of

(u, θ). This is because, even though the length-scale (for example) may update as the

algorithm progresses, the output for u remains in the linear span of the initial set of

u, which likely does not contain a good estimate of the true length scale. Instead one

can work with the variables (ξ, θ), where ξ is the forcing function in a stochastic PDE,

as explained in subsubsections 2.2.3 and 2.2.4. Working with (u, θ) and with (ξ, θ) are

referred to as the centered parameterization and the non-centered parameterization,

respectively. The pros and cons of each method is discussed in the context of Bayesian

inversion in [41, 42], where the terminology is also introduced. The provenance of the

terminology has no direct relevance in our context, but we retain it to make the link

with the existing literature.

The algorithm for updating (ξ, θ) is identical to that shown in subsection 3.1 with

the identifications u 7→ (ξ, θ) and G 7→ G ◦ T. Note that even though, in the centered

case, G depends only on u, the mapping G ◦T will depend on both ξ and θ. Hence these

variables are coupled through the iteration. Indeed if we now define

d(j,m)
n = 〈(Cww

n + ΥnΓ)−1(G ◦ T (ξ(j)
n , θ(j)

n )− y),G ◦ T (ξ(m)
n , θ(m)

n )− G ◦ T n〉

¶ The centered hierarchical method, where G does not depend on θ, is presented for simplicity. The

details of this algorithm are readily transferred to include θ dependence in the forward mapping G as

required by the version of the Bayesian level set method advocated in [16].
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then we see that

ξ
(j)
n+1 = ξ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n ξ(m)

n , (27)

and

θ
(j)
n+1 = θ(j)

n −
1

J − 1

J∑
m=1

d(j,m)
n θ(m)

n . (28)

Although the algorithm will preserve the linear span of the initial ensemble {ξ(j)
0 , θ

(j)
0 }Jj=1

the variable of interest u
(j)
n = T (ξ

(j)
n , θ

(j)
n ) is not in the linear span of u

(j)
0 , in general.

This confers a significant advantage on the non-centered parameterization in comparison

with the centered approach.

As in the previous subsections we describe a continuous-time limit, now for the

non-centered hierarchical approach. We define

d(j,m) = 〈(Γ−1(G ◦ T (ξ(j), θ(j))− y),G ◦ T (ξ(m), θ(m))− G ◦ T 〉,

again with the obvious definition of G ◦ T . In the same setting adopted in the previous

two subsections we obtain the limiting equations

ξ̇(j) = −
J∑

m=1

d(j,m)ξ(m),

θ̇(j) = −
J∑

m=1

d(j,m)θ(m).

Now d(j,m) depends on both {ξ(k)}Jk=1 and on {θ(k)}Jk=1 so that the dynamical system not

only couples the ensemble members but in general can couple the dynamics for ξ and

for θ. This is another way to understand the significant advantage of the non-centered

parameterization in comparison with the centered approach.

4. Model Problems

In order to demonstrate the benefits of the parameterizations that we introduced here

we employ a number of models on which we will base our numerical experiments. This

section will be dedicated to describing the various PDEs that will be used. We will

describe the forward problem, together with a basic version of the inverse problem, for

each model, relevant in the non-hierarchical case. We note that the ideas such as the

level set method, and hierarchical formulations from subsubsections 2.1.2 and 2.1.3, can

be used to reformulate the inverse problems, and we will use these reformulations in

section 5.

4.1. Model Problem 1

Our first test model is from electrical impedance tomography (EIT). This imaging

method is used to learn about interior properties of a medium by injecting current, and
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measuring voltages, on the boundary [8, 15]. We will use the complete electrode model

(CEM) introduced in [49]. The forward model is as follows: given a domain D = B(0, 1)2

and a set of electrodes {el}me1=1 on the boundary ∂D with contact impedance {zl}mel=1, and

interior conductivity κ, the CEM aims to solve for the potential ν inside the domain D

and the voltages {Vl}me1=1 on the boundary. The governing equations are

∇ · (κ∇ν) = 0, ∈ D (29a)

ν + zlκ∇ν · n = Vl, ∈ el, l = 1, . . . ,me (29b)

∇ν · n = 0, ∈ ∂D\ ∪mel=1 el (29c)∫
κ∇ν · n ds = Il, ∈ el, l = 1, . . . ,me, (29d)

with n denoting the outward normal vector on the boundary. The linearity of the

problem implies that the relationship between injected current and measured voltages

can be described through an Ohm’s Law of the form

V = R(κ)× I. (30)

In our experiments D will be a two-dimensional disc of radius 1. The inverse problem

may now be stated. We write the unknown conductivity as κ = exp(u) and try to

infer u from a set of J noisy measurements of voltage/current pairs (Vj, Ij). If we define

Gj(u) = R(κ)× Ij then the inverse problem is to find u from y given an equation of the

form (1).

4.2. Model Problem 2

Our second model problem arises in hydrology: the single-phase Darcy flow equations.

The concrete instance of the forward problem is as follows: given the domain D = [0, 6]2

and real-valued permeability function κ defined on D, the forward model is to the

determine real-valued pressure (or hydraulic head) function p on D from

−∇ · (κ∇p) = f, x ∈ D, (31)

with mixed boundary conditions

p(x1, 0) = 100,
∂p

∂x1

(6, x2) = 0, −κ ∂p
∂x1

(0, x2) = 500,
∂p

∂x2

(x1, 6) = 0, (32)

and the source term f defined as

f(x1, x2) =


0, if 0 ≤ x2 ≤ 4,

137, if 4 ≤ x2 ≤ 5,

274, if 5 ≤ x2 ≤ 6.

The inverse problem concerned with (31) is as follows: write κ = exp(u) and determine

u from J linear functionals of the pressure Gj(u) = lj(p). This may thus be cast in
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the form (1). We take the linear functionals as mollified pointwise observations on a

regular grid. This specific set-up of the PDE model is that tested by Hanke [22] in his

consideration of the regularized Levenberg-Marquardt algorithm. More information on

this setting can be found by Carera et al. [11].

4.3. Model Problem 3

Our final model is a simple linear inverse problem which we can describe directly.

The aim is to reconstruct a function u from noisy observation of J linear functionals

Gj(u) = lj(p), j = 1, · · · , J , where p solves the equation

d2p

dx2
+ p = u, ∈ D, (33a)

p = 0, ∈ ∂D. (33b)

This may also be cast in the form (1). We use equally spaced pointwise evaluations as

our linear functionals. We will assume our domain is chosen such that D = [0, 10].

5. Numerical Examples

To assess the performance of each parameterization we present a range of numerical

experiments on each of the three model problems described in the previous section.

Our experiments will be presented in a consistent fashion, between the different models

and the different algorithms. Each model problem will be tested using each of the

non-hierarchical and hierarchical approaches, although we will not use the centered

approach for Model Problem 3. Within each of these approaches we will show the

progression of the inverse solver from the first to the last iteration. This will include five

images ordered by iteration number, with the first figure displaying the first iteration

and the last displaying the final iteration. These figures will be accompanied with

figures demonstrating the learning of the hyperparameters, as the iteration progresses,

for Model Problems 1 and 2, but not for Model Problem 3 (where the hyperparameter

is a field).

In order to illustrate the effect of the initial ensemble we will show output of the

non-centered approach for ten different initializations, for each model problem. We will

plot the final iteration reconstruction arising from four of those initializations. We ob-

serve the variation across the initializations through the relative errors in the unknown

field uEKI, with respect to the truth u†, and in the data misfit, as the iteration progresses:

‖uEKI − u†‖L2(D)

‖u†‖L2(D)

,

‖y − Ḡ(uEKI)‖Γ.
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5.1. Level Set Parameterization

Level set methods are a computationally effective way to represent piecewise constant

functions, and there has been considerable development and application to inverse

problems [9, 10, 24], starting from the paper [47], in which interfaces are part of

the unknown. We apply level set techniques, combined with hierarchical parameter

estimation, in the context of ensemble inversion; we are motivated by the recent Bayesian

level set method developed by Lu et al. in [28], and its hierarchical extensions introduced

in [14, 16].

When applying the level set technique to inverse problems of the form (1), we

modify our forward operator to

G = O ◦G ◦ F, (34)

where G : X 7→ Y maps the coefficient of the PDE to its solution, O : Y → Y is our

observational operator, and F : X → X is the level set map described by

(Fu)(x)→ κ(x) =
n∑
i=1

κi1Di(x). (35)

The sets {Di}ni=1 are n disjoint subdomains with union D and whose boundaries define

the interfaces. The boundaries are assumed to be defined through a continuous real-

valued function u on D via its level sets. In order to model the level set method

hierarchically we will base our reconstructions on the approaches taken in subsection

2.2.4. In general it can be helpful to re-scale the level values as the hierarchical parameter

τ is learned [16]; however if the unknown is binary and the level set taken as zero, as

used in our numerical experiments here, then this is not a consideration.

We apply level set inversion to Model Problem 1 (EIT) from subsection 4.1. We

reconstruct a binary field and the variable u is, rather than the logarithm of the

conductivity κ, the level set function defining (35): specifically the level set formulation

is achieved through representing the conductivity as

κ(x) = (Fu)(x) = κ−χu≤0 + κ+χu>0, (36)

where χA denotes a characteristic function of A with κ− and κ+ being known positive

constants that help define low and high levels of our diffusion coefficient.

We place 16 equidistant electrodes on the boundary of the unit disc D in order to

define our observations. All experiments are conducted using the MATLAB package

EIDORS [3]. The contact impedances {zl}mel=1 are chosen with value 0.05 and all

electrodes chosen subjected to an input current of 0.1. This provides a matrix of

stimulation patterns I = {I(j)}15
j=1 ∈ R16×15 given as

I = 0.1×


+1 0 . . . 0

−1 +1 . . . 0

0 −1
. . . 0

...
...

. . . +1

0 0 0 −1

 .
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For our iterative method we choose J = 200 ensemble members with regularization

parameter ρ = 0.8. The covariance of our noise η is chosen such that Γ = 10−4× I. Our

truth for the EIT problem will take the form given in Figure 5 where we have high levels

of conductivity within the two inclusions. This is constructed by thresholding a Whittle-

Matérn Gaussian random field defined by (12), (13); true values for the hierarchical

parameters used are shown in Table 1.

Remark 5.1 We do not display the underlying Gaussian random field u which is

thresholded to obtain the true conductivity in Figure 5 as this Gaussian random

field cannot be expected to be reconstructed accurately, in general. Furthermore it is

important to appreciate that in general a true conductivity will not be constructed by

such thresholding; the field u is simply an algorithmic construct. We do however show

u, and its evolution, in the algorithm, because this information highlights the roles of

the length scale and regularity parameters.

When performing inversion we sample initial ensembles using the prior distributions

shown in Table 2. We have set our prior distributions in such a way that the true value

for each hyperparameter lies within the range specified.

Hyperparameter Value

α† 3

τ † 10

Table 1. Model problem 1. True values for each hyperparameter.

Hyperparameter Prior

α U [1.3, 4]

τ U [5, 30]

Table 2. Model problem 1. Prior distribution for each hyperparameter.
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Figure 5. Model problem 1: true log-conductivity.

Figure 6. Model problem 1. Progression through iterations of non-hierarchical

method.
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Figure 7. Model problem 1. Progression through iterations of non-hierarchical

method with level set.

Figure 8. Model problem 1. Progression through iterations of centered hierarchical

method.
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Figure 9. Model problem 1. Progression through iterations of centered hierarchical

method with level set.

Figure 10. Model problem 1. Progression through iterations of non-centered

hierarchical method.
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Figure 11. Model problem 1. Progression through iterations of non-centered method

with level set.
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Figure 12. Model problem 1. Progression of average value for α and τ .
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Figure 13. Model problem 1. Left: relative error. Right: log-data misfit.

Figure 14. Model problem 1. EKI for the final iteration for the non-centered approach

with Whittle-Matérn from four different initializations.



Parameterizations for Ensemble Kalman Inversion 24

Figure 15. Model problem 1. EKI for the final iteration for the non-centered method

with level set from four different initializations.

Figures 6 - 11 show the progression of both the level-set function u, and the

permeability κ, through five iterations of the method. Non-hierarchical, centered and

non-centered methods are considered in turn. By comparing the reconstructions with the

true conductivity, these figures clearly demonstrate two facts: (a) that being hierarchical

is necessary to obtain a good reconstruction; (b) that implementing the hierarchical

method using a non-centered parameterization has significant benefits when compared

to the centered method. These points are further demonstrated in Figures 12 which

shows the learning of the hyperparameters, in comparison with the truth, for the three

methods.

Concentrating solely on the non-centered approach, we run ten different

initializations of the EKI. We display the resulting data-misfit and error, as a function

of iteration, for all ten in Figure 13. We display the last iteration of four of these ten in

Figures 14 - 15.

In summary, Figures 10 - 12 clearly show the superiority of the non-centered

hierarchical method. For all the initializations shown, the EKI produces conductivities

which concentrate near to the true conductivity and have length scale similar to those

appearing in the truth; see Figures 13 - 15. The centered hierarchical and non-

hierarchical methods fail to do this; see Figures 6 - 9. However it is important to note

the non-centered method does produce substantial variation in the predicted solution,

depending on which initialization is used as shown in Figures 13 - 15.
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5.2. Geometric Parameterization

In this subsection we employ Model Problem 2 from subsection 4.2. We consider

reconstruction of a piecewise continuous channel which is defined through two

heterogeneous Gaussian random fields, scalar geometric parameters specifying the

geometry and scalar hierarchical parameters characterizing the length-scale and

regularity of the two fields.

The truth u† is shown in Figure 16. It is drawn from a prior distribution which we

now describe; details may be found in [27]. The channel is described by five parameters:

d1 – amplitude; d2 – frequency; d3 – angle; d4 – initial point; and d5 – width. We generate

two Gaussian random fields {κi}2
i=1, both defined on the whole of the domain D but

entering the permeability κ only inside and outside (respectively) the channel. The

unknown u thus comprises the five scalars {di}5
i=1 and the two fields {κi}2

i=1. We do not

explicitly spell out the mapping from u to the coefficient κ appearing in the Darcy flow,

but leave this to the reader. The {κi}2
i=1 are specified as log-normal random fields and

the underlying Gaussians are of Whittle-Matérn type, defined by (12), (13); different

uniform distributions on α and τ are used for the two fields {κi}2
i=1 The parameters

{di}5
i=1 are also given uniform distributions. The entire specification of the prior is

given in Table 3. For the truth the true hierarchical parameters are provided in Table

4.

In our inversion we employ 64 mollified pointwise observations {li(p)}64
i=1 given by,

for some σ > 0,

lt(p) =

∫
D

1

2πσ2
e−

1
2σ2

(x−xt)2p(x)dx, (37)

where the xi are uniformly distributed points on D. We discretize the forward model

using a second order centered finite difference method with mesh spacing 10−2. For our

EKI method we use the same values for our parameters as in subsection 5.1.

Parameter Prior

d1 U [0, 1]

d2 U [2, 13]

d3 U [0.4, 1]

d4 U [0, 1]

d5 U [0.1, 0.3]

κ1 N(1, (I − τ 2
1 ∆)−α1)

κ2 N(4, (I − τ 2
2 ∆)−α2)

α1 U [1.3, 3]

τ1 U [8, 30]

α2 U [1.3, 3]

τ2 U [8, 30]

Table 3. Model problem 2. Prior associated with channelised flow.
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Parameter Value

α†1 2

α†2 2.8

τ †1 30

τ †2 10

Table 4. Model problem 2. Parameter selection of the truth.
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Figure 16. Model problem 2. True log-permeability.

Figure 17. Model problem 2. Progression through iterations of non-hierarchical

method.
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Figure 18. Model problem 2. Progression through iterations of centered hierarchical

method.

Figure 19. Model problem 2. Progression through iterations of non-centered

hierarchical method.

Figures 17 - 19 are consistent with the previous subsection in that we notice that

hierarchical methods are needed and that non-centring is necessary to make hierarchical
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Figure 20. Model problem 2. Progression of average value for α1 and τ1.
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Figure 21. Model problem 2. Progression of average value for α2 and τ2.
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Figure 22. Model problem 2. Left: relative error. Right: log-data misfit.
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methods perform well. We qualify this by noting that the geometry is well-learned in

all cases, but that the reconstructions of the random fields u1 and u2 inside and outside

the geometry are sensitive to needing non-centered hierarchical representation. Even

then the reconstruction is only accurate in terms of amplitude and length scales and

not pointwise.

Figures 20 and 21 give further insight into this, showing how the smoothness and

length scale parameters are learned differently in the hierarchical, centered and non-

centered methods. Again the conclusions are consistent with the previous subsection.

Figures 22 and 23 concentrate on the application of the non-centered approach, using

ten different initializations. The data misfit and relative error in the field are shown for

all ten cases in Figure 22; four solution estimates are displayed in Figure 23. The results

are similar to those in the previous subsection. However there is more variability across

initializations. This might be ameliorated by use of a larger ensemble size.

Figure 23. Model problem 2. EKI for the final iteration for the non-centered approach

from four different initializations.
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5.3. Function-valued Hierarchical Parameterization

Our final set of experiments will be based on hierarchical inversion of non-stationary

random fields, using Model Problem 3. We consider reconstruction of truths that are

not drawn from the prior; the prior will be a hierarchical Gaussian model with spatially

varying inverse length scale as hyperparameter. Examples of such truths are ones which

contain both rough and smooth features. We discretize the forward model using a

piecewise-linear finite element method (FEM), with a mesh of h = 1/100. The truth we

aim to recover is given by

u†(x) =



exp

(
4− 25

x(5−x)

)
, x ∈ (0, 5)

1, x ∈ [7, 8]

−1, x ∈ (8, 9]

0, otherwise,

(38)

which incorporates both rough and smooth features. Our parameters for the iterative

methods are identical to those used in subsection 5.1. Because the results of subsection

5.1 and 5.2 clearly demonstrate the need for non-centring in hierarchical methods,

we do not include results for the centered hierarchical approach here; we compare

non-hierarchical methods with the use of non-centered hierarchical methods with both

Cauchy and Gaussian random fields as priors on the hyperparameter v.
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Figure 24. Model problem 3. Progression through iterations of non-hierarchical

method.
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Figure 25. Model problem 3. Progression through iterations with hierarchical

Gaussian random field.
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Figure 26. Model problem 3. Progression through iterations with hierarchical Cauchy

random field.
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Figure 27. Model problem 3. Left: relative error. Right: log-data misfit.
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Figure 28. Model problem 3. EKI for the final iteration for the Gaussian hierarchical

method from four different initializations.
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Figure 29. Model problem 3. EKI for the final iteration for the Cauchy hierarchical

method from four different initializations.

For our Cauchy density function (16), we set a = 4 and b = d = 0. Our length scale

for the non-hierarchical method will be based on a Gaussian random field (15), similarly

with the non-centered Gaussian approach. Our comparison of each approach is provided

in Figures 24 - 26. We notice that the non-hierarchical method struggles to reconstruct

the truth, and in particular the piecewise constant part of it with discontinuities. In

contrast both non-centered approaches perform well. The effectiveness of the non-

centered approaches are highlighted in Figures 27 - 29. The first shows the data-misfit

and relative error over ten realizations, and the second shows four reconstructions chosen

from these ten at random. Substantial robustness to the choice of realization is clear.

Note however that for a multi-dimensional problem inversion the variability with respect
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to initialization may be more significant, as in the previous two subsections.

6. Conclusion & Discussion

In this paper we have considered several forms of parameterizations for EKI. In

particular our main contribution has been to highlight the potential for the use

of hierarchical techniques from computational statistics, and the use of geometric

parameterizations, such as the level set method. Our perspective on EKI is that it

forms a derivative free optimizer and we do not evaluate it from the perspective of

uncertainty quantification. However the hierarchical and level set ideas are motivated by

Bayesian formulations of inverse problems. We have shown that our parameterizations

do indeed lead to better reconstructions of the truth on a variety of model problems

including groundwater flow, EIT and source inversion. There is very little analysis of

EKI, especially in the fixed, small, ensemble size setting where it is most powerful.

Existing work in this direction may be found in [7, 48]; it would be of interest to extend

these analyses to the parameterizations introduced here. Furthermore, from a practical

perspective, it would be interesting to extend the deployment of the methods introduced

here to the study of further applications.
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