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Abstract—Stability analysis of power converters in AC net-
works is complex due to the non-linear nature of the conversion
systems. Whereas interactions of converters in DC networks can
be studied by linearising about the operating point, the extension
of the same approach to AC systems poses serious challenges,
especially for single-phase or unbalanced three-phase systems. A
general method for stability analysis of power converters suitable
for single-phase or unbalanced AC networks is presented in this
paper, based on Linear Time Periodic (LTP) theory. A single-
phase grid-connected inverter with PLL is considered as case
study. It is demonstrated that the stability boundaries can be
precisely evaluated by the proposed method, despite the non-
linearity introduced by the PLL. Simulation and experimental
results from a 10kW laboratory prototype are provided to
confirm the effectiveness of the proposed analysis.

Index Terms—Linear Time Periodic Systems, Harmonic State
Space Model, Stability Analysis, Power Converters, PLL

I. INTRODUCTION

AC power systems based on power converters are complex
and highly non-linear because both converters and loads

often show a non-linear behaviour. Several practical cases of
instability issues in such systems are discussed in the literature.
For example, [1] reports an incident occurring on the Swiss
railway power network due to the high level of harmonics
generated by the interaction of new generation locomotive
inverters. A more comprehensive review of potential instabil-
ities affecting different railway systems is presented in [2].
In [3] it is stated that similar instability issues also affect
LCC HVDC converters. Finally, [4] and [5] discuss several
harmonic-related interactions, like the harmonics generated by
the connection of wind and solar sources to the AC grid,
causing resonances at low frequencies and leading to voltage
and current distortions.

Based on these examples, it follows that a theory for
stability analysis of such systems is required. Existing analysis
techniques can be broadly categorized into frequency and
time-domain methods. When a balanced and symmetric three-
phase AC system is considered, the analysis can be performed
in the dq reference frame [6], but this is no longer the
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case for unbalanced or single-phase systems. In such cases,
one of the most popular frequency-domain method is the
small-signal impedance-based stability criterion applied to
the analysis of grid-connected power converters in the abc
frame, [7]. The system is equivalently represented as a source
and a load subsystem. Each system is described by its own
small-signal impedances, which is calculated using Harmonic
Linearisation techniques as shown in detail in [8], [9], [10].
Finally, stability of the system is assessed by applying the
Nyquist criterion to the ratio of load to source small-signal
impedances. However, potential limitations might affect this
method, as discussed in [11], especially in the case where
instabilities occur at frequencies below the fundamental grid
frequency. An extension of this method is reported in [12],
where a two-dimensional admittance for single-phase voltage
source converters is calculated, able to capture the frequency
interactions between load and source subsystem up to twice
the line frequency, possibly overcoming the aforementioned
limitations. However, if higher harmonic couplings are to be
considered, the complex maths behind this method might be
a limitation.

Another frequency-domain method is the dynamic phasor
approach [13], where the 2-dimensional source and load
impedances are evaluated and the system stability is assessed
using the Generalised Nyquist Criterion [14]. This analysis
relies on the assumption that all the signals in the system have
a dominant first harmonic component, such that the DC and the
higher components are neglected. This might be a limitation
for the analysis of systems where the second or higher order
harmonics play an important role.

The stability analysis method exploited in this paper is based
on the theory presented in [15] and [16]. Such analysis can
be performed both in the time domain, where the stability is
assessed by evaluating the eigenvalues of the system, and in
the frequency domain, where the Harmonic Transfer Function
(HTF) operator is introduced and the LTP Nyquist Criterion
is applied. Both time and frequency-domain approaches rely
on the description of the system by its Harmonic State Space
(HSS) model, which provides a linear relationship between
the harmonic coefficients of input and output signals. Thus,
the frequency cross-couplings are naturally described by the
HSS model, which is a relevant feature compared to the
previously discussed methods. The purpose of such a model
is twofold. First it allows one to replace a non-linear circuit
with its HSS model. Such a model requires less computation
time in the simulation process and harmonic interaction and
couplings are properly taken into account. For example, a HSS
model of a controlled TCR is derived in [17], an HVDC
converter and six-pulse STATCOM in [18], a single-phase
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grid-connected converter in [19] and a general method for
modelling linear and switching subsystems in [20]. Second,
based on a HSS model, stability analysis can be performed. In
[21] and [22] stability analysis is performed on a single-phase
grid-connected converter in the continuous time-domain, and
in [23] the analysis is carried out in the discrete time-domain
based on linearised models of the system, but non-linearities
due to the PLL are not included in the analysis. In [24] the
non-linear dynamics introduced by the PLL is included in
the analysis using a small-signal model and an impedance-
based stability analysis is performed but precise stability
boundaries are not provided. In [25] a rigorous method based
on eigenvalue analysis and LTP theory is presented, however
the digital computation delay, ZOH and PWM dynamics are
not included and experimental results are not provided.

In this paper, the time-domain approach based on the HSS
model of a grid connected single-inverter with PLL and DC
bus represented by an equivalent DC source is investigated in
detail. To provide a comprehensive evaluation of the proposed
method, the analysis is performed both in the continuous and
in the discrete time-domain, leading in both cases to accurate
results. It is worth mentioning that the primary objective of the
analysis is to highlight the impact of non-linearities, i.e. the
PLL, on system stability. Therefore, high frequency modelling
is out of the scope of this work. Nevertheless, computation
delay and sampling and hold have been included in the
analysis for completeness. Starting from the non-linear average
state space model, linearisation is applied in order to derive a
linearised model, obtaining an LTP system. Then LTP theory
is applied and stability analysis is performed based on the
eigenvalue loci of the system. This paper demonstrates that, if
properly applied, the method allows an accurate identification
of the stability boundaries of the system, i.e. the stability
threshold where the system moves from stable to unstable
operation. To limit the complexity of the discussion, the
stability threshold is analysed as the amplitude of the current
injected in the AC grid, Iref , increases. This simple choice
has been made in order to highlight an instability effect
that a simpler low-frequency linearisation approach for the
PLL, used in conjunction with standard LTI stability analysis
techniques, would not be able to identify. In fact, stability of
a small-signal LTI model is independent of the amplitude of
the control references. Even though previous literature exists
on LTP theory applied to power converters, this work shows
how the potential of the method can be exploited, guiding the
reader through the theoretical procedure for stability analysis
and quantifying the accuracy of the method. The paper is
organized as follows: Section II provides a description of the
system; Section III presents the continuous-time LTP stability
analysis and Section IV the discrete-time one; in Section V
analytical, simulation and experimental results for a 10kW
laboratory prototype are presented for different values of the
grid inductor and of the damping resistor, showing in all
cases good agreement with the expected stability boundaries;
in Sections VI a comparison between continuous LTP and
discrete LTP is provided.

II. SINGLE-PHASE GRID-CONNECTED INVERTER WITH
PLL MODEL

The system under study is a current controlled grid-
connected inverter with PLL, as shown in Fig. 1. The single-
phase inverter is supplied by a DC source, Vdc, and its
output is connected through an L2C1L1 low-pass filter to
the grid, which in turn is represented by an ideal sinusoidal
voltage source, Vg(t) = Vg sin(ωgt), in series with an RgLg
impedance. Unity power factor operation is considered. A
Phase Locked Loop (PLL) is used to measure the phase of
the grid voltage and to generate the current reference signal,
Iref , for the inverter output current, IL2(t). A PI controller is
then used to control the inverter.

TABLE I: Continuous-time system parameters

Vg = 115
√

2 V Volt. grid ampl. fg = 50 Hz Volt. grid freq.
fpwm = 10 kHz Freq. carrier PWM Vdc = 250 V DC voltage

L1 = 0 H Filter inductor RL1 = 0 Ω Filter res.
L2 = 0.87 mH Filter inductor RL2 = 0.2 Ω Filter res.

Lg = 2.2-2.95 mH Grid inductor Rg = 0.4 Ω Grid res.
C1 = 24 µF Filter capacitor RC1 = 0.6-1.4 Ω Damping res.
kp1 = 0.0581 Current PI param. kp2 = 27.207 PLL PI param.
ki1 = 23.5 ki2 = 493.48

Iref = 8-14 A Ampl. current ref. Tx = 50 µs Sampl. time
fx = 2fpwm Sampl. freq. γ2 = -40000 Coeff. γ2 (3)
γ1 = 1.6e+09 Coeff. γ1 (3) γ0 = 0 Coeff. γ0 (3)
σ2 = 80000 Coeff. σ2 (3) σ1 = 1.6e+09 Coeff. σ1 (3)

It will be shown that the parameter Iref , which is related to
the amount of power that the inverter injects into the grid, has
a threshold value, above which the system becomes unstable.
That is, the instability is due to the fact that the PLL is no
longer able to generate the correct phase reference for the
controller. It is worth noticing that a damping resistor Rc is
used in the low-pass filter in order to simplify the design of
the current control and focus on the analysis and quantification
of the instability caused by the PLL.

For single-phase applications, the PLL needs to estimate
the in-quadrature component of the grid voltage, Vo(t), and
among the several available options a linear filter that in-
troduces a Tg/4 delay at ωg is used in this paper: D(s) =
ω2
g/(s

2 + sωg + ω2
g). In Fig.1 the controllers are assumed

to be implemented in the continuous-time domain, but the
actual experimental converter has a digital controller. In the
continuous-time analysis, in order to accurately reflect the
characteristics of the digital control while maintaining the
lower complexity of a continuous-time system for stability
analysis, the computation delay (Tx) with the zero-order hold
(ZOH) delay of the pulse width modulator (PWM), (0.5
Tx) are included in the analysis with their continuous-time
equivalents [26], [27]. This is based on the rationale that PLL
instability is expected at relatively low frequencies, where
the impact of controller discretization can be neglected, but
the computation delay can play a relevant role. The validity
of this assumption has been demonstrated by the accurate
match between theoretical analysis and experimental results, as
shown in the following sections. In the discrete-time analysis,
the computation delay is naturally embedded in the discrete-
time model. The LTP analysis is performed on the overall
system, hence including the non-linearities due to the PLL, and
the instability threshold is precisely evaluated. The theoretical
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Fig. 1. Single-phase grid-connected inverter with PLL - switching model

analysis is based on the parameters that will later be used for
the experimental prototype, summarised in Table I.

III. CONTINUOUS TIME-DOMAIN ANALYSIS

A. Continuous Non-Linear Time Periodic Average Model

The proposed analysis is based on the average model of the
system. Since the main focus of the analysis is the instability
caused by the incorrect behaviour of the PLL and it is known
that such instability arises at frequencies far below that of
the switching [24], the switching model is replaced by the
average one and the analysis is performed on the latter. The
unit computation delay, the ZOH and the PWM blocks are
represented in the continuous time domain by the following
transfer function:

H(s) = e−sTx
[
1− e−sTx

]
/(sTx) (1)

The complex exponential is replaced with a first-order Padé
approximation:

e−sTx = (n1s+ n0)/(d1s+ d0) (2)

Substituting (2) in (1) gives the transfer function:

H(s) = (γ2s
2 + γ1s+ γ0)/(s3 + σ2s

2 + σ1s) (3)

which relates the output of the current controller to the duty
cycle. The whole system is equivalently represented by the
state-space model (4), which is an 11th order Continuous Non-
Linear Time Periodic (NLTP) system, with all the state-space
variables Tg-periodic and the non-linearity due to the presence
of the PLL. The state-space variables x1(t)-x4(t) describe
the internal dynamics of the PLL; x5(t) is the state-space
variable associated to the current control PI; x6(t) represents
the grid current, Ig(t); x7(t) the inductor current, IL2(t);
x8(t) the voltage across the capacitor; x9(t)-x11(t) the internal
dynamics of the computation delay, ZOH and PWM. The only
input signal of the state-space model is the input voltage Vg(t).

Vo(t) =
[
(L1Rg − Lg(RC1 +RL1))x6(t) + LgRC1x7(t)

+ Lgx8(t) + L1Vg(t)
]
/(Lg + L1)

Vconv(t) = Vdcγ0x9(t) + Vdcγ1x10(t) + Vdcγ2x11(t)

ẋ1(t) = x2(t)

ẋ2(t) = −ω2
gx1(t)− ωgx2(t) + ω2

gVo(t)

ẋ3(t) = x4(t)− kp2 sin(x3(t))Vo(t) + kp2 cos(x3(t))x1(t)

ẋ4(t) = −ki2 sin(x3(t))Vo(t) + ki2 cos(x3(t))x1(t)

ẋ5(t) = Iref cos(x3(t))− x7(t)

ẋ6(t) =
[
− (RC1 +RL1 +Rg)x6(t) +RC1x7(t) + x8(t)

− Vg(t)
]
/(Lg + L1)

ẋ7(t) =
[
RC1x6(t)− (RC1 +RL2)x7(t)− x8(t)

+ Vconv(t)
]
/(L2)

ẋ8(t) =
[
− x6(t) + x7(t)

]
/(C1)

ẋ9(t) = x10(t) , ẋ10(t) = x11(t)

ẋ11(t) = −σ1x10(t)− σ2x11(t) + ki1x5(t)

+ kp1Iref cos(x3(t))− kp1x7(t) + Vo(t)/Vdc
(4)

B. Review of Continuous Linear Time Periodic Systems Theory
Average models of real AC systems are usually NLTP, as

shown in (4). Therefore, the first step is to linearise the system
about its steady-state operating trajectory, reducing it to an
LTP system for small perturbations, in contrast to DC systems
where linearisation is applied about a constant steady-state
operating point. Given a general Continuous NLTP system
which is T -periodic:

ẋ(t) = f(x(t)) + g(x(t))u(t) , y(t) = h(x(t)) + l(x(t))u(t)
(5)

and given a steady-state input ū(t), this system is solved
numerically (in Matlab for example) and the steady-state
solution, x̄(t), is obtained. Now linearisation is performed,
so a small-signal perturbation is added to each input, output
and state, i.e. u(t) = ū(t) + ũ(t), y(t) = ȳ(t) + ỹ(t) and
x(t) = x̄(t) + x̃(t). These are substituted into (5) and taking
into account only the perturbation terms gives the linearised
model, which results in a Continuous LTP system:

˙̃x(t) = A(t)x̃(t) +B(t)ũ(t) , ỹ(t) = C(t)x̃(t) +D(t)ũ(t)
(6)

with the matrices A(t), B(t), C(t) and D(t) being T -periodic.
The test signal for LTP systems is the Exponentially Modu-
lated Periodic (EMP) signal [15], [16]. When an EMP signal is
injected as test signal into an LTP system, it can be shown that
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both input and output spaces are the same and they include
the same set of harmonic components. Thus:

q(t) = ejΩt
+∞∑

n=−∞
qne

jnωT t for q = u, x, y (7)

ẋ(t) =

+∞∑
n=−∞

(jΩ + jnωT )xne
j(Ω+nωT )t (8)

By substituting (7)-(8) in (6), expanding the matrices A(t),
B(t), C(t) and D(t) in Fourier series and using the Cauchy
product theorem, it is possible to write:

(jΩ + jnωT )xn =

∞∑
m=−∞

An−mxm +

∞∑
m=−∞

Bn−mum

yn =

∞∑
m=−∞

Cn−mxm +

∞∑
m=−∞

Dn−mum (9)

This is a concise representation of the input-output relationship
between the Fourier coefficients of the input and output sig-
nals. However, the manipulation of Fourier series usually leads
to complicated calculation and for this reason the Toeplitz
transform is introduced to simplify the analysis.

A Toeplitz transformation is defined as follows:

T [A(t)] = A =



. . .
...

...
...

· · · A0 A−1 A−2 · · ·
· · · A1 A0 A−1 · · ·
· · · A2 A1 A0 · · ·

...
...

...
. . .

 (10)

which is a doubly infinite block Toeplitz matrix and the
matrices Ai are the Fourier matrix coefficients of the T -
periodic matrix A(t). A similar definition applies to the
matrices T [B(t)] = B, T [C(t)] = C, T [D(t)] = D and
to the vectors T [x(t)] = X , T [u(t)] = U , T [y(t)] = Y .
Consider now the system of equations (9), which apply for all
n. The Toeplitz transform is used in order to obtain a clearer
and more compact notation. Thus the Harmonic State Space
Model (HSSM) of the LTP system that follows from (6) is as
follows:

sX = (A−N )X + BU , Y = CX +DU (11)

with N = diag(. . . , N−n, . . . , N−1, N0, N1, . . . , Nn, . . . ) and
Nn a diagonal matrix of the same dimensions as An with
diagonal coefficients equal to jnωT . Through simple steps
similar to the analysis of LTI systems, the Harmonic Transfer
Function (HTF) of the system then follows from (11):

Y = Ĝ(s)U , Ĝ(s) = C [sI − (A−N )]
−1 B +D (12)

Stability analysis can now be performed evaluating the
eigenvalues of the matrix (A−N ). If all the eigenvalues have
Re[λi] ≤ 0, where those with Re[λi] = 0 have algebraic
multiplicity equal to 1, then the system is stable, otherwise
the system is unstable.

So far an infinite number of coefficients has been considered
in the Fourier series expansion. In the practical implementation
of the analysis, a truncation order N is introduced, which

Fig. 2. General eigenvalue loci of an LTP system: red - important
eigenvalues; black - translated copies

refers to the maximum harmonic number taken into account.
If N = 2, for example, this means that the DC-component
and the first and second harmonics are considered. The corre-
sponding Fourier expansion involves the Fourier coefficients
for n = −2,−1, 0, 1, 2:

A(t) =

N∑
n=−N

Ane
jnωT t =

2∑
n=−2

Ane
jnωT t (13)

and the following associated truncated Toeplitz form is con-
sidered:

T [A(t)] = A =


A0 A−1 A−2 Z Z
A1 A0 A−1 A−2 Z
A2 A1 A0 A−1 A−2

Z A2 A1 A0 A−1

Z Z A2 A1 A0

 (14)

with Z being a zero matrix of the same dimension as the An.
So when the truncation order is increased a larger number
of Fourier coefficients of the Fourier expansion is taken into
account and at the same time the dimension of the associated
Toeplitz form increases. Thus, given an LTP system of order
p, i.e. with p state-space variables, and a truncation order N ,
the number of eigenvalues associated with the matrix A−N
will be (2N + 1) × p. However, only p of these eigenvalues
are relevant for stability analysis; all the others are translated
copies of the original ones, with translation equal to jnωT ,
n = ±1, . . . ,±N . Fig. 2 shows an example of LTP pole loci
with q = 6 and N = 2. In red are depicted the important poles
and in black their translated copies. It can be observed that
for a large truncation order the eigenvalue loci result in long
vertical lines of eigenvalues.

C. Continuous Steady-State Solution

As anticipated in the previous section, in order to apply
linearisation the steady-state solutions of the system (4) must
first be evaluated. We will discuss some mathematical consid-
erations and then solve numerically the system of equations,
exploiting the Harmonic Balance approach. It is worth men-
tioning that the detailed derivation is provided for rigour and
completeness. An approximated steady-state solution might be
used in practice to reduce the analytical burden. Knowing that
the converter is operating in an AC system, the set of steady-
state solutions will be of the form:

x̄i(t) = |x̄i| cos(ωgt+ arg(x̄i)) = (x̄ie
jωgt + c.c.)/2
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for i = 1, 2, 5, 6, 7, 8, 9, 10, 11 ; x̄3(t) = ωgt+ x̄03 (15)

x̄4(t) = to be defined ; V̄x(t) =
∣∣V̄x∣∣ cos(ωgt+ arg(V̄x))

= (V̄xe
jωgt + c.c.)/2, x = o, conv, g (16)

where c.c. stands for the complex conjugate of the term
preceding it within the square brackets. Substituting these
expressions in the non-linear state-space model gives us:

x̄5 = (Irefe
jx̄03 − x̄7)/(jωg) (17)

x̄6 =
RC1x̄7 + x̄8 + jVg

RC1 +RL1 +Rg + jωg(Lg + L1)
(18)

x̄7 =
RC1x̄6 − x̄8 + V̄conv
RC1 +RL2 + jωgL2

(19)

x̄8 = (−x̄6 + x̄7)/(jωgC1) (20)
x̄9 = x̄10/(jωg) (21)
x̄10 = x̄11/(jωg) (22)

x̄11 =
[
− σ1x̄10 − σ2x̄11 + ki1x̄5 + kp1Irefe

jx̄03

− kp1x̄7 + V̄o/Vdc
]
/(jωg) (23)

V̄o =
[
(L1Rg − Lg(RC1 +RL1))x̄6 + (LgRC1)x̄7

+ Lgx̄8 + L1Vg/j
]
/(Lg + L1) (24)

V̄conv = Vdcγ0x̄9 + Vdcγ1x̄10 + Vdcγ2x̄11 (25)

These nine equations can now be solved numerically and the
steady state solutions x̄5, x̄6, x̄7, x̄8, x̄9, x̄10, x̄11, V̄o, V̄conv
obtained. Proceeding with the analysis gives:

x̄2 = jωgx̄1 , x̄1 = −jV̄o (26)

So the solutions x̄1, x̄2 are given by:

x̄1(t) =
∣∣V̄o∣∣ cos(ωgt+ V̄o − π/2) (27)

x̄2(t) = ωg
∣∣V̄o∣∣ cos(ωgt+ V̄o) (28)

The last two quantities to be defined are x̄3 and x̄4:

x̄3(t) = ωgt+ x̄03 (29)

Hence:

˙̄x3(t) = ωg = x̄4(t)

− kp2 sin(ωgt+ x̄03)
∣∣V̄o∣∣ cos(ωgt+ V̄o)

+ kp2 cos(ωgt+ x̄03)
∣∣V̄o∣∣ sin(ωgt+ V̄o) (30)

Applying trigonometric simplification gives us:

x̄4(t) = ωg − kp2 sin( V̄o − x̄03) (31)

So it follows that ˙̄x4(t) = 0. But from the state-space model,
again using trigonometric simplifications, we have:

˙̄x4(t) = ki2
[
− sin(x̄3(t))V̄o(t) + cos(x̄3(t))x̄1(t)

]
(32)

And so:
˙̄x4(t) = −ki2|V̄o| sin( V̄o − x̄03) (33)

which implies: V̄o− x̄03 = 0 or ±π. In our case, V̄o = x̄03,
which gives the last two solutions:

x̄3(t) = ωgt+ V̄o , x̄4(t) = ωg (34)

The steady-state periodic functions calculated in this subsec-
tions will now be used to derive the continuous LTP model of
the system.

D. Continuous Linearised Model

Following the steps illustrated in the previous section, the
Continuous LTP small-signal model (35) for perturbations
to the steady-state operating point of the Continuous NLTP
system (4) is derived, which is of the form ˙̃x(t) = A(t)x̃(t),
with A(t) being a Tg-periodic matrix. In this particular case
the only matrix coefficients of the Fourier series expansion
which differ from zero are A0, A1 and A−1; these are reported
in (36), (37) with A−1 = A∗1 (*=complex conjugate). This is
due to the fact that the steady-state solutions for all the state
variables are either DC or single-frequency Tg-periodic AC.
It is now possible to derive the Toeplitz form A and evaluate
the eigenvalues of A−N to determine whether the system is
stable or not. The full derivation is not reported for the sake
of brevity.

IV. DISCRETE TIME-DOMAIN ANALYSIS

A. Discrete Non-Linear Time Periodic Average Model

The stability analysis proposed in the previous Section is
based on a simplified continuous-time model of the system.
Another possibility is to perform the analysis based on a
discrete-time model of the system, thus providing a direct
representation of the digital implementation of the controllers
in the DSP of the experimental set-up. However, from a
stability point of view, both continuous and discrete-time
approaches lead to an accurate identification of the stability
boundaries, as it will be shown in Section V. First, the control
algorithm implemented in the DSP is reported, which involves
the discretization of the four continuous time blocks, i.e.
current controller, linear filter for quadrature signal generation,
PLL controller and integrator block. The ZOH transformation
is applied to the PI controller and to the integrator of the PLL:

PLL(z) = ZOH

[
1

s

(
kp2 +

ki2
s

)]
=

F1z + F0

z2 + E1z + E0
(40)

Since the operating bandwidth of such a controller does not
exceed the grid frequency ωg = 50Hz, it is not necessary to
use a more precise transformation such as that of Tustin and
the direct relationship between input and output is avoided,
which would have caused an algebraic loop. The remaining
control blocks are discretized with the Tustin transformation,
which gives:

PI1(z) = Tustin
[
kp1 +

ki1
s

]
= D1 +

D0

z + C0
(41)

D(z) = Tustin

[
ω2
g

s2 + ωgs+ ω2
g

]
= B2 +

B1z +B0

z2 +A1z +A0

(42)

Next, the output LCL filter and the equivalent grid are
first described by the continuous-time state-space model (43),
which is then discretized applying the ZOH transformation,
with the discrete state-space representation of the LCL filter
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˙̃x1(t) = x̃2(t) , ˙̃x2(t) = −ω2
g x̃1(t)− ωgx̃2(t) + ω2

g(L1Rg − Lg(RC1 +RL1))/(Lg + L1)x̃6(t)

+ ω2
gLgRC1/(Lg + L1)x̃7(t) + ω2

gLg/(Lg + L1)x̃8(t)

˙̃x3(t) = x̃4(t)− kp2 sin(x̄3(t))(L1Rg − Lg(RC1 +RL1))/(Lg + L1)x̃6(t)− kp2 sin(x̄3(t))LgRC1/(Lg + L1)x̃7(t)

− kp2 sin(x̄3(t))Lg/(Lg + L1)x̃8(t)− kp2 cos(x̄3(t))V̄o(t)x̃3(t) + kp2 cos(x̄3(t))x̃1(t)− kp2 sin(x̄3(t))x̄1(t)x̃3(t)

˙̃x4(t) = −ki2 sin(x̄3(t))(L1Rg − Lg(RC1 +RL1))/(Lg + L1)x̃6(t)− ki2 sin(x̄3(t))LgRC1/(Lg + L1)x̃7(t)

− ki2 sin(x̄3(t))Lg/(Lg + L1)x̃8(t)− ki2 cos(x̄3(t))V̄o(t)x̃3(t) + ki2 cos(x̄3(t))x̃1(t)− ki2 sin(x̄3(t))x̄1(t)x̃3(t)

˙̃x5(t) = −Iref sin(x̄3(t))x̃3(t)− x̃7(t)

˙̃x6(t) = −(RC1 +RL1 +Rg)/(Lg + L1)x̃6(t) +RC1/(Lg + L1)x̃7(t) + 1/(Lg + L1)x̃8(t)

˙̃x7(t) = RC1/L2x̃6(t)− (RC1 +RL2)/L2x̃7(t)− 1/L2x̃8(t) + Vdcγ0/L2x̃9(t) + Vdcγ1/L2x̃10(t) + Vdcγ2/L2x̃11(t)

˙̃x8(t) = −1/C1x̃6(t) + 1/C1x̃7(t) , ˙̃x9(t) = x̃10(t) , ˙̃x10(t) = x̃11(t)

˙̃x11(t) = −σ1x̃10(t)− σ2x̃11(t) + ki1x̃5(t)− kp1Iref sin(x̄3(t))x̃3(t)− kp1x̃7(t)

+ (L1Rg − Lg(RC1 +RL1))/(Vdc(Lg + L1))x̃6(t) + LgRC1/(Vdc(Lg + L1))x̃7(t) + Lg/(Vdc(Lg + L1))x̃8(t) (35)

A0 =



0 1 0 0 0 0 0 0 0 0 0

−ω2
g −ωg 0 0 0 ω2

g

[
L1Rg−Lg(RC1+RL1)

Lg+L1

]
ω2
gLgRC1

Lg+L1

ω2
gLg

Lg+L1
0 0 0

0 0 −kp2
∣∣V̄o∣∣ 1 0 0 0 0 0 0 0

0 0 −ki2
∣∣V̄o∣∣ 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −RC1+Rg+RL1

Lg+L1

RC1
Lg+L1

1
Lg+L1

0 0 0

0 0 0 0 0 RC1
L2

−RC1+RL2
L2

− 1
L2

Vdcγ0
L2

Vdcγ1
L2

Vdcγ2
L2

0 0 0 0 0 − 1
C1

1
C1

0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 ki1
L1Rg−Lg(RC1+RL1)

Vdc(Lg+L1)
−kp1 +

LgRC1

Vdc(Lg+L1)

Lg

Vdc(Lg+L1)
0 −σ1 −σ2


(36)

A1 = ej
Vo



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
kp2
2

0 0 0 0 −L1Rg−Lg(RC1+RL1)

Lg+L1

kp2
2j

−LgRC1

Lg+L1

kp2
2j

− Lg

Lg+L1

kp2
2j

0 0 0
ki2
2

0 0 0 0 −L1Rg−Lg(RC1+RL2)

Lg+L1

ki2
2j

−LgRC1

Lg+L1

ki2
2j

− Lg

Lg+L1

ki2
2j

0 0 0

0 0 − Iref
2j

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 − kp1Iref
2j

0 0 0 0 0 0 0 0



(37)

 İg(t)

İL2(t)

V̇C1(t)

 =

−(RC1 +Rg)/(Lg + L1) RC1/(Lg + L1) 1/(Lg + L1)
RC1/L2 −(RC1 +RL2)/L2 −1/L2

−1/C1 1/C1 0

 Ig(t)
IL2(t)
VC1(t)

+

−1/(Lg + L1) 0
0 1/L2

0 0

[ Vg(t)
Vconv(t)

]
(43)

an grid provided by the matrices ALCL and BLCL, whose
elements are the coefficients aLCLij and bLCLij . Rearranging
and making appropriate substitutions gives the Discrete Non-
Linear Time Periodic (DNLTP) average model of the system:

Vβ(k) = B0x1(k) +B1x2(k) +B2Vo(k)

θ(k) = F0x4(k) + F1x5(k)

Vo(k) = −Rcx6(k) +Rcx7(k) + x8(k)

x1(k + 1) = x2(k)

x2(k + 1) = −A0x1(k)−A1x2(k) + Vo(k)

x3(k + 1) = −C0x3(k) + Iref cos(θ(k))− x7(k)

x4(k + 1) = x5(k) , x5(k + 1) = −E0x4(k)

− E1x5(k)− sin(θ(k))Vo(k) + cos(θ(k))Vβ(k)

x6(k + 1) = aLCL11 x6(k) + aLCL12 x7(k) + aLCL13 x8(k)

+ bLCL11 Vg(k) + bLCL12 x9(k)

x7(k + 1) = aLCL21 x6(k) + aLCL22 x7(k) + aLCL23 x8(k)

+ bLCL21 Vg(k) + bLCL22 x9(k)

x8(k + 1) = aLCL31 x6(k) + aLCL32 x7(k) + aLCL33 x8(k)
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+ bLCL31 Vg(k) + bLCL32 x9(k)

x9(k + 1) = 1/VdcVo(k) +D0x3(k) +D1Iref cos(θ(k))

−D1x7(k) (44)

In this model, the discrete state-space variables have the
following meaning: x1, .., x5 are associated to the discretized
controllers, x6 represents the grid current Ig , x7 the inductor
current IL2, x8 the capacitor voltage VC1 and x9 represents
the control output, i.e. the duty cycle. The computational delay
is naturally represented by the discrete state-space model, as it
can be seen from equations x6(k+ 1), .., x8(k+ 1), where the
control input x9(k) has been calculated based on the signals
sampled at (k − 1)Tx.

B. Review of Discrete Linear Time Periodic Systems Theory

Consider a general Discrete Non-Linear Time Periodic
system:

x(k + 1) = f(x(k)) + g(x(k))u(k)

y(k) = h(x(k)) + l(x(k))u(k), (45)

with period equal to P , i.e. x(k) = x(k+P ), u(k) = u(k+P )
and y(k) = y(k + P ), and sampling time Tx. Choosing Tx
being a sub-multiple of the fundamental system period Tg ,
it follows that P = Tg/Tx. Linearising (45) around the P -
periodic steady-state solution and considering only the first
order terms gives the Discrete Linear Time Periodic (DLTP)
system:

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k), (46)

with matrices A(k), B(k), C(k) and D(k) being P -periodic.
As reported in [28], [29], the system described in (46) can
be equivalently represented by a time-invariant model of the
form:

q(k + 1) = Āq(k) + B̄u(k)

y(k) = C̄q(k) + D̄u(k), (47)

with q(k) being a sampled version of x(k), such that q(k) =
x(kP ), and the matrices Ā, B̄, C̄ and D̄ being constant. The
most relevant feature for our purposes is the fact that stability
can be equivalently assessed based on either (46) or (47). Since
Ā can be easily calculated by:

Ā = A(k + P − 1) ·A(k + P − 2) · · ·A(k + 1) ·A(k) (48)

stability analysis is performed based on the eigenvalue loci
of Ā. If all the eigenvalues of (48) lie inside the unit-circle,
the system is stable, otherwise it is unstable. This shows how
the discrete LTP analysis leads to a simpler procedure for
stability assessment, avoiding Toeplitz transforms and without
truncations.

C. Discrete Steady-State Solution

Now, with a similar approach to the one adopted in section
III-(c), the steady-state solutions of the DNLTP model (44)

are calculated, and only their general form is reported here
for brevity:

x̄i(k) = |x̄i| cos(ωgkTx + arg(x̄i)) = (x̄ie
jωgkTx + c.c.)/2

for i = 1, 2, 3, 6, 7, 8, 9 ; (49)
x̄j(k) = xj0 + xj1kTx for i = 4, 5 . (50)

D. Discrete Linearised Model

Linearisation is performed around the calculated steady-
state solutions and the discrete LTP small-signal model is
given by the following set of equations:

Ṽβ(k) = B0x̃1(k) +B1x̃2(k) +B2Ṽo(k)

θ̃(k) = F0x̃4(k) + F1x̃5(k)

Ṽo(k) = −Rcx̃6(k) +Rcx̃7(k) + x̃8(k)

x̃1(k + 1) = x̃2(k)

x̃2(k + 1) = −A0x̃1(k)−A1x̃2(k) + Ṽo(k)

x̃3(k + 1) = −C0x̃3(k)− IrefF0 sin(θ̄(k))x̃4(k)

− IrefF1 sin(θ̄(k))x̃5(k)− x̃7(k)

x̃4(k + 1) = x̃5(k)

x̃5(k + 1) = −E0x̃4(k)− E1x̃5(k)− F0 cos(θ̄(k))V̄o(k)x̃4(k)

− F1 cos(θ̄(k))V̄o(k)x̃5(k)− sin(θ̄(k))Ṽo(k)

− F0 sin(θ̄(k))V̄β(k)x̃4(k)

− F1 sin(θ̄(k))V̄β(k)x̃5(k) + cos(θ̄(k))Ṽβ(k)

x̃6(k + 1) = aLCL11 x̃6(k) + aLCL12 x̃7(k) + aLCL13 x̃8(k)

+ bLCL12 x̃9(k)

x̃7(k + 1) = aLCL21 x̃6(k) + aLCL22 x̃7(k) + aLCL23 x̃8(k)

+ bLCL22 x̃9(k)

x̃8(k + 1) = aLCL31 x̃6(k) + aLCL32 x̃7(k) + aLCL33 x̃8(k)

+ bLCL32 x̃9(k)

x̃9(k + 1) = 1/VdcṼo(k) +D0x̃3(k)

−D1IrefF0 sin(θ̄(k))x̃4(k)

−D1IrefF1 sin(θ̄(k))x̃5(k)−D1x̃7(k) (51)

This model is of the form x̃(x+ 1) = A(k)x̃(k), and stability
can be assessed by evaluating the discrete LTP eigenvalue loci
plot, based on (48).

V. ANALYTICAL, SIMULATION AND EXPERIMENTAL
RESULTS

In this Section, analytical results based on the continuous
and the discrete LTP eigenvalue analysis, as well as time-
domain simulations of the switching model and experimental
results based on a 10kW 2-level IGBT inverter are presented.
The validation of the proposed analytical methods will focus
on the identification of a stability threshold value, Ithref , which
is the maximum amplitude for the reference inverter current,
such that below this value the system in stable and above
which the system becomes unstable. The instability threshold
has been calculated for different values of the damping resistor
Rc, and as a function of the grid inductor Lg . The experimental
validation has been done in three selected cases as reported in
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Table II, that also anticipates the theoretical stability thresholds
Ithref that will be derived in the next section for the Continuous
and the Discrete LTP model. For all of them, a close match
between analytical derivation and experimental evidence has
been found.

TABLE II: Experimental test cases

Lg Rc Ithref - Cont. Ithref - Disc.
CASE A 2.95mH 1.4 Ω 9.6A 9.5A
CASE B 2.2mH 0.6 Ω 11.5A 11.6A
CASE C 2.2mH 1.2 Ω 13.1A 13A

A. Continuous LTP Analytical Results

The eigenvalue loci based on the linearised model (35), with
a truncation of the Toeplitz matrix at N = 40, is evaluated in
order to assess the stability of the system. Referring to Table II,
the continuous LTP eigenvalue loci plots are reported in Fig.3
for CASE A, where sub-figures (a) and (b) represent Iref =
9.4 A, which gives a stable system since all the important
eigenvalues lie in the left-hand side of the complex plane, and
sub-figures (c) and (d) represent Iref = 9.8 A, which gives an
unstable system, since some of the important eigenvalues lie in
the right-hand side of the complex plane. Thus it can be found
that Ithref = 9.6 A. Fig.4 reports the calculated Ithref for the set
of parameters Rc ∈ [0.4 : 1.6]Ω and Lg ∈ [2 : 3.2]mH . The
thresholds corresponding to the three cases that will be later
validated experimentally have been labelled in figure. The
accuracy of the stability analysis depends on the truncation
order, which has been chosen based on the results presented
in Fig.5, where the percentage error refers to the difference
between the stability thresholds calculated using N ∈ [2 : 30]
and the one using N = 100. It can be seen that for N > 20
the instability threshold Ithref is identified with negligible error,
hence N = 40 has been chosen. This is due to the fact that for
small N the vertical line of eigenvalues are shifted from their
correct location. Some spurious eigenvalues can be seen in
Fig.3. They have no physical meaning and they can be easily
identified in the eigenvalue plot because they move out of
the vertical lines corresponding to the translated copies of the
main eigenvalues shown in Fig.2. In fact, the continuous LTP
theory is based on Toeplitz forms that involve infinite harmonic
terms, but the application of the truncation compromises this
assumption and spurious eigenvalues arise.

From Fig.5 it can be clearly observed that the error is still
acceptable, i.e. of the order of a few %, also for a truncation
order N = 8, much lower than the one used in the proposed
analysis. N = 40 has been preferred in this paper only to
demonstrate the potentially high precision of the method.

B. Discrete LTP Analytical Results

The eigenvalue loci based on the linearised model (51)
is evaluated in order to assess the stability of the system.
Referring to Table II, the discrete LTP eigenvalue loci plots
are reported in Fig.6 for CASE A, where the first one is
with Iref = 9.4 A, which gives a stable system since all the
eigenvalues lie inside the unit circle, and the second one with
Iref = 9.8 A, which gives an unstable system, since some of

(a)

(b)

(c)

(d)

Fig. 3. CASE A - Continuous LTP Eigenvalues: (a) stable system
with Iref = 9.4 A, (b) zoom around the imaginary axis , (c) unstable
system with Iref = 9.8 A, (d) zoom around the imaginary axis.

Fig. 4. Continuous LTP: stability threshold Ithref as function of Lg
and Rc. Red lines indicate stability thresholds that will be validated
experimentally, according to Table II.

the eigenvalues lie outside of the unit circle. Thus it can be
found that Ithref = 9.6 A. Fig.7 reports the calculated Ithref for
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Fig. 5. Stability threshold Ithref identification error as a function of the
truncation order (Threshold calculated with N = 100 is considered
accurate.)

the set of parameters Rc ∈ [0.4 : 1.6]Ω and Lg ∈ [2 : 3.2]mH .
The thresholds corresponding to the three cases that will be
later validated experimentally have been labeled in the figure.

(a)

(b)

Fig. 6. CASE A - Discrete LTP Eigenvalues: (a) stable system with
Iref = 9.4 A, (b) unstable system with Iref = 9.8 A

C. Time-Domain Simulation Results

The simulations have been implemented in Matlab Simulink
and Plecs toolbox. For brevity, only CASE A from Table II
has been considered. The analysis has been performed on
the switching model of the system, with control algorithm
implemented in C. Moreover, the duty cycle d(k) takes values
in the range [−1, 1], while d1(k) and d2(k) take values in
the range [0, 1] (Fig.1), due to the modulation scheme imple-
mented with a single unipolar triangular carrier of frequency
fpwm compared compared with the two duty cycles to generate

Fig. 7. Discrete LTP: stability threshold Ithref as function of Lg
and Rc. Red lines indicate stability thresholds that will be validated
experimentally, according to Table II.

the gate commands for the two legs. A double update mode
is used for the PWM, and therefore the control algorithm is
executed at twice the switching frequency, i.e. fx = 2fpwm.
Since the IGBTs used in the experimental converter require a
non negligible dead time (Tdead = 3.2 µs), a standard feed-
forward compensation term is added to the signal d(k), which
provides a compensation to the average value of the output
voltage. Such a term, sign(IL2(t))2Tdead/Tpwm, depends on
the sign of the output current IL2(t) and a dead band of
±0.5 A is introduced to deal with zero crossings. Vo(k) and
IL2(k) are acquired at discrete times kTx, while the output
control signals d1(k) and d2(k) are provided by the DSP at
discrete times (k+1)Tx, due to the computation delay time. In
Fig.8 results of the time-domain simulation, showing converter
current, capacitor voltage and phase estimated by the PLL
are presented, for operation below and above the estimated
stability threshold, identified as Ithref = 9.6 A by the theoretical
analysis. The small distortion that can be observed in the
voltage and current waveforms in the stable case is due to the
non-ideal compensation of the dead-times of the IGBTs, by
the resonance of the LCL filter and by the fact that the system
is operating very close to the instability boundary. It is worth
noticing that in Fig. 8(d) the inductor current IL2(t), within the
limits of the control bandwidth, correctly tracks the reference
current Iref (t), confirming that the observed instability is not
due to the current control but to the PLL. These simulation
results provide a first validation of the accuracy of the stability
boundary prediction provided by the LTP eigenvalue analysis.

D. Experimental Results

The experimental rig is a 10kW 2-level IGBT inverter
switching at 10kHz and with control algorithms and signal
conditioning implemented in a custom DSP/FPGA board. All
the relevant parameters of the experimental setup can be
found in Table I and Table II. Fig.10 shows a picture of
the experimental setup. In Fig.9 converter current, capacitor
voltage and phase estimated by the PLL for CASE A are
recorded by logging in Matlab the samples measured by the
DSP in the experimental setup. A good agreement can be
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(a)

(d)

(b)

(e)

(c)

(f)
Fig. 8. Simulation results for CASE A - currents: blue - IL2(t), red - Iref (t); voltages: blue - Vo(t); phase: blue - θPLL; (a), (b), (c) stable
system with Iref = 9.4A, (d), (e), (f) unstable system with Iref = 9.8A.

Fig. 10. Single-phase grid-connected inverter with PLL - experi-
mental setup

seen with the time domain simulation reported in Fig.8. In
addition, Fig.11, (a) and (d), reports the converter current
and capacitor voltage measured with the oscilloscope when
the converter is operating below and above the threshold,
with Iref = 9.4A and Iref = 9.8A respectively. The same
waveforms are measured and reported in Fig.11, (b) and (e),
for CASE B, with Iref = 11.3A and Iref = 11.7A, and
Fig.11, (c) and (f), with Iref = 12.9A and Iref = 13.3A. A
good agreement with the theoretical results presented in Fig.4
and Fig.7 can be observed.

As a further validation of the threshold for CASE A, Fig.12

shows converter current and capacitor voltage, recorded by
logging in Matlab the samples measured by the DSP in the ex-
perimental setup, when the amplitude of the reference current
Iref changes with time following a triangular envelope with
period 3.5s and minimum and maximum values respectively
8.5A and 11A. The converter current and capacitor voltage
are stable for Iref < 9.6A and are unstable for Iref > 9.6A.
The experimental results agree with the theoretical ones,
corroborating the validity of the proposed stability analysis
method.

VI. COMPARISON AND DISCUSSION

From the theoretical analysis it can be seen that the con-
tinuous and the discrete LTP models both enable an accurate
evaluation of the stability boundaries of the system. In fact,
the difference between the calculated thresholds with the two
approaches is around 3− 4%. So the stability assessment can
be accurately performed in both continuous and discrete time-
domains. However, some features can be discussed as follows:

(a)

(d)

(b)

(e)

(c)

(f)
Fig. 9. Experimental results for CASE A - currents: blue - IL2(t), red - Iref (t); voltages: blue - Vo(t); phase: blue - θPLL; (a), (b), (c)
stable system with Iref = 9.4A, (d), (e), (f) unstable system with Iref = 9.8A - the figure reports data sampled by the controller at 20kHz.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. CASE A - (a), stable system with Iref = 9.4A, (d), unstable system with Iref = 9.8A; CASE B - (b), stable system with
Iref = 11.3A, (e), unstable system with Iref = 11.7A; CASE C - (c), stable system with Iref = 12.9A, (f), unstable system with
Iref = 13.3A; top trace: inverter current IL2(t), bottom trace: voltage Vo(t).

• Continuous LTP: the digital computational delay plus
ZOH of the digital PWM can be approximated exploiting
the Padé functions. No approximations are made to
describe the dynamics of the grid and the filter subsys-

tem. Attention must be paid to choose a high enough
truncation order, to achieve accurate results.

• Discrete LTP: the control subsystem included in the
analysis is the same one implemented on the DSP, and
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(a)

(b)

Fig. 12. CASE A - (a) Currents: blue - IL2(t), red - Iref amplitude.
(b) Voltages: blue - Vo(t).

the digital computational delays are naturally represented
in discrete time. The filter-grid continuous part must be
approximated by a discrete model. No considerations
related to the order of the system and truncations are
required, since in this case the stability analysis relies on
a different theoretical approach.

VII. CONCLUSION

In this paper a general method is presented, based on LTP
theory, to perform stability analysis of power converters with
non-linear control and time-periodic operating trajectories,
thus providing a technique to precisely analyse single phase
or heavily unbalanced three phase systems. The proposed
analysis can be performed both in the continuous and in the
discrete time-domain. The paper shows how the two methods,
despite a different theoretical background, can identify the
stability threshold with comparable precision. The objective of
the analysis is to capture effects of the non-linear dynamics
that would not be detectable with simplified low frequency
averaging and LTI analysis. Validity of the model for high

frequencies is limited by the averaging approach employed to
represent the inverter. The method has been applied to a single-
phase grid-connected inverter with PLL, showing how stability
depends on the amplitude of the grid current reference. For a
given set of converter and grid parameters, current controller
design and PLL design, with the proposed approach it is
possible to derive analytically the maximum current reference
that guarantees stable operation. Numerical simulations and
experiments on a 10kW prototype have been performed to
validate the proposed stability analysis technique, including
different values of grid inductor and damping resistor, always
showing a good match between the predicted stability bound-
aries and those measured in the experimental setup.
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