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Axial flow through gaps between aligned straight yarns with realistic cross-sectional shapes, described by
power-ellipses, was analysed numerically. At a given fibre volume fraction, equivalent gap permeabilities
have a maximum at minimum size of elongated tapering parts of the gap cross-section and a ratio of gap
width to height near 1. When the yarn spacing is given in addition to the fibre volume fraction, calculated
maximum and minimum values for the equivalent permeability of inter-yarn gaps, which occur at near-
rectangular and lenticular cross-sections, differ by factors of up to 3.3. Novel approximations for the
shape factor and the hydraulic diameter in Poiseuille flow were derived as a function of the fibre volume
fraction, the yarn cross-sectional aspect ratio and the geometrical parameter describing the shape of the
power-elliptical yarn cross-section. This allows the equivalent gap permeability to be predicted with
good accuracy for any fibre volume fraction and yarn cross-section.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In the manufacture of polymer composite components
employing Liquid Composite Moulding (LCM) processes, dry
fibrous reinforcements are impregnated with liquid resin systems.
To assess the risk of dry spot formation and predict cycle times,
the impregnation process is frequently modelled as flow of a vis-
cous liquid through a porous medium, i.e. a network of intercon-
nected hydraulic ducts. Introduction of a macroscopic
permeability, as in Darcy’s law [1], implies homogenisation of
the properties of individual ducts to describe how easily a liquid
can flow through the medium. Since the fibre volume fraction,
which significantly affects the mechanical properties of finished
composite components, is a parameter commonly used for mate-
rial specification, it is useful to describe the dependence of the
permeability of fibrous reinforcements on the fibre volume frac-
tion. The Kozeny-Carman equation [2], which was originally
derived for the permeability of porous media consisting of spher-
ical particles, is sometimes used successfully for description of
this dependence, albeit with adapted geometrical constants [3].
The frequently cited equations derived by Gebart [4] describe
the permeability as a function of the fibre volume fraction for
parallel and transverse flow in media with uniform periodic
arrangement (square or hexagonal) of aligned fibres. While the
spacing of the fibres may vary as a function of the fibre volume
fraction, the circular cross-sectional shape of the fibres and the
basic fibre arrangement is constant. Hence, Gebart’s model does
not apply to flow in dual-scale reinforcements made from fila-
ments bundled in deformable yarns, where the yarn shape and
reinforcement architecture may change as the fibre volume frac-
tion is varied.

The impregnation of dual-scale reinforcements (fabrics) is
determined mainly by resin flow through inter-yarn gaps, since
their dimensions are typically large compared to those of intra-
yarn gaps [5]. Hence, the permeability of fabric structures can be
estimated from analysis of flow through gaps in the fabric architec-
tures. While, strictly speaking, a permeability value is only defined
for a porous medium, not for an individual hydraulic duct, it may
be convenient to characterise the ratio of average flow velocity
and pressure drop in duct flow by an ‘‘equivalent permeability”.
Common examples for flow though individual hydraulic ducts with
different cross-sections are discussed in monographs on duct flow
[6,7] and textbooks on fluid mechanics [8]. Ni et al. [9] list exam-
ples for the equivalent permeability of channels with geometries
considered relevant in composites processing. Lundström et al.
[10] discuss the permeability of non-crimp fabrics (NCF) and derive
an analytical expression for the equivalent permeability of inter-
yarn ducts with different cross-sections, including elliptical and
parabolic.
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In a previous study on the permeability of braids [11], the
equivalent permeability of inter-yarn gaps was approximated by
the permeability of rectangular ducts. To account for the actual
duct shape, the permeability was corrected by applying a geomet-
rical factor. It was pointed out that this correction factor is not con-
stant but depends on the effect of yarn deformation, which is
caused by through-thickness reinforcement compaction and rein-
forcement shear. In a recent study [12], a model was presented
for the permeability of fabrics consisting of two layers of aligned
yarn (as in NCF), subject to deterministic and stochastic non-
uniformity. The model was limited by the simplifying assumption
that yarns have elliptical cross-sections.

This study systematically assesses the sensitivity of resin flow
through inter-yarn gaps in fibrous reinforcements to yarn cross-
sectional shapes. To allow this fundamental effect to be identified
clearly, the simple example of a single layer of aligned straight
yarns was analysed, although, in reality, reinforcements tend to
be geometrically more complex. Numerical flow simulation is
employed to characterise flow through inter-yarn gaps at different
yarn cross-sectional shapes, varying between rectangular and len-
ticular, and fibre volume fractions. A novel analytical approxima-
tion is derived, which allows the equivalent permeability of
layers of aligned yarns to be predicted with good accuracy for
any fibre volume fraction and yarn shape.
2. Theory

2.1. Reinforcement permeability

For layers of aligned yarns, the permeability parallel to the yarn
axes depends on the axial yarn permeability and the equivalent
permeability of inter-yarn gaps. It can be approximated by apply-
ing a rule of mixtures according to the fraction of the layer cross-
sectional area occupied by the gaps, U. On the other hand, the
in-plane layer permeability perpendicular to the yarn axes is dom-
inated by the transverse yarn permeability. For aligned yarns with
minimum inter-yarn gap width (i.e. adjacent yarns are in contact)
and no (transverse) fixation, the axial in-plane layer permeability
was observed experimentally to be at least one order of magnitude
greater than the in-plane permeability perpendicular to the yarn
axes [13]. With increasing gap width, the ratio of in-plane layer
permeabilities parallel and perpendicular to the yarn axes can be
expected to increase. Since the permeability of reinforcement
structures comprising several layers of aligned yarns (all at the
same orientation or at different orientations) is dominated by axial
flow along channels formed between the yarns in each layer, this
study focuses on the axial layer permeability.

In the following, the permeability will be discussed for a peri-
odic layer of aligned yarns, where the geometry is characterised
by the yarn spacing, s, the yarn thickness, h, and the width, 2R, of
the yarns. The layer can be represented by the repetitive unit cell
shown in Fig. 1, where an empty gap is bounded by yarns (left
Fig. 1. Abstracted unit cell cross-section with yarns (shaded) and duct (blank); 2R is
the yarn width, h the yarn thickness, and s the yarn spacing; example: elliptical yarn
cross-section.
and right) and flat impermeable walls (top and bottom). This
may represent a single layer confined between tool surfaces or a
layer in a multi-layer structure where no fluid exchange occurs
between layers.

Applying a rule of mixtures, the axial layer permeability, Kl, can
be approximated as

Kl ¼ UKg þ ð1�UÞKy; ð1Þ
where Kg is the equivalent axial gap permeability, and Ky the axial
yarn permeability. For a unit cell with width (yarn spacing), s, and
height (yarn thickness), h, the total cross-sectional area is

AUC ¼ sh; ð2Þ
and the perimeter is

PUC ¼ 2sþ 2h: ð3Þ
If the yarn cross-sectional area is Ay, the fraction of the total

cross-sectional layer area occupied by the gap is

U ¼ 1� Ay

AUC
ð4Þ

The contribution of the axial yarn permeability to the layer per-
meability is generally small compared to the contribution of the
equivalent gap permeability [14] and will be neglected here, i.e.

Kl � UKg : ð5Þ
2.2. Yarn geometry model

The cross-sectional shape of a multifilament yarn in a fabric
structure is determined by effects of through-thickness and lateral
compression [15]. Yarn cross-sections may be approximated by
generalised power-ellipses [16], which are described by points (x,
y) satisfying the equation

x
R

� �2
þ 2y

h

� �2=n

¼ 1: ð6Þ

Here, the parameter in the exponent, n, describes the shape of
the power-ellipse. As in Fig. 1, 2R is the yarn width, and h is the
yarn height. The characteristics of power-ellipses are shown in
Fig. 2 for different values of n, resulting in rounded rectangular,
elliptical and lenticular shapes.

2.3. Applicability

A unit cell as described above is representative for the gap
geometry in preforms from aligned yarns or tapes produced by
Automated Fibre Placement (AFP). Since polymeric binder, which
may block inter-filament gaps, is typically applied to provide sta-
bility to the yarns or tapes, the assumption of negligible permeabil-
ity of the yarns appears particularly appropriate for this type of
preform. Experimental observations documented by Belhaj et al.
[17] confirm that the preform permeability is determined by
inter-yarn gaps.

The unit cell in Fig. 1 is also similar to that of yarn layers in
NCFs, where Eq. (6) was found to be generally a reasonable approx-
imation of yarn cross-sectional shapes [18]. Asymmetry and local
random variations [19,20] of yarn cross-sections in fabrics will
not be discussed here. In reality, stitching threads are frequently
used to provide yarn fixation, which reduce the fabric permeability
by locally affecting the inter-yarn gap geometry. This was analysed
numerically by Hu et al. [21] and Nordlund and Lundström [22]. In
other NCFs, grids (‘‘scrims”), adhesively bonded onto the aligned
yarns, are used for yarn fixation. Their effect on the permeability
through localised layer compaction was studied experimentally



Fig. 2. Examples for generalised power ellipses at given cross-sectional aspect ratio, 2R/h = 5, for different values of n.
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[13]. For both yarn fixation strategies, the localised effect on the
permeability can be significant.

Three-dimensional woven reinforcements typically comprise
layers of aligned yarns at alternating orientation with additional
through-thickness yarns. The example in Fig. 3 shows the network
of ducts formed in this type of reinforcement. Each layer can be
represented by unit cells as in Fig. 1, while the effect of the
through-thickness yarns can be modelled as a local disturbance
of the geometry [23].

For other fabrics (e.g. 2D woven or braided), permeability esti-
mation based on a unit cell as in Fig. 1 is less appropriate because
of the effect of crimp, although configurations of the type analysed
here may be found locally. Generation of detailed geometrical
models of multi-layer reinforcements from woven fabrics and
lay-up permeability prediction based on these models is addressed
elsewhere [24]. However, any model of this kind can only apply to
one specific reinforcement, while the purpose of the present study
is systematic analysis of the sensitivity of resin flow through inter-
yarn gaps to changes in yarn cross-sectional shape. Here, it is nec-
essary to use a simple geometry, although it does not necessarily
represent a specific reinforcement at the highest possible accuracy.
If more complexity is added, various effects will be superimposed
which may obscure the influence of the yarn shape.
Fig. 3. Network of inter-yarn gaps in 3D orthogonal weave carbon fibre reinforce-
ment, from micro-Computed Tomography data of composite.
2.4. Duct flow analysis

For fully developed laminar flow of an incompressible fluid
through a duct with constant cross-section, the Navier-Stokes
equations describing the fluid motion reduce to the Poisson
equation,

@2u
@x2

þ @2u
@y2

¼ 1
g
Dp
L

: ð7Þ

Here, u(x, y) is the local axial flow velocity, assuming that
the duct is aligned with the z-direction, g the fluid viscosity,
L the length of the duct, and Dp the pressure drop along L.
With u = 0 on the duct boundary, this equation can be
solved numerically to determine u(x, y), from which the
average flow axial velocity, v, can be calculated. Applying
Darcy’s law (for the case of uni-directional flow in a porous
medium) to axial flow in a single duct, the equivalent axial
duct permeability,

Kg ¼ vgL
Dp

; ð8Þ

can be determined. To describe the pressure loss in viscous flow
along a hydraulic duct (Darcy-Weisbach equation), the equivalent
permeability can be identified as

Kg ¼ 2D2
h

c
: ð9Þ

Here, Dh is the hydraulic diameter of the gap. It is defined as

Dh ¼ 4Ag

Pg
; ð10Þ

where Ag is the gap cross-sectional area and Pg the perimeter
of the gap cross-section. Dh is a measure for the relative effect
of the perimeter (the axial flow velocity is zero on the gap
boundary) on flux along the duct. The quantity c in Eq. (9)
is a shape factor, corresponding to four times the Poiseuille
number. It can be expressed as the product of the Darcy
friction factor,
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f D ¼ 2Dh

qfv2

Dp
L

; ð11Þ

which indicates the ratio between the local shear stress and the
local kinetic energy density, and the Reynolds number,

Re ¼ qfvDh

g
; ð12Þ

i.e. the ratio of inertial forces and viscous forces, for the respective
flow problem. In Eqs. (11) and (12), qf is the density of the fluid. The
value of c is a measure for the effect of viscous friction on flux.
Hence, it is related to the length of boundaries between fluid layers
moving at different velocity in laminar flow, which in turn depends
on the flow velocity distribution across the duct cross-section.

While flow through ducts with a wide variety of cross-sections
is discussed in the literature [7], only a special case of the geometry
described above was analysed by Gunn and Darling [25]. Here, the
ultimate aim is to derive generalised analytical approximations for
c and Dh as a function of geometrical duct parameters, which
would allow equivalent gap permeabilities to be predicted for
any power-elliptical yarn cross-sectional shape.
3. Numerical flow simulation

3.1. Method

Here, modelling yarn geometries as described above in TexGen
[26] was combined with numerical analysis in Ansys� CFX�, where
a finite volume method is implemented, to solve the duct flow
problem described above. Using pre-defined functions for the yarn
cross-sections, three-dimensional geometrical models of inter-
yarn gaps (length along yarn axis L = 0.05 mm) were generated
and meshed with tetrahedral cells. Translational periodicity was
applied along the yarn direction to represent continuous parallel
yarns with constant cross-section. Hence, the solution is indepen-
dent of the model length. No-slip wall boundary conditions, i.e. u =
0, were applied on the entire gap perimeter. At the top and bottom
boundaries of the duct, this is consistent with the presence of
impermeable walls. Since inter-yarn gaps are typically one order
of magnitude larger than pore spaces in the yarns [5,27], and the
flow velocity in the yarns is small compared to the flow velocity
in the inter-yarn gap, no-slip boundary conditions were also
applied on the yarn surfaces, i.e. the left and right boundaries of
the gap. Use of a slip boundary condition [28] would be essential
if the dimensions of inter-yarn gaps were comparable to the
dimensions of intra-yarn pores, and intra-yarn flow contributed
significantly to the permeability of the yarn layer (Nedanov and
Advani [14] report that the effect of intra-yarn flow is small, even
at relatively small inter-yarn porosity down to 0.13). The assump-
tion of steady state (saturated) flow implies that transient capillary
effects, which in reality may affect the applied flow-driving pres-
sure gradient during reinforcement impregnation (as documented
e.g. by Pillai [29]), were not considered in the simulations.

For a given axial pressure gradient, Dp/L, and fluid viscosity, g,
the average axial flow velocity, v, in the inter-yarn duct was calcu-
lated from the flow velocities, ui, and the areas, Ai, of cells repre-
senting the cross-section, Ag, according to

v ¼

X
i

uiAi

Ag
: ð13Þ

The equivalent axial channel permeability was determined
from v according to Eq. (8). A mesh sensitivity study, where two
unit cell geometries were analysed (one with s = 0.65 mm and h
= 0.84 mm, the other with s = 1.96 and h = 0.28 mm; both at n =
1.00 and U = 0.40), indicated that the solution converged if the
average edge length of cells in the numerical simulations was
0.01 mm or less.

3.2. Validation

Before new results were generated for geometries described
above, the numerical method employed here for flow simulation
and permeability calculation was validated for the example of a
duct with rectangular cross-section, for which Kg can be expressed
analytically. The equivalent permeability of a rectangular duct is
given by Eq. (9), where Dh is easy to calculate. The dependence of
the shape factor on the aspect ratio, q, can be approximated [12]
by the relation

c ¼ 56:4q0:17; ð14Þ
which is based on data tabulated by White [8]. In Eq. (14), the duct
cross-sectional aspect ratio is defined as

q ¼ h=ðs� 2RÞ; if ðs� 2RÞ 6 h

ðs� 2RÞ=h; if ðs� 2RÞ > h

�
ð15Þ

Alternatively, the equivalent permeability can be expressed as

Kg ¼ h2

12
1� 192h

p5ðs� 2RÞ
X1

i¼1;3;5...

tanhðipðs� 2RÞ=2hÞ
i5

 !
; ð16Þ

which is the analytical solution of the Navier-Stokes equation for
flow through a rectangular duct with no-slip boundary conditions
on all walls [30].

The values for Kg listed in Table 1 indicate that agreement
between results from the numerical simulations and from Eq.
(16), where five terms were considered in the approximation, is
very good (less than 1% difference). The slight difference (less than
3%) between simulation results and results from Eq. (9) can be
explained by the fact that the approximation for the shape factor
in Eq. (14) may show some local deviation from the actual value
of c. Based on comparison with the theoretical approximations in
Eq. (9) and in Eq. (16), it can be concluded that the numerical sim-
ulation results are plausible, and that the proposed method is suit-
able for quantitatively analysing duct flow.

4. Results and discussion

4.1. Characteristics of equivalent duct permeability

Unit cell models with different yarn cross-sectional shapes were
analysed here. Values of n were varied between 0.25 and 2.00,
which corresponds to rounded rectangular and lenticular cross-
sections, respectively (Fig. 2). While the yarn cross-sectional area,
Ay, was kept constant at 0.33 mm2, values for the gap volume frac-
tion, U, were set (between 0.07 and 0.50) through appropriate
combination of the geometrical parameters. A total of 239 models
were analysed. To facilitate discretisation of the tapering elongated
parts of the inter-yarn gap, a minimum width of 1.5 � 10�3 mm
was enforced. This does not have a significant effect on Ag or Pg,
and the induced error in calculated permeabilities is small.

Examples for equivalent permeability values derived from
numerical simulations at U = 0.50 and U = 0.30 are plotted in
Fig. 4 as a function of s at different values of n. To realise the
selected combinations of n and U, the yarn width, 2R, was varied
between 0.50 mm and 3.50 mm, the yarn height, h, between
0.10 mm and 0.99 mm, and the yarn spacing, s, between 0.51
mm and 6.33 mm. The yarn spacing was selected as independent
variable since its values can in reality be obtained relatively easily
throughmeasurement, and it can typically be set in manufacture of



Table 1
Comparison of equivalent permeability, Kg, for a rectangular duct with given width and height, derived from numerical simulation and analytical approximations.

Width/mm Height/mm Aspect ratio Kg/10�10 m2

Simulation Eq. (9) Eq. (16)

0.16 0.71 4.39 18.80 19.22 18.77

Fig. 4. Equivalent duct permeability, Kg, as a function of the yarn spacing, s, at different gap volume fractions, U, and different geometrical parameters, n. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Minimum obtainable gap volume fraction, Umin, at
different values of n (at 2R = s).

n Umin

0.25 0.07
0.50 0.13
0.75 0.17
1.00 0.21
1.25 0.25
1.50 0.28
1.75 0.31
2.00 0.33
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reinforcements (e.g. in textile processes). In the diagram for U =
0.30, the range of n is narrower than for U = 0.50 since adjacent
yarns are in contact with each other where the condition 2R = s
is met. Hence, U = 0.30 cannot be obtained for yarns with lenticu-
lar cross-section (n = 1.75 and n = 2.00). Minimum obtainable val-
ues of the gap volume fraction,Umin (at 2R = s), are listed in Table 2.

The data in Fig. 4 indicate that, as expected, Kg decreases with
decreasing U at given s and n, since the total gap cross-sectional
area decreases. There is a trend for the gap permeability to
decrease with increasing n, implying that Kg is higher if the yarn
cross-sections are rectangular than if they are lenticular. The
equivalent permeability as a function of the yarn spacing shows
a maximum, the position of which depends on U and n. In Figs. 5
and 6, this is illustrated for two examples, where the equivalent
permeability is related to gap geometries and resulting flow veloc-
ity distributions. The gap geometry is characterised by the yarn
cross-sectional aspect ratio, 2R/h, the yarn spacing, s, and the
aspect ratio of the largest rectangle that can be inscribed in the
gap, q, defined according to Eq. (15).



Fig. 5. Results of numerical simulations at U = 0.50, n = 2.00; different yarn cross-sectional aspect ratio, 2R/h, yarn spacing, s, and gap cross-sectional aspect ratio, q, as
defined in Eq. (15); contours indicate different axial flow velocity distributions in inter-yarn gaps (qualitatively); equivalent permeabilities, Kg, hydraulic diameters, Dh, and
shape factors, c, are also given. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Results of numerical simulations at U = 0.30, n = 0.25; different yarn cross-sectional aspect ratio, 2R/h, yarn spacing, s, and gap cross-sectional aspect ratio, q, as
defined in Eq. (15); contours indicate different axial flow velocity distributions in inter-yarn gaps (qualitatively); equivalent permeabilities, Kg, hydraulic diameters, Dh, and
shape factors, c, are also given. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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For n = 2.00, i.e. lenticular yarn cross-sections, Fig. 5 shows one
maximum in the flow velocity distribution if s is greater than
approximately 1.32 mm. On the other hand, there are two maxima
in the flow velocity distribution for s < 1.32 mm. This qualitative
change in axial flow velocity distribution is consistent with the
data plotted in Fig. 4, where Kg (at U = 0.50 and n = 2.00) has a
maximum at s = 1.32 mm and decreases towards larger and smal-
ler values of s. For yarns with almost rectangular cross-sections, i.e.
n = 0.25, Fig. 6 shows that the gap between yarns is approximately
square (q = 1.12) for s = 1.32 mm. This coincides with the maxi-
mum in calculated equivalent permeability values (Fig. 4, at U =
0.30 and n = 0.25). While a transition in the flow velocity distribu-
tion from one maximum to two maxima can be observed for all
combinations of U and n when s is reduced, here it occurs at a
value of s smaller than 0.66 mm. Hence, the examples in Fig. 6
do not include a case with two maxima. Figs. 5 and 6 are consistent
with results presented in a recent study [12] for the case with n =
1.00, where U was varied through variation of 2R/h at constant s,
and similar flow velocity distributions as shown here (with either
one or to two maxima) were found.

A quantitative comparison of flow through an almost rectangu-
lar duct (Fig. 6, U = 0.30, n = 0.25, s = 0.66 mm) and a rectangular
duct with identical values of s � 2R and h (Table 1) is presented
in Table 3. While the cross-sectional area is larger for the duct with
n = 0.25 than for the rectangular duct, the average flow velocity in
Eq. (8) is smaller (at identical values for g, Dp and L). This indicates
that the tapering elongated parts of the duct cross-section (for n =
0.25) contribute to the cross-sectional area, but not significantly to
flux. As a result, the equivalent permeability is smaller for the duct
with n = 0.25 than for the rectangular duct. This illustrates that



Table 3
Cross-sectional area, Ag, average flow velocity, v, equivalent permeability, Kg, for ducts
with s-2R = 0.16 mm and h = 0.71 mm, but different cross-sectional geometry.

Geometry Ag/mm2 v/mm/s Kg/10�10 m2

n = 0.25 0.14 1.92 17.82
Rectangular 0.12 2.02 18.80
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increasing duct cross-sectional area does not necessarily translate
into increasing equivalent permeability.

For rectangular ducts at given total duct cross-sectional area, Kg

is determined by the aspect ratio, q, and is independent of the ori-
entation of the long and short duct cross-sectional axes. On the
other hand, Fig. 6 shows that this is not the case for ducts with
n = 0.25, where values for Kg are almost identical at s = 0.66 mm
and s = 2.62 mm, but the corresponding values of q are different.

Table 4 summarises maximum and minimum equivalent per-
meabilities, Kgmax and Kgmin, for the data plotted in Fig. 4. If Kgmax

and Kgmin are picked from the entire range of s, i.e. if they corre-
spond to different values of s and n, Kgmax/Kgmin has values of up
to approximately 20 (at U = 0.30, where Kgmax/Kgmin is the highest).
If, at given gap volume fraction, Kgmax and Kgmin are picked at the
same value of s (such that they lie on the same vertical line in
Fig. 4), the ratio Kgmax/Kgmin can still have values of up to 3.3 (at
U = 0.30). In this case, the difference between Kgmax and Kgmin is
caused only by the yarn cross-sectional shape. This is consistent
with experimental results from a recent study [31], where speci-
mens of a twill weave fabric were repeatedly sheared to defined
angles and then unsheared. After being subjected to sequences of
defined shear operations, increases in inter-yarn gap width at con-
stant yarn spacing were observed, which translated into increases
in measured fabric permeabilities by factors of up to 2 compared to
the virgin material (at identical fibre volume fraction). The exper-
imental observations for the twill weave fabric confirm that the
shape of inter-yarn gaps has a significant effect on the in-plane
permeability of a reinforcement, even if the actual yarn arrange-
ment is geometrically more complex than in the straight aligned
layers analysed here. On the other hand, the difference in factors
between maximum and minimum permeability (factors 3.3 for
the equivalent gap permeability in the simulations and approxi-
mately 2 for the fabric permeability in the experiments) reflects
the influence of different fibre volume fractions (U = 0.30 in the
simulations; in the experiments, the global porosity was 0.44)
and of geometrical features such as crimp, which is not considered
in the simulations. It is thought that the effect of variation in gap
shape between specimens contributes (among other factors) to
the occasionally very significant scatter observed in experimen-
tally acquired permeability data of macro-scale fabric specimens
[32]. Fig. 4 also indicates that values of Kg at different n converge
for large s, implying that the effect of yarn shape is reduced with
increasing width of inter-yarn gaps.

For the special case with n = 1.00, Lundström et al. [10] pre-
sented an analytical approximation for the equivalent permeability
of ducts as described above. Comparison of the proposed approxi-
mation with simulation results, for all 28 examples with n = 1.00
Table 4
Minimum and maximum calculated permeability values, Kgmin and Kgmax, and ratio, Kgmax/
entire range of s, or at the same value of s; for the latter case, Kgmin and Kgmax are listed fo

U Kgmin/10�10 m2 Kgmax/10�10 m

0.50 8.00 89.26
54.63 89.26

0.30 1.67 33.19
8.92 33.19
evaluated here, indicates that equivalent permeabilities are pre-
dicted with good accuracy for large values of U (at U = 0.50, the
coefficient of correlation, R2, is 0.998). On the other hand, differ-
ences between simulation results and predictions become signifi-
cant when U is reduced (R2 = 0.533 at U = 0.30). This is thought
to be related to changes in flow velocity distributions at small
gap widths, which are not described by the predictions.

4.2. Analytical characterisation of duct flow

To characterise duct flow in terms of hydraulic diameter and
shape factor, Dh is calculated by substituting the geometrical
parameters of the flow channel, Pg and Ag, in Eq. (10), and c is deter-
mined according to Eq. (9), where Kg is obtained from simulations.
A general relation between the duct cross-sectional area, Ag, and
the yarn cross-sectional area, Ay, as illustrated in Fig. 1, is

Ag ¼ AUC � Ay: ð17Þ
Similarly, the relation between the duct perimeter, Pg, and the

yarn perimeter, Py, is

Pg ¼ 2sþ Py: ð18Þ
Here, Ag and Pg are calculated numerically, which is facilitated

by discretisation of the geometry (Fig. 1) for flow simulation to
determine Kg. Meshing of the geometry results in the perimeter
of the power ellipse to coincide with a closed loop formed by cell
edges. Approximating the perimeter by the total length of the cor-
responding cell edges allows Pg to be determined according to Eq.
(18). The value of Ag can be approximated directly by summarising
the areas of cells representing the gap cross-section.

Since, at given U, combinations of values for 2R, h, s and n are
unique, duct cross-sectional shapes are fully characterised by three
parameters: The gap volume fraction, U, the aspect ratio of yarn
width to yarn height, 2R/h, and the geometrical parameter, n.
Values for c are plotted in Fig. 7 as a function of 2R/h at different
values of n for the example of U = 0.30, and in Fig. 8 as a function
of U at different values of 2R/h for the example of n = 0.25. The
hydraulic diameter, Dh, is plotted in Fig. 9 as a function of 2R/h at
different values of n for the example of U = 0.30 (corresponding
to Fig. 7).

Fig. 7 indicates that c decreases with increasing value of 2R/h
and decreasing n. Similarly, Fig. 9 indicates that Dh decreases with
increasing 2R/h, while the effect of n on Dh is very small. The steep
gradients for small 2R/h (c drops from 34.2 at 2R/h = 0.71 to 8.1 at
2R/h = 2.82 for the example of n = 0.25) reflect the quick increase in
perimeter length at constant cross-sectional area and its effect on
the flow velocity distribution with increasing 2R/h. On the other
hand, c is approximately constant for 2R/h > 10. This indicates that,
in this range, flow characteristics are identical for ducts with sim-
ilar cross-sectional shape but different dimensions, as discussed by
Mortensen et al. [33]. Values of Dh decrease only by small amounts
for 2R/h > 10. In reality, cross-sectional aspect ratios of yarns in
reinforcement fabrics are frequently in this range. Figs. 5 and 6
relate the significant drop in values for c and Dh to changing duct
cross-sections and flow velocity distributions as 2R/h is increased.
Kgmin, at different gap volume fractions, U; Kgmin and Kgmax are picked either from the
r the value of s where Kgmax/Kgmin has a maximum at the respective U.

2 Based on Kgmax/Kgmin

Entire range of s 11.15
s = 0.93 mm 1.74

Entire range of s 19.85
s = 1.32 mm 3.27



Fig. 7. Shape factor, c, as a function of the yarn cross-sectional aspect ratio, 2R/h, at different geometrical parameters, n; gap volume fraction U = 0.30; markers indicate
results from numerical analysis, lines represent analytical approximation described in Section 4.2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Shape factor, c, as a function of the gap volume fraction, U, at different yarn cross-sectional aspect ratios, 2R/h; geometrical parameter n = 0.25; markers indicate
results from numerical analysis, lines represent analytical approximation described in Section 4.2. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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In Fig. 8, the yarn shape stays the same for each value of 2R/h,
while the yarn spacing is changed to vary U. Starting at small val-
ues of U, c increases until a maximum is reached, which is related
to changes in flow patterns at the transition from two maxima in
the flow velocity distribution to one maximum. The maximum in
c is shifted towards higher values of U with decreasing value of
2R/h. When U is increased further, c goes through a local mini-
mum. Since the minimum coincides with approximately square
duct cross-section (as in Fig. 6, for s = 1.32 mm), it is shifted to
higher values of U as the ratio 2R/h is decreased. Dh decreases
monotonously with decreasing U, since this implies a reduction
in duct cross-sectional area.

The special case with n = 1.00, 2R/h = 1, and s = 2R, which corre-
sponds to a gap between yarns with circular cross-section at Umin

= 0.21, was also analysed by Gunn and Darling [25] employing a
finite difference method. They found a Poiseuille number of 6.5
(i.e. c = 26), which is in good agreement with simulation results
obtained here (where c = 25.5).

To predict duct flow characteristics, Bahrami et al. [34] approx-
imated c analytically for a selection of convex duct geometries,
based on the duct cross-sectional area, perimeter and polar
moment of inertia (exploiting the analogy to torsion of a bar,
where stress distributions are also described by the Poisson equa-
tion, Eq. (7)). However, analysis of several examples for flow
through a gap between yarns with power-elliptical cross-section
suggested that the proposed method fails to produce values of c
which are in satisfactory agreement with values derived from sim-
ulations. It is thought that this is related to the simplification of
results obtained in torsion theory for prismatic bars, which is
implied in the analytical approximation. In particular, the stresses
in torsion, expressed in terms of the moment of inertia, are exact
only for bars of a circular cross-section and become inaccurate
for concave cross-sections. For reference, the derived equations,
which may be of use elsewhere, are compiled in Table 5.

In a recent study, where only the special case with n = 1.00
was considered, the dependence of the shape factor, c, on the
aspect ratio of the yarn cross-section, 2R/h, was modelled as a
power function [12]. Since more data are available here than
in the limited study for n = 1.00, a generalised approximation
for c was found,

c ¼ B1ð2R=hÞ�B2 þ B3: ð19Þ



Fig. 9. Hydraulic diameter, Dh, as a function of the yarn cross-sectional aspect ratio, 2R/h, at different geometrical parameters, n; gap volume fraction U = 0.30; markers
indicate data from numerical analysis, the line represents the analytical approximation for n = 0.75 (as described in Section 4.2). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 5
Set of equations to approximate the shape factor, c, as suggested by Bahrami et al. [34]
for flow through a gap between yarns with power-elliptical cross-section (charac-
terised by geometrical parameter, n); yarn width, 2R, yarn height, h, yarn spacing, s.

Geometrical
parameter

Analytical expression

Shape factor c ¼ 4� 128p2 Ipg
AgP2g

Gap cross-sectional
area

Ag, see Eq. (17)

Gap perimeter Pg, see Eq. (18)
Polar moment of

inertia of inter-
yarn gap

Ipg ¼ Iyg þ sh3

96 � Ixy

Moment of inertia
of gap relative to
y-axis

Iyg ¼ sh3

24 � 2 Iyy
2 þ Ay

2
s
2 � 2R2h

ðn=2þ1ÞAy

� �2
� 2R2h

ðn=2þ1ÞAy

� �2� �� �

Moment of inertia
of yarn relative
to y-axis

Iyy ¼ 1
2nR

3h
ffiffiffiffi
p

p Cðn=2Þ
Cððnþ5Þ=2Þ

Moment of inertia
of yarn relative
to x-axis

Ixy ¼ 1
8 nRh

3 ffiffiffiffi
p

p Cð3n=2Þ
Cð3ðnþ1Þ=2Þ

Yarn cross-
sectional area
[35]

Ay ¼ Rh
ffiffiffiffi
p

p Cððnþ2Þ=2Þ
Cððnþ3Þ=2Þ

Yarn perimeter, n
� 2

Py ¼ 4
P1

i¼1
R
2

nh
2R

� 	2i 1=2
i

� �
Bðiþ 1=2;ni� 2iþ 1Þ

Yarn perimeter, 0
� n < 2

Py ¼ 4
P1

i¼1
P1

k¼1
R

2iþ2kþ1
nh
2R

� 	2i 1=2
i

� �
kþ 2i� ni� 1
2i� ni� 1

� �
Here, C and B are the Gamma- and Beta-function,
respectively
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Here, the dependence of Bi onU can be approximated by fourth-
order polynomials,

Bi ¼
X5
j¼1

BijU
5�j: ð20Þ

Similarly, the dependence of Bij on n can be approximated by

Bij ¼
X5
k¼1

Bijkn5�k: ð21Þ

The coefficients Bijk (63 different non-zero values), which allow
approximations of c to be calculated for any given combination of
n, 2R/h and U, are listed in Table 6. The examples plotted in Figs. 7
and 8 show that the quality of the approximation described by Eqs.
(19) to (21) is generally satisfying. The fit to values of c as a func-
tion of 2R/h (at U = 0.30) is characterised by coefficients of correla-
tion (R2) between 0.994 and 1.000 (for different values of n).
Coefficients of correlation for the fit to values of c as a function
ofU (at n = 0.25) are between 0.910 and 0.993 (for different values
of 2R/h).

For the dependence of Dh on U, the expression

Dh ¼ E1U
3 þ E2U ð22Þ

was found. Here, the dependence of Ei on 2R/h and n can be approx-
imated by

Ei ¼ Ei1ð2R=hÞEi2 : ð23Þ
and

Eij ¼
X4
k¼1

Eijkn4�k: ð24Þ

Values for the 16 coefficients, Eijk, are listed in Table 7. The qual-
ity of the fit of Eqs. (22)–(24) with the coefficients Eijk to values of
Dh is generally good. For the example in Fig. 9 (U = 0.30 and n =
0.75), the coefficient of correlation for Dh as a function of 2R/h
has a value of 0.974.

4.3. Implications for reinforcements at changing fibre volume fraction

If the fibre volume fraction in a reinforcement is increased in
through-thickness compaction, the effect on the yarn cross-
sectional shape is generally not known. A decrease in h to reduce
U could result in a change in 2R, n, or both. The yarn deformation
mechanisms may also differ for different reinforcements. The prob-
lem is simplified when adjacent yarns are in contact, i.e. R can be
assumed to be constant, and n decreases with decreasing h. On
the other hand, if the fibre volume fraction is increased by reducing
s, e.g. in shear or lateral reinforcement compression, h, R and n can
be assumed to be constant as long as 2R < s. Once adjacent yarns
are in contact, R and n decrease with decreasing s.

For illustration, Figs. 10 and 11 show the permeability of a rein-
forcement layer, Kl, as a function of U, which was calculated
according to Eq. (5) from additional simulation results for Kg. For
both examples (14 simulations each), the yarn cross-sectional area,



Table 6
Values of coefficients, Bijk, for approximation of the shape factor, c, according to Eqs. (19)–(21).

k

ij 1 2 3 4 5

11 0 0 0 0 �7118
12 �9061 10,370 21,060 �18,630 12,630
13 13,630 �24,620 �8414 13,880 �7031
14 �6641 15,360 �4511 �1639 1302
15 1048 �2831 1741 �320.7 �17.84
21 0 0 0 0 �333
22 �241.3 588.9 �323 221.1 314.8
23 320.1 �834.1 525.3 �287.1 �62.11
24 �139.8 386.8 �268.4 115.3 �11.39
25 20.12 �58.99 44.3 �14.11 1.43
31 0 0 0 0 1161
32 12,330 �24,650 �1036 11,410 �3841
33 �16,850 38,600 �11,060 �7771 2738
34 7651 �19,730 10,650 �18.79 �490.2
35 �1153 3293 �2427 525.2 �20.34

Table 7
Values of coefficients, Eijk, for approximation of the hydraulic diameter, Dh, according to Eqs. (22)–(24).

k

ij 1 2 3 4

11 �14.330 � 10�5 m 54.138 � 10�5 m �71.849 � 10�5 m 94.514 � 10�5 m
12 �0.004 �0.010 0.079 �0.591
21 3.441 � 10�5 m �12.828 � 10�5 m 14.418 � 10�5 m 42.258 � 10�5 m
22 �0.009 0.037 �0.026 �0.382
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Ay = 0.33 mm2, was assumed to be constant. AtU = 0.33, the geom-
etry was characterised by n = 2.00, s = 1.98 mm, 2R = 1.98 mm, and
h = 0.25 mm. Fig. 10 illustrates the case of through-thickness com-
paction, where s is constant. For 2R < s, 2R is increased from 1.34
mm to 1.83 mm to compensate for a reduction in h from 0.37
mm to 0.27 mm, while n = 2.00 is assumed to be constant here.
For 2R = s, n is reduced from 2.00 to 0.25 to allow 2R and Ay to stay
constant, while h is reduced from 0.25 mm to 0.18 mm (as also
proposed by Swery et al. [36]). In Fig. 11, the case of reducing yarn
Fig. 10. Permeability of a reinforcement layer, Kl, as a function of porosity, U; porosity
indicate simulation results (data points for U > 0.50 are omitted); continuous line i
approximation according to Eq. (25) with F = 39 � 10�10 m2. (For interpretation of the ref
article.)
spacing, which may occur when a uni-directional layer is sheared,
is illustrated, where h is constant. For 2R < s, 2R is constant at 1.98
mm and n = 2.00, while s is reduced from 3.00 mm to 2.00 mm.
When adjacent yarns are in contact, 2R and s are reduced simulta-
neously from 1.98 mm to 1.42 mm, and n is reduced from 2.00 to
0.25 to allow Ay to stay constant.

Comparison of the two examples indicates that, at identical
U, Kl has greater values in lateral compression than in
through-thickness compaction if U < 0.33. On the other hand,
is reduced in through-thickness compaction, i.e. through reduction of h; markers
ndicates approximation based on c and Dh (Section 4.2); dashed line indicates
erences to color in this figure legend, the reader is referred to the web version of this



Fig. 11. Permeability of a reinforcement layer, Kl, as a function of porosity, U; porosity is reduced through reduction of s; markers indicate simulation results (data points for
U > 0.50 are omitted); continuous line indicates approximation based on c and Dh (Section 4.2); dashed line indicates approximation according to Eq. (25) with F = 22 � 10�10

m2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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if U > 0.33, Kl is greater in through-thickness compaction.
Although the values of Kl are identical at U = 0.33, the mecha-
nism for changing U has a significant effect on the reinforce-
ment permeability.

In addition, values for Kl were predicted based on the approxi-
mations for c and Dh described above. In the range with U < 0.50,
for which the approximations were derived, the coefficient of cor-
relation between predicted values and simulation results is 0.997
for the case of through-thickness compaction (Fig. 10). For the case
of lateral compaction (Fig. 11), it is 0.995. The predictions show
generally good quantitative agreement with simulation results, in
particular for small U.

The figures also show curves indicating approximations for
Kl(U) based on Gebart’s equation for axial flow in aligned fibrous
media,

Kl ¼ F
U3

ð1�UÞ2
; ð25Þ

which was devised for fibres with circular cross-section and regular
periodic arrangement (the same dependence on U was formulated
by Cozeny-Karman [2]). The factor F depends on the fibre radius and
the shape factor, c, as defined above. In Figs. 10 and 11, F was
replaced by (constant) fitting factors. Although Gebart’s approxima-
tion cannot quantitatively predict appropriate values of F for flow
through inter-yarn gaps, the fitted trend curve for Kl(U) according
to Eq. (25) shows good agreement (R2 = 0.996) with values derived
from simulations if U is changed in though-thickness compression
(Fig. 10). However, if U is changed in lateral compression (Fig. 11),
the fitting factor, F, is significantly different, and the dependence of
Kl on U is not approximated with the same accuracy (R2 = 0.965).
This indicates that, to obtain reliable results, describing the perme-
ability of a reinforcement as a function of the fibre volume fraction
only is not sufficient, and an approximation as derived in Section 4.2
is required.

The extensive analysis presented here lends itself to further
enhance the predictive capabilities of a recent model for the per-
meability of fabrics with deterministic and stochastic non-
uniformity [12], where the fibre volume fraction and the shape of
inter-yarn gaps vary locally, through elimination of the limiting
assumption that yarns have elliptical cross-sections.
5. Conclusion

For examples of single layers of aligned straight yarns, axial
duct flow through gaps between adjacent yarns was analysed
employing numerical simulations. Yarn cross-sectional shapes,
which were different for each example, were approximated by
power ellipses. The simulations indicate that, at given fibre volume
fraction, equivalent duct permeabilities have a maximum, when
the size of elongated tapering parts of the duct cross-section has
a minimum, and the ratio of duct width to duct height is near 1.
As a rule of thumb, higher equivalent permeabilities can be
obtained for ducts bounded by yarns with near-rectangular
cross-section than by yarns with lenticular cross-section. This
implies also that increasing the duct cross-sectional area by chang-
ing the duct shape does not necessarily translate into increasing
equivalent permeability.

At any fibre volume fraction and yarn spacing studied here, the
maximum and minimum values for the equivalent permeability of
inter-yarn gaps differ by factors of up to 3.3. This may contribute to
the wide variation in experimental permeability data for fabrics,
and explain why accurate permeability prediction is in practice
found to be difficult, even if the fibre volume fraction is known.
It illustrates also that, in numerical prediction of textile permeabil-
ities, accurate modelling of yarn cross-sections is critical. If the
equivalent permeability of inter-yarn ducts is approximated by
the equivalent permeability of ducts with abstracted geometry,
the error can be significant even if the duct cross-sectional area
is matched.

Approximations for the shape factor and the hydraulic diameter
in Poiseuille duct flow were derived as a function the fibre volume
fraction, the yarn cross-sectional aspect ratio and the geometrical
parameter describing the shape of the power-elliptical yarn
cross-section. This allows the equivalent gap permeability to be
predicted quantitatively for any fibre volume fraction and yarn
cross-section, while more general approximations found in the lit-
erature only describe trends for the permeability as a function of
the fibre volume fraction.

While geometrically more complex cases may occur in reality,
such as gaps bounded by yarns with non-symmetrical cross-
section or crimped yarns in woven fabrics, analysis of the simpli-
fied case of a uniform single layer of aligned straight yarns allows
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fundamental assessment of the sensitivity of fabric permeability to
yarn cross-sectional shapes.
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