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1 INTRODUCTION

ABSTRACT

With the advent of wide-field cosmological surveys, we are approaching samples of hun-
dreds of thousands of galaxy clusters. While such large numbers will help reduce statistical
uncertainties, the control of systematics in cluster masses is crucial. Here we examine the
effects of an important source of systematic uncertainty in galaxy-based cluster mass estima-
tion techniques: the presence of significant dynamical substructure. Dynamical substructure
manifests as dynamically distinct subgroups in phase-space, indicating an ‘unrelaxed’ state.
This issue affects around a quarter of clusters in a generally selected sample. We employ a
set of mock clusters whose masses have been measured homogeneously with commonly used
galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We
use these to study how the relation between observationally estimated and true cluster mass
depends on the presence of substructure, as identified by various popular diagnostics. We find
that the scatter for an ensemble of clusters does not increase dramatically for clusters with
dynamical substructure. However, we find a systematic bias for all methods, such that clusters
with significant substructure have higher measured masses than their relaxed counterparts.
This bias depends on cluster mass: the most massive clusters are largely unaffected by the
presence of significant substructure, but masses are significantly overestimated for lower mass
clusters, by ~10 per cent at 10'* and >20 per cent for <10'*>. The use of cluster samples with
different levels of substructure can therefore bias certain cosmological parameters up to a level
comparable to the typical uncertainties in current cosmological studies.

Key words: galaxies: clusters: general —galaxies: groups: general—galaxies: haloes—
galaxies: kinematics and dynamics—cosmological parameters—large-scale structure of
Universe.

2012), and large-scale structure (e.g. Bahcall 1988; Einasto et al.
2001).

Galaxy clusters are massive, rare objects which form from high
peaks in the underlying density field and whose population charac-
teristics are sensitive to the expansion history of the Universe and
the growth rate of structure. Statistical studies of the galaxy cluster
population are therefore powerful tools across various fields includ-
ing cosmology (see Voit 2005; Allen, Evrard & Mantz 2011 for a
review, Tinker et al. 2012), galaxy evolution (e.g. Dressler 1980;
Balogh et al. 1999; Goto et al. 2003; Postman et al. 2005; Peng et al.
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We are entering an exciting time for cluster cosmology with
ongoing surveys such as The Dark Energy Survey (The Dark Energy
Survey Collaboration 2005), the Kilo-Degree Survey (de Jong et al.
2015), WFIRST (Spergel et al. 2015), the South Pole Telescope
Sunyaev Zel’dovich survey (de Haan et al. 2016), the Atacama
Cosmology Telescope (Sehgal et al. 2011), the Hyper Suprime Cam
survey (Aihara et al. 2017), and upcoming surveys such as Euclid
(Amendola et al. 2013), eROSITA (Pillepich, Porciani & Reiprich
2012), and LSST (LSST Science Collaboration 2009).

With the production of these wide-field surveys across a vari-
ety of wavelengths, we are moving into an era where samples of
10% galaxy clusters will be available. These large samples enable
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the reduction of statistical uncertainties, however, it is clear that
systematic uncertainties often dominate the statistical uncertainties
in cluster mass estimation (as highlighted in Benson et al. 2013;
Hasselfield et al. 2013; Planck Collaboration XXIV 2016b), and
the need to control for these systematic uncertainties is even more
crucial for cluster cosmology studies.

One such source of systematic uncertainty in cluster mass estima-
tion techniques in particular is the presence of dynamically young
clusters with significant dynamical substructure. Cluster dynamical
substructure is characterized as the presence of dynamically distinct
subgroups within galaxy clusters. In the cluster galaxy distribution
substructure typically manifests itself in the form of asymmetrical
velocity distributions and distinct subgroups in phase-space of clus-
ters. The presence of significant substructure is an indication that
a cluster is not in virial equilibrium or in a ‘relaxed’ state, either
because of a recent cluster—cluster merger, or significant growth of
the cluster via infalling groups.

There have been numerous studies since the 1980s probing
the frequency of dynamical substructure in cluster samples (e.g.
Geller & Beers 1982; Dressler & Shectman 1988; Rhee, van
Haarlem & Katgert 1991; Bird 1994; Escalera et al. 1994; West,
Jones & Forman 1995; Solanes, Salvador-Solé & Gonzalez-Casado
1999; Burgett et al. 2004; Owers, Couch & Nulsen 2009; Aguerri
& Sanchez-Janssen 2010; Cohn 2012; Einasto et al. 2012; Hou
et al. 2012; Ziparo et al. 2012; Owers et al. 2017). Many of these
works also explored whether measured global properties of clus-
ters differ for clusters in their samples with significant substructure
compared to more relaxed clusters. While some works have found
that the measured global properties of clusters do differ in samples
of clusters that have significant dynamical substructure (e.g. Geller
& Beers 1982; Escalera et al. 1994; West et al. 1995; Girardi et al.
1997; Biviano et al. 2006; Lopes et al. 2006; Hou et al. 2012),
other works do not find any obvious difference in cluster measures
for complex clusters (e.g. Biviano et al. 1993; Fadda et al. 1997;
Aguerri & Sdnchez-Janssen 2010). The discordance in the conclu-
sions are likely due to small galaxy cluster samples and the method
employed to characterize dynamical substructure.

While these works focus on comparing measured global cluster
properties for highly substructured and non-substructured clusters,
in this study, we focus on deducing whether cluster mass estimation
techniques themselves are affected by the presence of significant
dynamical substructure, as opposed to differences in global param-
eters of these two cluster populations.

One approach to examine whether cluster mass estimation tech-
niques themselves are affected by the presence of significant dynam-
ical substructure is to compare galaxy-based reconstructed mass
estimates with reconstructed mass estimates computed using other
mass proxies, e.g. X-ray, lensing, SZ-based mass estimates. An ex-
ample of this multiwavelength comparison is in Lopes et al. (2006),
where optical richness and X-ray luminosity relations for a sample
of several hundred clusters are examined. The authors find that the
exclusion of clusters with substructure does not improve the corre-
lation between X-ray luminosity and richness, but does improve the
relation between X-ray temperature and optical parameters. More
recently, Sifén et al. (2013) hints that disturbed systems may bias
the relation between SZE-velocity dispersion cluster mass, how-
ever, they state the need for larger samples of clusters to confirm
this.

The second approach to deduce whether cluster mass estimation
techniques themselves are affected by the presence of significant
dynamical substructure is to use mock data where the underlying
halo mass is known, and global cluster properties including mass

and relaxation state are measured in an observational manner. For
example, Pinkney et al. (1996), use N-body simulations of galaxy
cluster mergers and find that virial masses are overestimated by up
to a factor of 2 for clusters undergoing mergers, a conclusion similar
to that of Perea, del Olmo & Moles (1990).

The main assumption required in this approach is that the sim-
ulated galaxy clusters deemed highly substructured by an observa-
tional substructure tests are indeed similar to clusters in the real
Universe that would be deemed highly substructured by dynamical
substructure tests. This assumption is reasonable in the case where
the properties of galaxies in the simulated clusters used are taken
directly from the underlying N-body dark matter simulation, where
phase-space properties have primarily evolved over time due to
the influence of gravity. To first order, these simulated phase-space
properties are indeed comparable to galaxy phase-space properties
in the Universe.

To understand the consequence of including dynamically dis-
turbed galaxy clusters in cluster cosmology samples, we look to
examine the following questions: does the presence of significant
dynamical substructure impact commonly used galaxy-based mass
estimation techniques? Would scaling relations between multiwave-
length mass estimation techniques differ for highly substructured
and non-substructured clusters? And finally, should dynamically
young clusters be excluded from future cluster cosmology sam-
ples?

In this work, we explore these critical questions, presenting the
first extensive, homogenous study of the impact of dynamical sub-
structure on galaxy-based cluster mass estimation techniques. We
utilize part of the Galaxy Cluster Mass Reconstruction Project
(GCMRP) data set, where 25 different galaxy-based mass estima-
tion techniques were tested using two mock galaxy catalogues to
deduce how well these methods characterized global cluster prop-
erties such as mass (Old et al. 2014, 2015), and how this mass
depends on the accuracy of the selected members (Wojtak et al. in
preparation).

The article is organized as follows: we describe the mock galaxy
catalogue in Section 2, and the mass reconstruction methods applied
to this catalogue in Section 3. In Section 4, we provide details of our
analysis before presenting the results on the effects of significant
dynamical substructure on cluster mass estimation in Section 5.
We end with a discussion of our results and conclusions in
Section 6. Throughout the article we adopt a Lambda Cold Dark
Matter (ACDM) cosmology with ¢ = 0.27, 24 =0.73,05 =0.82
and a Hubble constant of Hy = 100 2 kms~' Mpc~! where h =0.7,
although none of the conclusions depend strongly on these param-
eters.

2 DATA

For this study, we only use data from the GCMRP where the dynam-
ical properties of the galaxies are taken directly from the underlying
N-body dark matter subhaloes themselves, where the galaxies have
retained the ‘dynamical memory’ of the merging history of the
clusters. This strategy ensures a more direct comparison with that
of the real Universe, where we assume the phase-space properties
of galaxies have primarily evolved over time due to the influence
of gravity. We take an observational approach in this study, mea-
suring the dynamical state of our mock clusters using observational
dynamical substructure tests. We describe the underlying dark mat-
ter simulation, light cone generation and model used to populate
the dark matter simulation outputs with galaxies in the following
subsections.
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2.1 Dark matter simulation

The underlying dark matter simulation we use is the Bolshoi dissi-
pationless cosmological simulation which follows the evolution of
2048? dark matter particles of mass 1.35 x 10° A~' M fromz= 80
to z = 0 within a box of side length 250 A~!' Mpc with a force reso-
lution of the 14~ kpc (Klypin, Trujillo-Gomez & Primack 2011).
The simulation was run with the ArT adaptive mesh refinement
code following a flat ACDM cosmology with the following param-
eters: 29 = 0.27, Q5 = 0.73, 05 = 0.82, n = 0.95, and & = 0.70.
The halo catalogues are complete for haloes with circular velocity
Veire > 50kms™! (corresponding to M3e0, ~ 1.5 x 100 4! Mg,
~110 particles).

ROCKSTAR, a 6D FOF group-finder based on adaptive hierarchical
refinement, is used to identify dark matter haloes, substructure, and
tidal features (Behroozi, Wechsler & Wu 2013). ROCKSTAR identifies
haloes and subhaloes using 6D (3D in spatial and 3D in velocity)
information which are joined into hierarchical merging trees that
describe in detail how structures grow as the universe evolves. As
ROCKSTAR uses spatial and velocity information to identify dark mat-
ter structures, it does not suffer from (3D) projection effects that
would potentially bias this study in incidences where two group cen-
tres were spatially aligned in the same snapshot. ROCKSTAR calculates
the underlying halo masses by calculating the spherical overdensi-
ties according to a density threshold 200 times that of the critical
density. We highlight that these overdensities are calculated using
all the particles for all the substructure contained in a halo. This halo
finder has been shown to recover halo properties with high accu-
racy (for example, with errors in mass of AMyo. /Moo < 0.1) and
produces results consistent with those of other halo finders (Knebe
etal. 2011).

2.2 Light cone construction

For this study, we use light cones produced by the Theoretical As-
trophysical Observatory! (Bernyk et al. 2016), an online eResearch
tool that provides access to semi-analytic galaxy formation models
and N-body simulations. The light cone tool remaps the spatial and
temporal positions of each galaxy in the simulation box on to a cone
which subtends 60° by 60° on the sky, covering a redshift range of
0 < z < 0.15. We specify a minimum r-band luminosity for the
galaxies of M, = —19 + 5 log h for the catalogue.

2.3 Semi-analytic model

The model we use to form galaxies on the underlying dark matter
data is the Semi-Analytic Galaxy Evolution (SAGE) galaxy forma-
tion model (Croton et al. 2016). As described in more detail in Old
et al. (2015), this galaxy formation model is applied to the merger
trees described in Section 2.1. In each tree and at each redshift,
virialized dark matter haloes are assumed to attract pristine gas
from the surrounding environment, from which galaxies form and
evolve. The SAGE model is calibrated using various observations at
z = 0, namely the stellar mass function and SDSS-band luminosity
functions, baryonic Tully—Fisher relation, metallicity—stellar mass
relation, and the black hole—bulge relation.

The model includes various galaxy formation physics from reion-
ization of the inter-galactic medium at early times, the infall of this
gas into haloes, radiative cooling of hot gas and the formation of

!https://tao.asvo.org.au/tao/
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cooling flows, star formation in the cold disc of galaxies and the
resulting supernova feedback, black hole growth, and active galac-
tic nuclei (AGN) feedback through the ‘quasar’ and ‘radio’ epochs
of AGN evolution, metal enrichment of the inter-galactic and intra-
cluster medium from star formation, and galaxy morphology shaped
through secular processes, mergers, and merger-induced starbursts.
Detailed comparisons of the model to observations at higher redshift
can be found in Lu et al. (2014) and Croton et al. (2016), though
we note that our light cone spans only lower redshifts, as described
in Section 2.2.

Importantly, each group identified by the halo finder ROCKSTAR
has a ‘central’ galaxy whose central position and velocity is de-
termined by averaging the positions and velocities of the subset of
halo particles. Each group also has a number of ‘satellite’ galaxies
(cluster members) that maintain the positions and velocities of the
subhaloes that merged with the parent halo.

3 MASS RECONSTRUCTION METHODS

To determine the consequence of including dynamically disturbed
galaxy clusters in cluster cosmology samples, we use a subset of the
GCMRP data set, where 23 commonly-used galaxy-based mass es-
timation techniques (kinematic, richness, caustic, radial methods),
were tested in a blind manner on clusters from two mock galaxy
catalogues. For this study, we use only results of galaxy-based tech-
niques which were tested on mock clusters from the semi-analytic
model (SAM)-based data set described in Section 2.3, where
the dynamical properties of the galaxies are taken directly from
the underlying N-body dark matter subhaloes themselves (unlike
the HOD2 model used in Old et al. 2015).

The three general steps that galaxy-based techniques typically
follow are first to locate the cluster overdensity, choose which
galaxies are members of the cluster, and finally use the proper-
ties of this membership to reconstruct cluster mass. In this study,
we focus on the second and third steps: deducing membership and
mass, as opposed to cluster finding. We therefore provide the mass
reconstruction methods with the galaxy cluster positions as input.
We summarize the type of data the methods require as input in
Table 1 and the basic properties of all methods in Tables A1 and A2,
however, we refer the reader to studies Old et al. (2014, 2015) for
more detail of the procedure of each cluster mass reconstruction
technique. We note that the colour associated with each method in
the figures and tables corresponds to the main galaxy population
property used to perform mass estimation richness (magenta), pro-
jected phase-space (black), radii (blue), velocity dispersion (red),
or abundance matching (green).

4 DYNAMICAL SUBSTRUCTURE ANALYSIS

The tools for detecting dynamical substructure, either solely using
the cluster member velocity distribution (1D), the member positions
(2D) or combining the velocity and positional information of the
cluster (3D), have been extensively assessed for their robustness and
reliability for both group-sized systems and cluster-sized systems
(Pinkney et al. 1996; Hou et al. 2009). These comprehensive works
indicate that while applying a variety of 1D, 2D and 3D dynamical
substructure tests is useful, the more reliable substructure tests are
3D tests which quantify the difference between local subgroups of
galaxies within clusters to the global cluster properties such as the
Dressler—Shectman (DS, 1988) test and the Kappa test (Colless &
Dunn 1996). In this study, we apply these tests to our semi-analytic
mock simulation data (where we again note that the mock galaxy
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Table 1. Summary of the 23 cluster mass estimation methods. Listed is an acronym identifying the method, an indication of the main property used to
undertake member galaxy selection, and an indication of the method used to convert this membership list to a mass estimate. The type of observational
data required as input for each method is listed in the fourth column. Note that acronyms denoted with an asterisk indicate that the method did not use
our initial object target list but rather matched these locations at the end of their analysis. Please see Tables A1 and A2 in the appendix for more details
on each method.

Method Initial galaxy selection Mass estimation Type of data required Reference

PCN Phase-space Richness Spectroscopy Pearson et al. (2015)

PFN* FOF Richness Spectroscopy Pearson et al. (2015)

NUM Phase-space Richness Spectroscopy Mamon et al. (in preparation)
ESC Phase-space Phase-space Spectroscopy Gifford & Miller (2013)
MPO Phase-space Phase-space Multiband photometry, spectroscopy Mamon, Biviano & Boué (2013)
MP1 Phase-space Phase-space Spectroscopy Mamon et al. (2013)

RW Phase-space Phase-space Spectroscopy Wojtak et al. (2009)

TAR* FOF Phase-space Spectroscopy Tempel et al. (2014)

PCO Phase-space Radius Spectroscopy Pearson et al. (2015)

PFO* FOF Radius Spectroscopy Pearson et al. (2015)

PCR Phase-space Radius Spectroscopy Pearson et al. (2015)

PFR* FOF Radius Spectroscopy Pearson et al. (2015)

MVM* FOF Abundance matching Spectroscopy Mufioz-Cuartas & Miiller (2012)
AS1 Red sequence Velocity dispersion Spectroscopy Saro et al. (2013)

AS2 Red sequence Velocity dispersion Spectroscopy Saro et al. (2013)

AvL Phase-space Velocity dispersion Spectroscopy von der Linden et al. (2007)
CLE Phase-space Velocity dispersion Spectroscopy Mamon et al. (2013)

CLN Phase-space Velocity dispersion Spectroscopy Mamon et al. (2013)

SG1 Phase-space Velocity dispersion Spectroscopy Sifén et al. (2013)

SG2 Phase-space Velocity dispersion Spectroscopy Sifén et al. (2013)

SG3 Phase-space Velocity dispersion Spectroscopy Lopes et al. (2009)

PCS Phase-space Velocity dispersion Spectroscopy Pearson et al. (2015)

PFS* FOF Velocity dispersion Spectroscopy Pearson et al. (2015)

properties are taken from the underlying N-body simulation dark
matter subhaloes). A cluster is deemed as significantly dynami-
cally substructured if either the DS test or the Kappa test detected
substructure. We outline the procedure of these tests below.

While these tests are found to be the more reliable techniques
applied in the literature (see extensive evaluations in Pinkney et al.
1996; Hou et al. 2009), there can be cases where clusters do indeed
contain significant substructure undetected by these tests. For ex-
ample, White, Cohn & Smit (2010) use N-body simulations to test
the correlation between a given dynamical substructure detection
technique and time since last major merger of a cluster. They find
that this correlation is dependent on viewing angle, especially in
cases where the substructure is not well separated along the line of
sight. Furthermore, Hou et al. (2012) find that the DS test in partic-
ular can be reliably applied to groups only with Ny, > 20 and where
a high confidence level of 95 per cent or higher is used. Indeed, Hou
et al. (2012) deduced that for groups with 10 < N,y < 20, the DS
test does not necessarily detect all substructures within a system,
but the test can be used to determine a reliable lower limit on the
amount of substructure.

4.1 The Dressler-Shectman test

The DS test aims to quantify the difference between local kinemat-
ics and global kinematics by selecting subgroups of cluster mem-
bers and calculating the local velocity dispersion o, and velocity
mean V. These local properties are compared with the global
cluster velocity dispersion o goba and cluster velocity mean Vgopal
by computing an i-th deviation §; for the i-th cluster member:

N + 1 _ _ _
812 = (L> [(Vlocal - Uglobal)z + (0local — ngobal)z] . (H

Oglobal

We adopt a correction to the original DS test by replacing Ny, = 11
with Ny = +/Nimemvers a8 suggested for applying to groups and
clusters with fewer members to enhance the sensitivity of the test
to small-scale structures (Silverman 1986; Zabludoff & Mulchaey
1998). The deviations are then summed to give A, the DS statistic

A:Zai. )

Often referred to as the critical value for the cluster, the A-
statistic is used to compute a PTE for the presence of substructure
by computing 10 000 Monte Carlo realizations, shuffling the mem-
ber velocities amongst the positions. The PTE is used to test the
null hypothesis that the cluster has no substructure, hence a small
PTE < 0.05 indicates that the cluster has significant substructure.

4.2 The kappa test

In addition to the DS test, we employ another 3D dynamical sub-
structure test, the x-test (Colless & Dunn 1996), which quantifies
the difference between local substructures and global cluster phase-
space properties using the Kolmogorov—Smirnov (KS) test. Similar
to the DS-test, for each galaxy within the cluster, Ny, = v/ Nmembers
nearest galaxies are selected and the velocity distribution of that
local subgroup is compared to the parent distribution by measuring
the maximum separation of the cumulative distribution functions
Dops- The negative log likelihood of producing a D-statistic greater
than Dgys is computed and summed for all N galaxies in the cluster:

n

iy =Y —[10g(Pks(Dyim > Dopy)]- 3)

i=1

As for the DS test, the significance of the «, statistic is computed by
performing 10 000 Monte Carlo realizations, shuffling the member
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velocities amongst the positions to produce a Probability to Exceed
(PTE). The PTE, 0 < PTE < 1, is used to test the null hypothesis
that the cluster has no substructure, hence a small PTE < 0.05
indicates that the cluster has significant substructure. For clusters
with Nyg > 30, itis noted that the DS test is one of the most sensitive
test for substructure detection (Pinkney et al. 1996) and is reliable
for clusters with Ny, > 20, provided that the PTE is 0.05 or 0.01
(Knebe & Miiller 2000; Hou et al. 2012). The test is also reliable to
use as a lower limit for group-sized systems with Ny, > 10.

4.3 Mock cluster sample and analysis

In this study, we apply the commonly used dynamical substruc-
ture DS and Kappa tests as described in the above sections on
semi-analytic clusters whose galaxy properties are taken from the
underlying N-body simulation dark matter subhaloes. A cluster is
deemed as highly dynamically substructured if either of these tests
detect substructure. As mentioned in Section 4, the dynamical sub-
structure tests may not detect significant substructure in certain
cases. This means that our sample of clusters that are deemed to be
non-substructured may have some level of contamination from sub-
structured clusters. We first select all clusters with Ng, > 20 from
the GCMREP cluster sample, leaving us with 943 clusters between
13.50 < log (Mo0c, true/M@@) < 15.14 and with a median mass of
log (M200c‘ true/M@) = 14.05.

The 943 clusters are separated into two samples according to
whether either the DS test or Kappa test detected substructure or
not. Of the 943 clusters, dynamical substructure was detected in 255
clusters. PTE values of both the Kappa and DS test for individual
clusters can be found in Fig. B1 and the mass-richness relation of
the substructured and non-substructured sample is shown as a red
and black solid line respectively in Fig. D1 in the appendix.

The frequency of significant dynamical substructure in our cluster
sample is ~27 per cent. We note that the frequency of significant
dynamical substructure varies significantly for observational cluster
samples in the literature, with fractions of substructure detected in
samples being as low as ~15 per cent (e.g. Girardi et al. 1996), and
as high as ~80 per cent (e.g. Wing & Blanton 2013). This variation
in the fraction of highly substructured clusters is attributed to factors
such as differences in the algorithms used to detect substructure and
the characteristics of the cluster samples themselves (for example,
survey depth, number of galaxies for which there are spectroscopic
redshifts available; Kolokotronis et al. 2001; Burgett et al. 2004;
Ramella et al. 2007). In Fig. C1 in the appendix, we show the
prevalence of highly substructured clusters as a function of log true
mass, which we find increases for higher mass clusters. This trend
is also identified in several observational studies which employ
different dynamical substructure tests (e.g. de Carvalho et al. 2017;
Roberts & Parker 2017).

When assessing differences in cluster mass reconstruction of two
samples, it is important to control by cluster mass, especially as
cluster mass estimation technique performance is often mass de-
pendent. We ensure that the median mass of the two samples are
similar by binning the clusters in each sample into seven linearly
spaced log true mass bins. We then randomly select the minimum
number of distinct clusters in a given mass bin of the two sam-
ples. We do this iteratively (N = 200 iterations), resulting in N
subsamples of substructured clusters and N subsamples of non-
substructured clusters. These subsamples are controlled to have
median mass values close to the median mass of the substruc-
tured cluster sample [log(Maoc, wue/M@) = 14.13]. As the sample
of highly substructured clusters is smaller, each N subsamples of

Galaxy cluster mass reconstruction — 857

substructured clusters typically consists of the same clusters,
whereas each N subsamples of the non-substructured clusters often
consists of different clusters within each mass bin.

For each set of N subsamples of dynamically substructured and
non-substructured clusters, we quantify differences between the two
samples in terms of scaling relations between the true and recovered
cluster masses. The first statistic we assess is the scatter in the recov-
ered mass, o, , which delivers a measure of the scatter about the
fit between true and recovered mass. The second parameter is the
slope in the relation between recovered and true underlying mass, s,
and the third parameter is the amplitude of the fit at the pivot mass,
a. These statistics are computed by performing a likelihood-fitting
analysis on these 400 subsamples, assuming a model where there is
a linear relationship between the recovered and true log mass and
residual offsets in the recovered mass are drawn from a normal dis-
tribution: log Mre. = (a + log Mpiyor) + s(10g Mye — 10g Mpivor) + e,
where a, s, and e are the amplitude (or normalization), slope, and
scatter, which includes measurement and model errors in addition
to intrinsic scatter (induced by the different physical conditions of
each cluster).

This analysis is similar to that in Old et al. (2015) and we refer
the reader there for more detail. To summarize this approach, we
compute a likelihood that is a sum of the probability of obtaining the
data point assuming it is drawn from a ‘good’ distribution and the
probability of obtaining the data point assuming it is drawn from a
‘bad’ outlier distribution, to try to ensure that the scatter value is not
affected by a small number of extreme outliers (see Hogg, Bovy &
Lang 2010, for more details). The components of this likelihood are
weighted by the probability that any given point belongs to either
of these distributions:

l::H pi

i=1,N
pi= [(1 - Pb)P(log MRec,il 10g MTrue,is Olog MRec.i» s a)
+ PbP(log MRec.il 10g MTrue.is Ooutliers S » (l)] . (4)

Py, represents the posterior fraction of objects belonging to the ‘bad’
outlier distribution, oy, ; is the variance of the ‘good’ distribution
and s and a are the slope and amplitude of the fit, respectively.
We fix the variance of the ‘bad’ outlier distribution to a very large
number with a prior that the variance of the ‘good’ distribution
must always be smaller than the variance of the ‘bad’ distribution.
We adopt flat priors for the variance of the ‘good’ distribution, the
slope, and the amplitude. The probability that N data points be-
long to a ‘bad’ outlier distribution must be between zero and one.
We note that we have performed the analysis with alternative priors
(Jeffreys priors), and our results do not change significantly. We uti-
lize Markov Chain Monte Carlo (MCMC) techniques to efficiently
sample our parameter space and produce posterior probability dis-
tributions for the parameters described above. We use the parallel-
tempered MCMC sampler EMCEE which employs several ensembles
of walkers at different temperatures to explore our parameter space
(Foreman-Mackey et al. 2013).

Employing walkers at different ‘temperatures’ where the likeli-
hood is modified, enables walkers to easily explore different local
maxima, preventing walkers becoming stuck at regions of local in-
stead of global maxima in the case of a multimodal likelihood. In
this analysis, we employ 50 walkers at 5 temperatures and perform
2200 iterations, including a ‘burn-in’ of 1000 iterations that are
discarded. In total, 50 x 5 x 2200 = 5500 000 points in parameter
space are sampled for each method and input catalogue. Figures
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Figure 1. The median scatter in recovered mass produced by each cluster
mass estimation technique for the sample of clusters with significant dynam-
ical substructure versus the median scatter in recovered mass for the sample
of clusters without significant dynamical substructure. The solid black line
represents a 1:1 relation.

of the marginalized probability distributions of parameters for all
methods are available upon request.

We perform the analysis described below for each N subsample
of highly substructured and N subsample non-substructured clusters
and then compute the median of these output parameters of all
subsamples.

5 RESULTS

The goals of this study are assess the extent to which galaxy-based
cluster mass estimation techniques are sensitive to the presence of
significant dynamical substructure, and ultimately, whether cluster
cosmology studies utilizing galaxy-based mass estimation should
look to exclude dynamically substructured clusters from their sam-
ples. We apply observational dynamical substructure tests to our
sample of 943 mock clusters to separate our sample into highly sub-
structured and non-substructured clusters. We then assess whether
commonly used galaxy-based cluster mass estimation techniques
perform differently on these two samples. In the following subsec-
tions, we discuss the impact of significant dynamical substructure
on cluster mass estimation using three key statistics with which
we assess how the cluster mass estimation techniques perform.
These statistics are the scatter in the relation between recovered
and true mass, the amplitude in the relation between recovered and
true mass and finally, the mass-dependence, i.e. slope in the relation
between recovered and true mass.

5.1 Impact of dynamical substructure on scatter

Fig. 1 depicts the median scatter in recovered mass produced by
each cluster mass estimation technique for the highly substructured
cluster sample versus the median scatter in recovered mass produced
by each cluster mass estimation technique for the non-substructured
cluster sample. The solid black line represents a 1:1 relation between

these two parameters. The colour scheme reflects the approach im-
plemented by each method to deliver a cluster mass from a chosen
galaxy membership: magenta (richness), black (phase-space), blue
(radial), green (abundance-matching), and red (velocity dispersion).
We find methods that produce lower scatter in recovered mass (sit-
vated in the left-hand corner of Fig. 1), show little difference in
scatter for both highly substructured and non-substructured cluster
samples. The x-axis error bars show the uncertainty in the scat-
ter parameter for non-substructured clusters, which is calculated by
taking the standard deviation of the median scatter parameter values
from the set of 200 non-substructured cluster samples. The y-axis
error bars show the uncertainty in the scatter parameter for substruc-
tured clusters. This uncertainty is calculated by adding in quadrature
the uncertainty from the standard deviation of the median scatter
parameter values from the set of 200 substructured cluster samples
to the uncertainty of the MCMC sampling of the scatter parameter
(this former uncertainty is very small as the subsamples typically
include the same clusters).

While certain methods producing higher scatter in recovered mass
may produce higher scatter for highly substructured clusters (of the
order of ~15 per cent), for example, SG1, PFS, we also see that other
methods that utilize similar galaxy-based properties, may produce
lower scatter for highly substructured clusters (of the order of up to
~10 per cent) for example, AS1, AS2, and PCR. We do not see any
consistent behaviour in terms of an increase or decrease in scatter
for substructured clusters with mass estimation technique type (i.e.
richness, phase-space, radial, abundance matching, velocity disper-
sion).

5.2 Impact of dynamical substructure on the amplitude

In addition to scatter, it is important to examine how the presence
of significant dynamical substructure affects the amplitude in the
relation between recovered and true underlying cluster mass. In this
study, we measure the amplitude at the pivot mass which reflects the
normalization of the relation between recovered and true log mass
produced by each cluster mass estimation technique. Fig. 2 shows
the median amplitude at the pivot mass of log Moy e = 14.13
for the highly substructured cluster sample versus the median am-
plitude at the pivot mass produced by each cluster mass estimation
technique for the non-substructured cluster sample. The x-axis er-
ror bars show the uncertainty in the amplitude parameter for non-
substructured clusters, which is calculated by taking the standard
deviation of the median amplitude parameter values from the set
of 200 non-substructured cluster samples. The y-axis error bars
show the uncertainty in the amplitude parameter for substructured
clusters. This uncertainty is calculated by adding in quadrature the
uncertainty from the standard deviation of the median amplitude pa-
rameter values from the set of 200 substructured cluster samples to
the uncertainty of the MCMC sampling of the amplitude parameter
(this former uncertainty is very small as the subsamples typically
include the same clusters).

If there were no difference in the biases produced by each method
at the pivot mass for the highly substructured and non-substructured
samples, the methods’ median amplitude markers would lie on the
1:1 relation. Instead, we see a systematic increase in the amplitude
for all techniques for the highly substructured sample compared to
the non-substructured sample.

For some methods that underestimate cluster mass in general,
for example, velocity dispersion methods PFS, CLN, PCS, CLE,
and phase-space method MPI, this systematic shift brings the
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Figure 2. The median amplitude at the pivot mass for the sample of clusters
with significant dynamical substructure versus the median amplitude at
the pivot mass for the sample of clusters without significant dynamical
substructure for each cluster mass estimation technique. The solid black
line represents a 1:1 relation. If there were no difference in the amplitudes
produced by each method at the pivot mass for the highly substructured and
non-substructured samples, the methods” median amplitude markers would
lie on the 1:1 relation.

amplitude value slightly closer to zero, and more comparable to
the true underlying cluster mass.

For the methods that significantly overestimate cluster mass at the
pivot mass, for example, radial based methods PCR, PFR, PFO, and
richness methods PCN and PFN, the amplitude values increase and
are brought further away from the average true underlying cluster
mass. The median difference for all methods in the amplitude at the
pivot mass for the highly substructured cluster sample versus non-
substructured cluster samples, Aa = dsubs. — ANo subs.» 1S Aa = 0.040
dex (~9.7 percent). We note that this value reflects the average
difference in amplitude for all techniques for samples that comprise
of only highly substructured clusters versus only non-substructured
clusters.

In the likely case that ‘relaxed’, non-substructured clusters are
used to calibrate scaling relations with mass, and these scaling rela-
tions are then applied to a larger sample of clusters that include both
substructured and non-substructured clusters, this bias will likely
be smaller. We repeat the MCMC likelihood analysis to compare
the amplitude for non-substructured clusters compared to all 943
clusters (substructured and non-substructured clusters) and find a
median difference in amplitude of Aa = 0.029 dex (~6.9 per cent)
at the pivot mass of log Mapoc, rue = 14.13. Note that the median
mass of these two samples is kept within ~0.009 dex of each other
by subsampling as for the analysis described in Section 4.3.

We note that the difference in amplitude increases to Aa = 0.067
dex (~16.8 percent), when we re-run the analysis with a more
conservative DS and Kappa test PTE threshold to PTE < 0.01.
This increase in bias likely arises from the increased ‘purity’ in
the substructured sample, due to the more pronounced substructure.
In addition, we also find that the magnitude of the measured bias
increases to 0.06 dex (~14.6 per cent) when we re-run the analysis

Galaxy cluster mass reconstruction — 859
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Figure 3. The difference in the slope of the relation between recovered and
true log mass produced by each cluster mass estimation technique for the
sample of non-substructured clusters to the sample of highly substructured
clusters versus the slope for the sample of non-substructured clusters. The
solid black line represents no difference in slope produced by these methods
for these two different samples. The dotted red line represents the median
difference in the slopes for the two samples for all methods (0.054 dex,
~13 per cent).

for the case the mock cluster sample is split into substructured
and non-substructured clusters if only both the DS and Kappa test
classify the cluster as highly substructured (with PTE < 0.05), as
opposed to if either the DS test or Kappa test classify the cluster as
highly substructured.

5.3 Impact of dynamical substructure on slope

We now examine the mass dependence in cluster mass reconstruc-
tion, to deduce whether methods under- or overestimate cluster
mass differently for lower and higher mass clusters if they have sig-
nificant dynamical substructure. Fig. 3 shows the difference in the
slope of the relation between recovered and true log mass produced
by each cluster mass estimation technique for the sample of non-
substructured clusters to the sample of highly substructured clusters
versus the slope for the non-substructured clusters. The solid black
line represents no difference in slope produced by these methods for
these two different samples. The dotted purple line represents the
median difference in the slopes for the two samples for all methods
(0.054 dex, ~13 percent). The x-axis error bars show the uncer-
tainty in the slope parameter for non-substructured clusters, which
is calculated by taking the standard deviation of the median slope
parameter values from the set of 200 non-substructured cluster sam-
ples. The y-axis error bars show the uncertainty in the difference in
slopes, which is calculated by adding in quadrature the uncertainty
in the slope for non-substructured clusters and the uncertainty in
the slope for substructured clusters.

The uncertainty in the slope parameter for substructured clusters
is calculated by adding in quadrature the uncertainty from the stan-
dard deviation of the median slope parameter values from the set of
200 substructured cluster samples to the uncertainty of the MCMC
sampling of the slope parameter (this former uncertainty is very
small as the subsamples typically include the same clusters).

We see that the majority of methods produce a slightly flatter
slope of the relation between recovered and true log mass for highly
substructured clusters. This behaviour indicates that the masses of
higher mass clusters are underestimated and the masses of lower
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mass clusters are overestimated compared to that of clusters around
the pivot mass. Since we also find that cluster masses are systemat-
ically biased high at the pivot mass (Section 5.2), these two effects
are likely to result in high mass clusters having relatively unbiased
masses, while the masses of low mass clusters will likely be biased
very high. This is indicated by the linear fit to the substructured clus-
ters in Fig. E1 in the appendix, which shows the median difference
in recovered and true cluster mass for all 23 mass estimation tech-
niques. This flattening of the slope also demonstrates that magnitude
of the bias in recovered mass (~10 per cent at the pivot mass) does
depend on the underlying cluster mass. For example, if a method
systematically overestimated cluster mass by ~10 per cent for clus-
ters with a true mass of ~log M., yue = 14.13, that method would
likely overestimate the masses of clusters log My, rue < 14.13 to
a greater extent.

Whilst we see a general trend to flatter slopes between the re-
covered and true cluster mass, methods that utilize the same galaxy
population property to reconstruction, for example the velocity dis-
persion (red markers), are not all affected in the same manner. This
further highlights the diversity in performance of methods which
use the same galaxy property as a mass proxy.

6 DISCUSSION

The main objectives of this study are to deduce whether the inclusion
of clusters with significant dynamical substructure will produce
biases in cluster mass estimation and explore how these biases will
impact both galaxy-based cluster cosmology studies and galaxy
evolution studies that characterize galaxy environment by cluster
mass. Reassuringly, for the majority of galaxy-based techniques
with lower intrinsic scatter, we see little difference in the scatter
in the recovered versus underlying mass for non-substructured and
substructured clusters. However, as shown in Figs 2 and 3, the
presence of significant dynamical substructure does indeed bias the
amplitude and the slope in the relation between true underlying mass
and estimated mass for all 23 cluster mass estimation techniques in
this study.

The direction of this bias, i.e. the increase in estimated cluster
mass compared to the true underlying mass for highly dynamically
substructured clusters, is qualitatively in agreement with Perea et al.
(1990), Pinkney et al. (1996), and Biviano et al. (2006), who find
that in the case of virial-based cluster mass specifically, masses
are overestimated for N-body simulations of merging clusters. For a
more direct comparison, we apply our analysis to the simulated data
set of 62 cluster-sized haloes in three projections from Biviano et al.
(2006). For clusters that are highly substructured in projected phase-
space compared to unsubstructured, we measure a bias between the
recovered virial-based mass to true mass of (0.12 dex, ~32 per cent)
at a pivot mass of log Myoc, wue = 14.13, which is consistent with
the bias we see for several methods. In addition, we perform a both a
two-sample KS test and a two-sample Anderson—Darling test on this
data set which rejects the null hypothesis that the recovered virial-
based masses of substructured and non-substructured clusters are
drawn from the same underlying continuous distribution (with PTEs
of 0.0029 and 0.0038, respectively). The overestimation of virial-
based masses for substructured clusters is also indicated in Foéx,
Bohringer & Chon (2017), who find that the ratio of hydrostatic
mass to virial-based mass is correlated for substructured clusters
in their sample of 10 X-ray luminous clusters. Interestingly, the
authors find that excising galaxies which are part of substructures
reduces the overestimation in mass.

-0.1 -0.05 0 0.05 0.1

Mass Bias [dex]

Figure 4. The percentage difference in Q2 and og found when fitting
a ACDM mass function with Planck parameters when shifting the mass
function in log M>go. by a range of values between —0.1 and 0.1 dex.

The analyses described above indicate a bias in virial-based clus-
ter mass estimation. We highlight that the bias we find is preva-
lent in all 23 galaxy-based techniques which encompass richness,
projected phase-space, radial, and abundance matching-based tech-
niques. For richness-based techniques, this bias could be partially
explained by differences in the stacked mass—richness relation for
the substructured and non-substructured samples. A linear fit to the
stacked samples, for example, delivers an increase in log mass of
0.07 dex at fixed Ny of 40. However, we see substructures caus-
ing a consistent bias across all galaxy-based techniques that do not
reconstruct mass from galaxy number counts.

The exact impact of this substructure-induced mass bias will be
highly dependent on the underlying properties of individual cluster
samples; however, we wish to qualitatively deduce the relevance
of this bias. The most direct channel of propagating the bias into
the estimates of cosmological parameters occurs when a cluster
sample used for calibrating a mass scaling relation includes galaxy
clusters with a different degree of substructure than the entire clus-
ter sample used for cosmological inference. Considering the most
extreme case, the calibration sample may consist of fully relaxed,
non-substructured clusters. The primary effect of this observational
strategy would be a shift of the observed mass function along the
mass axis which in turn would cause a biased measurement of 2,
and og. A simple way to estimate the potential relative bias in the
two cosmological parameters is to determine the two cosmological
parameters for which the corresponding mass function matches the
mass function computed for a fixed, fiducial cosmology, but shifted
along the mass axis by a range of mass biases. In our calculation
we adopt a Planck cosmology (Planck Collaboration XIII 2016a)
with Q,, = 0.31 and og = 0.83 as a reference model and a univer-
sal fitting formula for the mass function from Tinker et al. (2008).
Fig. 4 shows the results for a range of mass biases. Interestingly,
the error on 2, and o is on the same order as the error on the cur-
rent leading constraints from CMB-based cosmology studies such
as Planck Collaboration XIII (2016a) and is slightly lower than the
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error produced by weak lensing cluster cosmology studies such as
Mantz et al. (2015) and SZ-based cluster cosmology studies (de
Haan et al. 2016). We note that this is for the extreme case that the
calibration sample is non-substructured, and the majority of the full
sample of clusters are highly substructured. In the more realistic
case that the contamination of highly substructured clusters in a
given survey is typical to the fraction we observe in our simulated
sample, ~27 per cent, the systematic error on is likely on €, and
o is of the order of ~1 per cent.

We highlight that this study is restricted to galaxy clusters at
relatively low redshifts (z < 0.15). Current surveys such as DES,
ACT, SPT, and future surveys such as Euclid, LSST are probing
much higher redshifts (up to z ~ 2). We expect that the presence
of significant substructure will be greater / more common at higher
redshift. If this is indeed the case, cluster mass samples will be more
positively biased (or overestimated) at higher redshift than at lower
redshifts.

7 CONCLUSIONS

In this paper, we examine whether the masses of dynamically dis-
turbed clusters can be measured to the same accuracy and precision
as dynamically relaxed clusters with a variety of commonly used
galaxy-based cluster mass estimation techniques. We aim to un-
derstand whether scaling relations between multiwavelength mass
estimation techniques would differ for highly substructured and
non-substructured clusters, and to that end, whether dynamically
young clusters should be excluded from future galaxy-based cluster
cosmology samples. The main results are as follows:

(i) For the majority of galaxy-based techniques with lower in-
trinsic scatter, we see little difference in the scatter in the recovered
versus underlying mass for non-substructured and substructured
clusters.

(i) We see a systematic increase in the measured amplitude at
the median mass of the sample for all techniques for the highly
substructured sample compared to the non-substructured sample.
This means that for the same given underlying true cluster mass, all
cluster mass measurement techniques will, on average, overestimate
the mass of a cluster if it has significant dynamical substructure
compared to a dynamically relaxed cluster. This systematic bias for
all cluster mass estimation techniques is, on average, ~10 per cent
for clusters around log Mjpp. = 14.13. It should be noted that for
some methods which underestimate cluster mass in general, this
systematic increase in amplitude brings measured cluster masses
closer to the true underlying cluster mass, and vice versa.

(iii) We find that the bias in cluster mass for dynamically dis-
turbed clusters is indeed mass dependent. Typically, the slope
of the relation between recovered and true cluster mass is flatter
for the sample of highly substructured clusters. A flatter slope in-
dicates that the masses of higher mass clusters are underestimated
and the masses of lower mass clusters are overestimated in com-
parison to the reconstructed masses of clusters at the median mass
of the sample (~log M. = 14.13). The combination of a flatter
slope and a positive bias in amplitude at the pivot mass indicate that
the reconstructed masses of clusters at the high mass end are likely
to be only minimally biased, whereas the reconstructed masses of
clusters at the low mass end are biased even higher (for group-sized
systems, this bias is >20 per cent for <10'37),

(iv) For the purpose of improving accurate deductions of cos-
mological parameters from future galaxy-based cluster cosmology
samples, or accurate characterization of environment for galaxy

Galaxy cluster mass reconstruction 861

evolution studies, we recommend the dynamical state of a cluster
sample is classified to identify whether masses of the dynamically
substructured clusters will be systematically overestimated. In the
case of using cluster mass scaling relations to estimate masses of
another cluster sample, we advise that the underlying dynamical
characteristics of the cluster sample used to calibrate the scaling
relation is similar to that of the cluster sample the scaling relation
is applied to.
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APPENDIX A: PROPERTIES OF THE MASS

RECONSTRUCTION METHODS

Galaxy cluster mass reconstruction 863

Table Al. Illustration of the member galaxy selection process for all methods. The colour of the acronym for each method corresponds to the main galaxy
population property used to perform mass estimation richness (magenta), projected phase-space (black), radii (blue), velocity dispersion (red), or abundance
matching (green). The second column details how each method selects an initial member galaxy sample, while the third column outlines the member galaxy
sample refining process. Finally, the fourth column describes how methods treat interloping galaxies that are not associated with the clusters.

Methods

Initial galaxy selection

Member galaxy selection methodology

Refine membership

Treatment of interlopers

PCN

PFN
NUM

ESC

MPO

MP1
RW

TAR
PCO

PFO
PCR
PFR
MVM

AS1

AS2

AvL

CLE

CLN
SG1

SG2

SG3

PCS
PFS

Within 5 Mpc, 1000 kms ™!

FOF
Within 3 Mpc, 4000km s~

Within preliminary Rooc
estimate and 43500 km s~
Input from CLN

Input from CLN
Within 3 Mpc, 4000 km s~

FOF
Input from PCN

Input from PEN

Input from PCN

Input from PEN

FOF (ellipsoidal search range,
centre of most luminous galaxy)
Within 1 Mpc, 4000 kms ™",
constrained by colour—-magnitude
relation

Within 1 Mpc, 4000kms~!,
constrained by colour-magnitude
relation

Within 2.5 o, and 0.8 Rygp

Within 3 Mpc, 4000 km s~ !

Input from NUM
Within 4000 kms~!

Within 4000 kms~!

Within 2.5h~! Mpc and
4000kms~!. Velocity
distribution symmeterized

Input from PCN
Input from PEN

Clipping of +30, using galaxies
within 1 Mpc

No

(1) Estimate Ryqc from the
relationship between Ry, and
richness deduced from CLE; (2)
select galaxies within Rogoc and
with [v] < 2.7 0N V(R)

Gapper technique

(1) Calculate Rogoc, Ry, Rred,
Ryplue by MAMPOSSt method;
(2) select members within radius
according to colour

Same as MPO except colour blind
Within Ragoc, [2P(R)|'/2, where
Ry00c obtained iteratively

No

Input from PCN

Input from PFN

Input from PCN

Input from PFN

Increasing mass limits, then FOF,
loops until closure condition
Clipping of +£3 o

Clipping of +£3 o

Obtain Ry and o, by
o-clipping

(1) Estimate Rpqg from the
aperture velocity dispersion; (2)
select galaxies within Ry, and
with [v] < 2.7 (R); 3)
Iterate steps 1 and 2 until
convergence

Same as CLE

(1) Measure o ga1, estimate Magoc
and Rogoc; (2) select galaxies
within Rypoc; (3) Iterate steps 1
and 2 until convergence

(1) Measure o gy, estimate Magoc
and Rogc; (2) select galaxies
within Rypoc; (3) iterate steps 1
and 2 until convergence
Measure o gy, correct for
velocity errors, then estimate
Mo and Ropoc and apply the
surface pressure term correction
Input from PCN

Input from PFN

Use galaxies at 3—5 Mpc to find
interloper population to remove
No

Same as CLE

Removed by Gapper technique

No

No
No

No

Include interloper contamination
in density fitting

No

Same as PCN

No

No

Removed by clipping of £3 o

Removed by clipping of £3 o

Implicit with o -clipping

Obvious interlopers are removed
by velocity gap technique, then
further treated in iteration by o

clipping

Same as CLE

Shifting gapper with minimum
bin size of 250 kpc and 15
galaxies; velocity limit
1000kms~! from main body
Shifting gapper with minimum
bin size of 150 kpc and 10
galaxies; velocity limit
500kms~! from main body
Shifting gapper with minimum
bin size of 420h~! kpc and 15
galaxies

Same as PCN
No
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Table A2. Characteristics of the mass reconstruction process for the methods used in this comparison. The second to sixth columns illustrate whether a method
calculates/utilizes the velocities, velocity dispersion, radial distance of galaxies from cluster centre, the richness, and the projected phase-space information of
galaxies, respectively. If a method assumed a mass or number density profile it is indicated in columns seven and eight.

Galaxy properties used to obtain group/cluster membership and estimate mass

Methods Velocities Velocity dispersion Radial distance Richness Projected phase-space Mass density profile Number density profile
PCN Yes No No Yes No No No
PFN Yes No No Yes No No No
NUM No No No Yes Yes No No
ESC Yes Yes Yes No No Caustics No
MPO Yes No Yes No Yes NFW NFW
MP1 Yes No Yes No Yes NFW NFW
RW Yes No Yes No Yes NFW NFW
TAR Yes Yes Yes No No NFW No
PCO Yes No No No No NFW NFW
PFO Yes No No No No NFW NFW
PCR Yes No Yes No No No No
PFR Yes No Yes No No No No
MVM Yes Yes Yes No No NFW No
AS1 Yes Yes No No No No No
AS2 Yes No Yes No Yes No No
AvL Yes Yes Yes No No No No
CLE Yes Yes No No No NFW NFW
CLN Yes Yes No No No NFW NFW
SG1 Yes Yes Yes No No No No
SG2 Yes Yes Yes No No No No
SG3 Yes Yes Yes No No No No
PCS Yes Yes No No No No No
PFS Yes Yes No No No No No

APPENDIX B: DS AND KAPPA TEST PTE

VALUES FOR ALL CLUSTERS

0.9+

0.8} . :

Non-substructured
DS or Kappa
DS and Kappa

!

0.6
PTE ps

0.8

Figure B1. The DS and Kappa test PTE values for the cluster sample.
Black symbols indicate clusters that are not defined as highly substructured
by either the DS test or Kappa test (688 clusters, 73 per cent of the sample).
Blue symbols indicate clusters where either the DS test or Kappa test have
defined as highly substructured (255 clusters, 27 per cent). The red symbols
indicate clusters that have been defined as highly dynamically substructured
by both the DS and Kappa test (147 clusters, 15.5 per cent). We note that the
DS test detects significant dynamical substructure in 215 clusters, 23 per cent
of the sample. This is a high detection rate than the Kappa test, which finds
187, 20 per cent of the sample, to be dynamically substructured.
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APPENDIX C: DYNAMICAL SUBSTRUCTURE
TEST DETECTION AND CLUSTER MASS
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Figure C1. The fraction of highly substructured clusters as a function of
log true mass, where clusters are deemed substructured if either the DS test
or Kappa test detects significant dynamical substructure. The clusters are
binned into seven linearly spaced log true mass bins. The error bars represent
the standard deviation of a set of fractions calculated by randomly sampling
the data with replacement (n = 500 iterations). The DS and Kappa test detects
higher fractions of clusters with substructure as a function of cluster mass
(and hence richness). This trend of dynamically disturbed clusters having
higher masses is also identified in several observational studies which use
different dynamical substructure tests (e.g. de Carvalho et al. 2017; Roberts
& Parker 2017).



APPENDIX D: THE RICHNESS-MASS
RELATION OF THE SAM2 MOCK CLUSTER
CATALOGUE
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Figure D1. The richness versus mass of the 943 groups/clusters of the
input SAM2 catalogues. Clusters that deemed as highly dynamically sub-
structured by the DS or Kappa test are denoted as red circles, and the non-
substructured clusters denoted are by black circles. The red line reflects a
linear fit (described in Section 4.3) to the richness—mass relation for the sub-
structured clusters of 1og(Ngar) = 0.75 (log(Maqoc) — 14.126) + 1.67. The
black line reflects a linear fit to the richness—mass relation for the non-
substructured clusters of 1og(Nga) = 0.70 (log(Magoc) — 14.126) + 1.61.
The intrinsic scatter of the richness versus mass relation of all 943 SAM?2
clusters is 0.12 dex. We note that the linear fit parameters are also very
similar to those deduced by performing simple linear fit.
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APPENDIX E: THE MEDIAN DIFFERENCE IN
RECOVERED MASS FOR ALL 23 TECHNIQUES
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Figure E1. The median difference between recovered and true log mass
versus true log mass, dy200c = 1og(Maooc,rec) — 10g(Maooc,true) for all 23
methods. Clusters that deemed as highly dynamically substructured by the
DS or Kappa test are denoted as red circles, and the non-substructured
clusters denoted are by black circles. The red line reflects a linear fit for
the substructured clusters of Sypooc = —0.06 (log(Magoc,rec) — 14.126) +
0.019. The black line reflects a linear fit for the non-substructured clusters
of 8200 = —0.09 (log(Magoc rec) — 14.126) + 0.07.
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