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A B S T R A C T

Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior
relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the
accuracy of tissue classification is important for quality research and, in particular, the translation of imaging
biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all
currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a
large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process
more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality
control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data,
descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing
toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of
any software package in any data organization structure. Example configurations for three large, open-source
datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and
Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo
applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D
imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be
scaled for any size and complexity of study.

1. Background

Imaging biomarkers derived from MRI play a crucial role in the
fields of neuroscience, neurology, and psychiatry. Estimates of regional
brain volumes and shape features can track the disease progression of
neurological and psychiatric diseases such as Alzheimer's disease
(Dickerson et al., 2009; Vemuri and Jack, 2010), Parkinson's disease
(Tuite et al., 2013), schizophrenia (Shenton et al., 2001), depression
(Amico et al., 2011), autism (Brambilla et al., 2003), and multiple
sclerosis (Filippi et al., 1995). Given recent increases in data collection
to accommodate modern precision-medicine approaches, assuring the
quality of these biomarkers is vital as we scale their production.

Various semi-automated programs have been developed to estimate
MRI biomarkers. While these applications are efficient, errors in
regional segmentation are inevitable, given several methodological
challenges inherent to both technological and clinical implementation

limitations. First, the quality of the MRI scan itself due to motion
artifacts or scanner instabilities could blur and distort anatomical
boundaries (Blumenthal et al., 2002; Pardoe et al., 2016; Reuter et al.,
2015; Savalia et al., 2016). Differences in MRI hardware, software, and
acquisition sequences also contribute to contrast differences and
gradient distortions that affect tissue classification, which makes
combining datasets across sites challenging (Keshavan et al., 2016).
An additional source of error comes from parameter selection for
segmentation algorithms; different parameter choices can translate to
widely varying results (Han et al., 2006). Furthermore, many MR
segmentation algorithms were developed and tested on healthy adult
brains; applying these algorithms to brain images of children, the
elderly, or those with pathology may violate certain assumptions of the
algorithm, resulting in drastically different results.

Several quality assurance strategies exist to address segmentation
errors. In one approach, researchers flag low-quality scans prior to
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analysis by viewing the data before input to tissue classification
algorithms. However, identifying “bad” datasets using the raw data is
not always straightforward, and can be prohibitively time consuming
for large datasets. Pre-processing protocols have been developed to
extract metrics that can be viewed as a cohort-level summary from
which outliers are selected for manual quality-assurance. For example,
by running the Preprocessed-Connectomes Project's Quality Assurance
Protocol (PCP-QAP) (Shehzad et al., 2015), researchers can view
summary statistics that describe the quality of the raw data going into
the algorithm and automatically remove subpar images. However,
these metrics are limited because segmentation may still fail even if
the quality of the scan is good. Another quality assurance strategy is to
plot distributions of the segmentation output metrics themselves and
remove any outlier volumes. However, without manual inspection,
normal brains that naturally have very small or large estimates of brain
size or pathological brains with valid segmentations may be inappro-
priately removed. Ideally, a link would exist between scalar summary
statistics and 3D/4D volumes. Such a link would enable researchers to
prioritize images for labor-intensive quality control (QC) procedures; to
collaborate and organize QC procedures; and to understand how scalar
quality metrics, such as signal to noise ratio, relate to the actual image
and segmentation. In this report, we present a collaborative and
efficient MRI QC platform that links group-level descriptive statistics
to individual volume views of MRI images.

We propose an open source web-based brain quality control
application called Mindcontrol: a dashboard to organize, QC, annotate,
edit, and collaborate on neuroimaging processing. Mindcontrol pro-
vides an intuitive interface for examining distributions of descriptive
measures from neuroimaging pipelines (e.g., surface area of the right
insula), and viewing the results of segmentation analyses using the
Papaya.js volume viewer (https://github.com/rii-mango/Papaya).
Users are able to annotate points and curves on the volume, edit
voxels, and assign tasks to other users (e.g., to manually correct the
segmentation of a particular image). The platform is pipeline agnostic,
meaning that it can be configured to quality control any set of 3D
volumes regardless of what neuroimaging software package produced
it. In the following sections, we describe the implementation details of
Mindcontrol, as well as its configuration for three open-source
datasets, each with a different type of neuroimaging pipeline output.

2. Software design and implementation

2.1. Design principles

Mindcontrol was developed with several design requirements.
Mindcontrol must be easily accessible from any device, such as a
Mac, Windows, or even a tablet. Therefore, the best option was to
develop a web application. Most tablets have limited storage capacity,
so space-minimizing specifications were established. A dependence on
cloud-based data storage was specified to accommodate large neuroi-
maging datasets without needing local storage. To efficiently store
annotations and edited voxels, Mindcontrol only stores the changes to
files, rather than whole-file information, on its database. Researchers
must be able to QC outputs from any type of neuroimaging software
package, so Mindcontrol was specified to flexibly accommodate any file
organization structure, with configurable “modules” that can contain
any type of descriptive statistics and 3D images. Mindcontrol config-
uration and database updates must require minimal Javascript knowl-
edge, since Matlab/Octave, Python, R, and C are primarily used in the
neuroimaging community for data analysis. Finally, changes to the
database (like the addition of new images), changes in descriptive
measures, and new edits/annotations, should be reflected in the
application in real-time to foster collaboration.

2.2. Server back-end framework

Mindcontrol is built with Meteor (http://www.meteor.com), a full-
stack javascript web-development platform. Meteor features a build
tool, a package manager, the convenience of a single language
(javascript) to develop both the front- and back-end of the
application, and an abstracted implementation of full-stack reactivity.
Data is transferred “over the wire” and rendered by the client (as
opposed to the server sending HTML), which means that changes to
the database automatically trigger changes to the application view. For
example, as soon as a user finishes implementing QC procedures on an
image and clicks “save”, all other users can see the changes. A diagram
of this process is provided in Fig. 1.

2.3. Client-side features

The user interface consists of a dashboard view and an imaging
view, as shown in Figs. 2 and 3, respectively. The primary dashboard
view consists of processing module sections, a query controller, data
tables, and descriptive statistic visualizations. Each entry in the table is
a link that, when clicked, filters all tables on the page. The filters or
queries can be saved, edited, and loaded in the query controller section,
as shown in Fig. 4.

Descriptive statistics are visualized using the D3 library (https://
d3js.org/). Currently, two visualizations are provided: a calendar view
of a heatmap that shows a histogram of the number of exams collected
on a given day and 1D histograms of scalar metrics with dimensions
that are swappable using a dropdown menu, as shown in Fig. 2. Both
histogram plots interactively filter the data tables below. Clicking on a
particular date on the date-histogram plot filters all tables by the exams
collected on that particular date. Users are able to “brush” sections of
the 1D histogram to filter all tables with exams that meet requirements
of values within that range (see Fig. 5).

The imaging view is shown in Fig. 3. The left-side column includes a
section to label an image as “Pass”, “Fail”, “Edited”, or “Needs Edits”
and to provide notes. The status bar at the top-left portion updates
instantaneously with information on which user checked the image, the
quality status of the image, and when it was last checked. Users are also

Fig. 1. This diagram shows the different components of the Mindcontrol application. A)
The client sends information, such as annotations and edits, to the server. B) The server
calls a method that updates the MongoDB back-end. C) When the back-end MongoDB
database changes, these changes are automatically pushed to the minimongo database on
the client. D) A change to the minimongo database automatically re-renders the view on
the client. E) Users can optionally push changes to the client view via the MongoDB with
Python MongoDB drivers. Drivers for C, C++, Scala, Java, PHP, Ruby, Perl, and Node.js
are also available through MongoDB. F) Developers can optionally write server methods
to launch Python or command-line processes that, in turn, use user annotations and edits
to re-process images and update the MongoDB with new results. G) Imaging data (in
NifTI format) is stored on an external server, such as Amazon S3 or Dropbox, and URLs
to the images are stored in the MongoDB.
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able to assign edits to be performed by other users on the system; for
example, a research assistant can perform a general QC and assign
difficult cases to a neuroradiologist. On the right-hand side, the
Papaya.js viewer (http://rii-mango.github.io/Papaya/) is used to
display the NifTI volumes of the original data and FreeSurfer
segmentations.

Annotations of points and curves are shown in Fig. 6. Using the
shift key, users can click on the image to annotate points or select the
“Logged Curves” toolbar. By shift+click and dragging, users can draw
curves. Keyboard and mouse shortcuts provided by the Papaya.js
viewer, along with Mindcontrol, include toggling overlays (zz) and
undoing annotations (dd). Fig. 7 shows the editing (“Painter”) panel of
the imaging view. Users set paintbrush values and shift+click and drag
to change voxel values. For point and curve annotations and voxel
editing, the images themselves are not changed, but world x,y,z

coordinates, along with annotation text or paintbrush values, are saved
to the mongo database when the user clicks “save”. Custom offline
functions may be written to apply editing to images: for example, to
implement pial surface edits from FreeSurfer.

2.4. Configuration details

Mindcontrol can be configured for a study's specific needs be
specifying a JSON file. The configuration file describes processing
modules by module names, the columns to display in the data table
below, and the type of graph to display (date histogram or 1D
histogram). Images must be hosted on a separate server or a content
delivery network (CDN) and the Mindcontrol database populated with
URLs to these images. An initial JSON file can be specified to populate
the Mindcontrol MongoDB with entries on startup if the database is

Fig. 2. This figure shows the Mindcontrol layout configured to quality check FreeSurfer outputs from the 1000 Functional Connectomes Project (FCP). Part A shows the module
navigator, which links to the different processing modules on the dashboard. Part B shows the different exams and the dates they were acquired as a heatmap, where green is more and
orange is less scans collected on a given day. (For demonstration purposes, the dates depicted here do not reflect the actual dates the data were collected for the FCP, since this
information was not provided at the time.) Clicking on data in any column of the exam table filters the data by that column. For example, clicking the site “Milwaukee” reduces both the
“Exams” and the “FreeSurfer” tables to only show subjects from Milwaukee. Part C shows the FreeSurfer table and regional volume distribution of the left caudate. A drop-down menu
allows users to switch the descriptive metric. Clicking on a value in FreeSurfer ID column brings the user to the imaging view, as shown in Fig. 3, where users can evaluate and annotate
the quality status of the image. The value of the label in the “QC” column changes instantaneously due to Meteor's built in full-stack reactivity.
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empty. Instructions and example JSON schema for the configuration
file and the database entries can be found at https://github.com/
akeshavan/mindcontrol/wiki along with a Python function to access
the MongoDB, which can be used to write custom editing scripts and
externally update the database.

3. Examples/Applications

Mindcontrol configurations were developed for selected data from
the 1000 Functional Connectomes project (FCP), the consortium for
reliability and reproducibility (CoRR), and the Autism Brain Imaging
Data Exchange (ABIDE) Collection I.

The FCP consists of 1,414 resting state fMRI and corresponding
structural datasets collected from 35 sites around the world (Biswal

et al., 2010), which have been openly shared with the public. The
purpose of the FCP collaboration is to comprehensively map the
functional human connectome, to understand genetic influences on
the brain's structure and function, and to understand how brain
structure and function relate to human behavior (Biswal et al., 2010).
Segmentation of 200 selected FCP anatomical images from Baltimore,
Bangor, Berlin, ICBM, and Milwaukee was performed with FreeSurfer
(recon-all) version 5.3.0 (Fischl et al., 2002) using the RedHat 7
operating system on IEEE 754 compliant hardware at UCSF. Regional
volumes of subcortical and cerebellar regions were computed. Cortical
volumes, areas, and thicknesses were also computed and averaged
across hemispheres. Scan dates were simulated in order to demonstrate
the date histogram shown in Fig. 1B. The original anonymized T1-
weighted images, along with the aparc+aseg output from FreeSurfer,

Fig. 3. The imaging view of Mindcontrol consists of a panel on the left-hand side that contains the QC status; a point annotation menu; a curve annotation menu; a voxel editing menu;
and an editable sub-panel for QC status, notes, and editor assignment. On the right-hand side, the base MRI anatomical MPRAGE image is displayed with an overlay of the FreeSurfer
segmentation output using the Papaya.js viewer.

Fig. 4. The query controller shows the different filters that have been applied to this dataset. In this example, the exams have been filtered by institution (“Milwaukee”) and by a range of
left caudate volumes (brushed from the histogram). Clicking the “x” next to the filter removes it, and the view updates. Queries can be saved and reloaded by providing a name in the text-
entry box and clicking “Save”. “Reset” removes all filters to show the whole dataset.
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were converted to the compressed NifTI (.nii.gz) format and uploaded
to Dropbox for the purpose of visualization within Mindcontrol. The
Mindcontrol database was populated with URLs to these images, along
with their corresponding FreeSurfer segmentation metrics. The demo
of the FCP data is located at http://mindcontrol.herokuapp.com.

More recently, researchers have developed the Preprocessed-
Connectomes Project's Quality Assurance Protocol (PCP-QAP) soft-
ware, to provide anatomical and functional data quality measures in
order to detect low-quality images before data processing and analysis
(Shehzad et al., 2015). Some metrics include contrast-to-noise ratio,
signal-to-noise ratio, voxel smoothness, percentage of artifact voxels,
foreground-to-background energy ratio, and entropy focus criterion
(Shehzad et al., 2015). The PCP-QAP protocol has been run on the
Consortium for Reliability and Reproducibility (CoRR), and the Autism
Brain Imaging Data Exchange (ABIDE) datasets and the results have
been posted online.

The purpose of CoRR is to provide an open-science dataset to assess
the reliability of functional and structural connectomics by defining

test-retest reliability of commonly used MR metrics; to understand the
variability of these metrics across sites; and to establish a standard
benchmark dataset on which to evaluate new imaging metrics (Zuo
et al., 2014). PCP-QAP normative data for the CoRR study was
downloaded from https://github.com/preprocessed-connectomes-
project/quality-assessment-protocol. The Mindcontrol database was
populated with pointers to 2,963 CoRR structural images residing on
an Amazon S3 bucket along with their corresponding PCP-QAP
metrics. The demo of the CoRR dataset with PCP-QAP metrics is
hosted at http://mindcontrol-corr.herokuapp.com.

The overarching goal of the ABIDE initiative is to expedite the
discovery of the neural basis of autism by providing open access to a
large, heterogeneous collection of structural and functional neuroima-
ging datasets collected from over 23 institutions (Martino et al., 2013).
The Preprocessed Connectomes Project provides cortical thickness
measures of the ABIDE dataset output by the ANTs software package
(Tustison et al., 2014), along with summary statistics across regions of
interests (ROIs) defined by the Desikan-Killiany-Tourville (DKT)

Fig. 5. This demonstrates the interactive brushing feature of Mindcontrol histograms. On the left, the user has brushed the tail end of the left caudate volume distribution from
FreeSurfer. On the right, the histogram has been redrawn with data from the brushed range, and the table beneath filtered from 200 entries to 10 entries based on the brushed caudate
volumes.

Fig. 6. The annotations panel can be used to annotate a single point (shown in red, part A) and curves (shown in B). When annotating points, the user is shown the selected x,y,z world
coordinates and is able to name the annotation. In the curve annotation panel on the left sidebar, the user is able to name the curve and add/remove curves. Keyboard shortcuts: “dd”
removes the previous annotation and “zz” toggles the segmentation overlay.
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protocol (Klein and Tourville, 2012). The Mindcontrol database was
populated with pointer URLs to S3-hosted cortical thickness images
and their corresponding ROI summary measures, along with PCP-QAP
metrics. The demo of the ABIDE dataset with ANTS cortical thickness
and PCP-QAP metrics is located at http://mindcontrol-abide.
herokuapp.com.

4. Discussion

Mindcontrol is a configurable neuroinformatics dashboard that
links study information and descriptive statistics with scientific data
visualization, MR images, and their overlays (segmentation or other-
wise). The three configurations demonstrated in this report show the
link between MRI quality metrics and raw data, the link between
FreeSurfer regional volumes and segmentation quality, and the link
between ANTS cortical thickness summary statistics and segmenta-
tion/thickness estimates of the volume. The platform is configurable,
open-source, and software/pipeline agnostic, enabling researchers to
configure it to their particular analyses. The dashboard allows re-
searchers to assign editing tasks to others, who can then perform edits
on the application itself.

The Mindcontrol platform streamlines and standardizes QC proce-
dures. The traditional method of collaborative QC within a lab
assembles disparate software components into a procedure that is
vulnerable to clerical errors. The QC operators use existing viewers
(such as FSLview or Freeview) to view and edit the images, making
notes on a collaborative spreadsheet application (such as google-docs).
They must carefully adhere to a common folder structure and naming
convention so that other lab members and any automated processing
scripts can locate these images. Distributions of scalar metrics are then
plotted to identify outliers using a separate data analysis software
program. The results of that analysis must then be reviewed using the
imaging software to ensure that outliers are appropriately screened.
This method is inherently inefficient because images must be loaded
multiple times and attention split between the imaging platform and
annotation software. Additionally, results of the QC must be main-
tained consistently across several software packages. Clerical errors are
common and time-consuming to resolve because naming convention is
not explicitly enforced, and manual edits could be lost within the
filesystem without thorough documentation by research assistants.
Google-spreadsheets are collaborative, but ideally this pass/fail/edited
QC information would be directly linked to the data. Mindcontrol
stores all notes, annotations, and QC results, and in-browser edits

internally (Mongo database back-end). User edits can be extracted
automatically and written to the filesystem, eliminating the potential
for clerical errors. An example python script to do this can be found at
https://github.com/akeshavan/mindcontrol_docs/blob/master/
MindPrepFS.ipynb. Scalar metrics are linked to 3D images, enabling a
user to inspect an outlier image with the click of a button. Mindcontrol
is web-based, so it can be used on any device; QC operators can even
use a tablet with stylus to edit, which is more natural than using a
mouse.

There have been considerable efforts in this field to ensure data
quality on a large scale. The human connectome project's extensive
informatics pipeline, which includes a database service, QC procedures,
and a data visualization platform, has been key to the project's success
in collecting a large, high-quality dataset (Marcus et al., 2013). The
Allen Brain Atlas offers a comprehensive genetic, neuroanatomical, and
connectivity web-based data exploration portal, linking an MRI viewer
to data tables (Sunkin et al., 2012). The open-source LORIS web-based
data management system integrates an image viewer with extensive QC
modules (Das et al., 2012). Mindcontrol supplements these efforts by
providing a lightweight and extensible data management and visualiza-
tion system with the added capability to perform edits and curate
annotations within the application.

Table 1 shows examples of subjects from the FCP, CoRR, and
ABIDE datasets with low-quality scans or segmentations, identified
using Mindcontrol. The tails of various PCP-QAP metric distributions
for both the ABIDE and CoRR datasets could be filtered interactively to
isolate images with motion artifacts, extensive blurring, and noise. In
the ABIDE dataset, filtering by the entropy focus criterion (EFC)
greater than 17 identified images with extreme motion artifacts. The
range of the EFC for the CoRR dataset was much smaller (less than 2)
and the image with the highest EFC had no motion artifacts, but failed
QC due to excessive defacing. In the ABIDE dataset, filtering for the
high FWHM extremes identified images with motion artifacts, grainy/
noisy images, and one extremely blurry image. On the other hand, in
the CoRR dataset, the image with high FWHM had an extreme bias
field. In the CoRR dataset, the images with very low contrast-to-noise
(CNR) had motion artifacts, while the ABIDE images did not. Overall,
examining the extremes of the PCP-QAP metrics with Mindcontrol
identified outliers, but the relationship between artifacts and metrics
varied by study.

Exploring the link between ANTS Cortical Thickness and the PCP-
QAP metrics in the ABIDE dataset, we found that selecting the higher
tail of average left- and right-postcentral gyrus thickness corresponded

Fig. 7. The editing panel on the left shows the “Painter” toolbox in yellow, where users can input brush values or use the eyedropper tool to set the value to that of a clicked label. The
eraser icon sets the brush value to 0, to delete or erase voxels. In the image above, the FreeSurfer segmentation is being edited by erasing the voxels misclassified as dura.
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to datasets at the higher range of PCP-QAP FWHM. Conversely,
selecting the lower tail of the precentral and postcentral gyrus
thicknesses related to the lower range of the FWHM. It was difficult
to pinpoint errors in the ANTS Cortical Thickness segmentation images
because the data was normalized to MNI space. In the future, it would
be better to QC each step of the ANTS pipeline to ensure that 1)
segmentation in native space was accurate and 2) normalization to
MNI space was reasonable.

Mindcontrol is particularly useful to investigate where errors
occurred in segmentation algorithms. In the FCP dataset, the most
common errors in segmentation with FreeSurfer were that 1) parts of
the temporal lobes were excluded from the segmentation and 2) the
gray matter segmentation entered the dura. Scans with low-quality
temporal lobe segmentation were found by selecting the lower tail of
the amygdala or temporal pole volume distributions. Often, these
images exhibited poor gray/white contrast in the temporal pole region,
and low signal to noise. Initially, we observed that dura misclassifica-
tion occurred most frequently in the precentral and postcentral gyri.
We then selected data points with high precentral/postcentral volumes
to locate these errors. However, scans in the middle of these metric
distributions also exhibited dura misclassification, suggesting that this
particular problem may be consistent across the entire dataset. In this
example, it is necessary to QC every scan, regardless of where its
summary metrics lie on the distribution.

In cases where every scan must be quality controlled, Mindcontrol's
summary statistic distributions and annotation features serve as a
triage tool, sorting cases that are likely to require more time or
expertise. When training new editors, Mindcontrol's annotation and
notes features enable users to ask questions, mark the image with the
point or curve annotation feature, and assign images to more senior
editors to review and provide feedback. An initial Mindcontrol quality
check can be used to estimate total editing time and expertise needed
for a study, enabling a strategic allocation of resources. Leveraging
Mindcontrol as an integrated quality control tool can make processing
methods more efficient, organized, and collaborative.

5. Future directions

Mindcontrol is being actively developed to incorporate new features
that will improve outlier detection, efficiency, and collaboration. New
information visualizations to detect outliers include: scatter plots to
compare two metrics against each other, and a longitudinal view of a
single-subject trajectory for a given metric to detect uncharacteristic
temporal changes. New scientific data visualizations are planned using
the BrainBrowser library (Sherif et al., 2015) to display cortical
surfaces. A beta version of real-time collaborative annotations, where
two users can annotate the same image and see the edits of the other
user as they occur, is in the testing phase.

Currently, configuring Mindcontrol involves creating one JSON file
to describe the different modules and another JSON file to populate the
Mongo database with pointers to images and their scalar metrics. In
the future, this process could be streamlined by creating a Mindcontrol
configuration for datasets with a standardized folder structure, like the
Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2017), and
their BIDS-compliant derivatives (Gorgolewski et al., 2016).
Additionally, implementing the server-side application within a con-
tainer, like Docker, will make it easier to deploy a Mindcontrol server.
Further development of Mindcontrol will include the flexible importing
of additional scalar metrics, such as measures of structural complexity,
calculated by third-party toolboxes developed to complement standard
analysis pipelines (Madan and Kensinger, 2016, 2017). This will enable
researchers to collaborate on the same dataset by uploading metrics
from their newly developed algorithms, and will enable them to easily
explore their results in the context of metrics contributed by others.
Finally, Mindcontrol has the potential to be a large-scale crowd-
sourcing platform for segmentation editing and quality control. We
hope the functionality, ease-of-use, and modularity offered by
Mindcontrol will help to improve the standards used by studies relying
on brain segmentation.

6. Software availability

The Mindcontrol codebase is hosted on GitHub at http://github.
com/akeshavan/mindcontrol, along with installation instructions. The
Mindcontrol configuration of the FCP data is located on the master
branch of the GitHub repository, and the configurations for CoRR and
ABIDE are located at http://github.com/akeshavan/mindcontrol_
configs, along with configuration documentation at https://github.
com/akeshavan/mindcontrol_docs. Mindcontrol is licensed under the
Apache License, Version 2.0.
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Table 1
A table of bad quality data or segmentations found on Mindcontrol.

Dataset Filter Algorithm Example subject IDs Observation

ABIDE Higher end of FWHM PCP-QAP 50528, 0050511, 0050519 Motion artifact
ABIDE Higher end of FWHM PCP-QAP 50496 Very grainy
ABIDE Higher end of FWHM PCP-QAP 50611 Extremely blurry
ABIDE High EFC PCP-QAP 51160, 0051191, 0051166, 0051174,

0051192, 0051165, 0051186
Motion artifact

ABIDE High QI1 PCP-QAP 50197, 50017 Very noisy, motion artifact
CoRR Lower end of CNR PCP-QAP 25073, 25085, Motion artifact
CoRR High EFC (range much lower than ABIDE) PCP-QAP 25567 No motion artifact, but frontal lobe cut off (excessive

defacing)
CoRR High FWHM PCP-QAP 27040 Needs major bias field correction
FCP Lower end of Left-Amygdala, temporal-pole, Left-

Amygdala distribution
FreeSurfer sub48830, sub93262, sub55176, sub75919 Temporal lobes not correctly segmented; gray white

delineation difficult to see
FCP Higher end of SuperiorFrontal, Precentral,

Postcentral thickness
FreeSurfer sub98317, sub27536, sub28795,

sub10582, sub93975
Gray matter segmentation enters dura
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