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Abstract.

We study the eigenvalues and the eigenvectors of N×N structured random matrices

of the form H = WH̃W+D with diagonal matrices D and W and H̃ from the Gaussian

Unitary Ensemble. Using the supersymmetry technique we derive general asymptotic

expressions for the density of states and the moments of the eigenvectors. We find

that the eigenvectors remain ergodic under very general assumptions, but a degree of

their ergodicity depends strongly on a particular choice of W and D. For a special

case of D = 0 and random W , we show that the eigenvectors can become critical and

are characterized by non-trivial fractal dimensions.
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1. Introduction

Statistical properties of eigenvalues and eigenvectors of random matrices is the central

topic of Random Matrix Theory (RMT) [1] . The key idea of RMT is that many features

of complex systems are universal and therefore they can be modelled by ensembles of

random matrices, which share the same global symmetries, but don’t contain any system

specific information. A prominent example of such classical ensemble is the Gaussian

Unitary Ensemble (GUE), in which the only constraint is the Hermiticity of a matrix.

Despite the great success of classical RMT during the last fifty years, there is

a growing interest to new ensembles of random matrices, in which some structural

information about an original system is partly present. In this paper, we study one of

such random matrix models, which is defined as

H = WH̃W +D, (1)

where H̃ is an N ×N matrix from GUE and W , D are diagonal matrices with elements

wi and di, i = 1, ..., N , respectively; the matrices W and D can be either deterministic or

random. Since the presence of the matricesW andD breaks the unitary invariance of the

probability distribution of H̃, it is reasonable to expect that the statistical properties of

the eigenvectors of this model might be very different from the corresponding properties

of GUE. How exactly they will be different, is the main question addressed in this work.

The random matrices of the form H = LJR + M , where L, R and M are

not necessary diagonal and the random matrix J might be from another random

matrix ensemble, appear naturally in various applications including signal processing

[2], vibration analysis [3], wireless communication [4] and neural networks [5]. For

example, they arise in the linearized dynamics of non-linear neural networks: J is a

random connectivity matrix and L, R and M can be expressed through the firing rates

and the time constants of the neurons [5]. In the present work we restrict ourselves to

the technically simplest case, where L = R and M are diagonal matrices and J is from

GUE.

The spectral properties of such random matrices have been studied recently and

a number of very general results have been derived (see [5, 6] and references therein),

however much less is known about their eigenvectors [7]. In this work, we generalize our

recent results, which have been obtained for two particular cases: i) D = 0 and W is

deterministic [8] ii) W = I and D is either deterministic or random [9].

One of the main results of this paper is a general non-perturbative, asymptotic

expression for the moments of the eigenvectors of H, which allows us to calculate the

moments for any given values of wi and di. From this expression, it follows, in particular,

that the eigenvectors H remain qualitatively the same as the eigenvectors of H̃ for very

generic choice of parameters wi and di. That means, that extended nature of the GUE

eigenvectors is very robust under a wide class of the deformations described by Eq.(1).

At the same time, it also shows that on a quantitative level the eigenvectors of H can

be very different from their GUE counterparts, namely they can occupy an arbitrarily
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small fraction of the available space.

Another important conclusion following from the general result for the moments is

that the extended nature of the eigenvectors can be altered, provided that di and wi
become N -dependent. One of the special cases we study in the present paper is the

model with D = 0 and uncorrelated Gaussian distributed wi with the variance, which

is N -dependent. Such a model can be considered as a multiplicative counterpart of the

Rosenzweig-Porter model [10], whose eigenvectors statistics was calculated in [9]. We

find that eigenvectors of this model can be fractal and compute their fractal dimensions.

The paper is organized as follows. In Section 2 we derive our general results for

the moments of the eigenvectors and the density of states. In Section 3 we investigate

a special case of the model with D = 0 and random W . Finally, some conclusions and

open problems are discussed briefly in Section 4.

2. Moments of the eigenvectors and the density of states

In this section we derive expressions for the moments of the eigenvectors of H and the

density of states. Generally, the local moments at energy E are given by the definition

Iq(n) =
1

ρ(E)

∑
α

〈
|ψαn |2qδ(E − Eα)

〉
, (2)

where ψα is a normalized eigenvector corresponding to the eigenvalue Eα and ρ(E) is

the density of states

ρ(E) =
1

N

∑
α

〈δ(E − Eα)〉 . (3)

The integer moments can be related to the diagonal matrix elements of the Green’s

functions

Iq(n) =
i2−q

2πρ(E)N
lim
ε→0

(2ε)q−1
〈
(GR

nn)(GA
nn)q−1

〉
, q = 2, 3, . . . , (4)

where GR denotes the retarded Green’s functions and similarly GA the advanced Green’s

function, which are defined by

GR/A(E) = (E ± iε−H)−1, (5)

where ε > 0 provides an infinitesimal imaginary shift of E into the complex plain

and 〈. . .〉 denotes an average over the random matrix ensemble. For the matrix

elements of the Green’s functions such an average can be computed by employing

the supersymmetry technique. In this approach the averaged Green’s functions are

represented as superintegrals over a supermatrix Q, which is in our case is just a 4× 4

matrix. The first steps of the method are very generic and don’t depend significantly

on the structure a matrix H, therefore we don’t present them here, further details of
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the derivation can be found in [8]. The superintegral representing the product of the

Green’s functions from Eq.(4) is given by〈(
GR
nn

) (
GA
nn

)q−1〉
=

∫
dQ(gBBaa )q−2

{
gBBaa g

BB
rr + (q − 1)gBBar g

BB
ra

}
× exp

{
−N

2
StrQ2 −

N∑
i

Str ln(E − iεΛ̂− di − w2
iQ)

}
.

(6)

Λ = diag(1, 1,−1,−1) and gBB = (E−dn−w2
nQn−iεΛ)−1BB, where the explicit expression

for gBB is given in Appendix A. We notice that the standard action of the superintegral

appearing in the GUE case is altered by the parameters di and wi as expected.

In the limit N → ∞, the integral is dominated by the saddle-points that satisfy

the saddle-point equation

Q =
1

N

N∑
i=1

w2
i

E − di − w2
iQ

, (7)

where the solutions can be parametrized as [13]

Qs.p. = t+ isT−1ΛT, (8)

the variables s 6= 0 and t are two real parameters satisfying the simultaneous equations

t =
1

N

N∑
i=1

w4
i (E − di − w2

i t)

(E − di − w2
i t)

2 + w4
i s

2
, 1 =

1

N

N∑
i=1

w4
i

(E − di − w2
i t)

2 + w4
i s

2
. (9)

In this way any physical quantity, which can be expressed through the Green’s functions,

can be calculated in terms of s and t by computing the corresponding superintegral over

T . Then for any given set of parameters {di} and {wi} the above system of the equations

can be solved numerically yielding an explicit result for any quantity of interest. In

particular, one can compute the density of states, which takes the form

ρ(E) =
s

πN

N∑
i=1

w2
i

(E − di − w2
i t)

2 + w4
i s

2
, (10)

and in a similar way, we find the expression for the local moments

Iq(n) =
1

(πρ(E)N)q

[
sw2

n

(E − dn − w2
nt)

2 + w4
ns

2

]q
Γ(q + 1), (11)

where Γ(z) is the gamma function and q is a positive integer. These two general results

allow us to calculate the density of states and the statistics of the eigenvectors for any

particular choice of the matrices W and D in Eq.(1).

Verifying that we recover the GUE case once we set di = 0 and wi = 1 is a simple

exercise, where we obtain

ρGUE(E) =
1

π

√
1− (E/2)2, IGUEq (n) =

Γ(q + 1)

N q
, (12)
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Figure 1. The symbols represent the numerical simulation and the solid line is our

analytical result. The numerical simulation is over 1000 realizations for q = 2 with

wi = di = N/i.

these are the well-known results for the GUE case.

Setting wi = 1 we reproduce our previous result derived in [9]:

ρ(E) =
s

πN

N∑
i=1

1

(E − di − t)2 + s2
,

Iq(n) =
1

(πρ(E)N)q

[
s

(E − dn − t)2 + s2

]q
Γ(q + 1).

(13)

At the same time, we can also recover the result from [8] by setting di = 0:

ρ(E) =
s

πN

N∑
i=1

w2
i

(E − w2
i t)

2 + w4
i s

2
,

Iq(n) =
1

(πρ(E)N)q

[
sw2

n

(E − w2
nt)

2 + w4
ns

2

]q
Γ(q + 1).

(14)

It follows from Eq.(11) that the scaling of Iq(n) with N remains the same

as in the GUE case, provided that wi, di, s and t are N -independent. This

implies that the eigenvectors of all such models are extended. Nevertheless their

quantitative characteristics, which depend strongly on the ratio sw2
n

(E−dn−w2
nt)

2+w4
ns

2 can

change significantly compared to the GUE case. In particular, such eigenvectors can be

concentrated on an arbitrarily small fraction of the available space being less ergodic

than their GUE counterparts.

The fact that the local moments Iq(n) depend explicitly only on the corresponding

matrix elements dn and wn and don’t depend on dk and wk with k 6= n might be useful

for some applications, in which one can control the matrices D and W . Indeed, changing
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the values of dn and wn relative to other matrix elements, one can enhance or decrease

the corresponding component of the eigenvector in a desirable fashion. The implicit

dependence of Iq(k) on dn and wn with k 6= n, which comes from the corresponding

dependence of the parameters s and t on all dk and wk, can be generally ignored, since

the contribution of the term containing dn and wn in Eq.(9) is by factor 1/N smaller

than the total contribution of all other terms, unless E is tuned to the resonance value

Eres = dn + w2
nt.

We test our general result by numerical simulations, considering a specific model,

in which wi = di = N/i. Numerical results for the density of states and the moments

of the eigenvectors were produced by direct matrix diagonalization and they match

our analytical expressions with high accuracy. Fig. 1 shows the results of numerical

simulations for I2 =
∑

n I2(n) with N ranging from 500 to 3000 over a total of 1000

realizations. The eigenvectors that were used in the calculation correspond to the

eigenvalues in the vicinity of E = 0.

3. Model with random W and D = 0.

A particular case of the general model, in which D = 0 and W is a deterministic matrix

was investigated in Ref.[8]. In this section we study how the results of that work can

be generalized to the case of random W . Specifically, we focus on the model, in which

wi are independent Gaussian distributed variables with 〈wi〉 = 0 and 〈w2
i 〉 = σ2.

The system of the equations (11) at di = 0,

t =
1

N

N∑
i

w2
i (E − w2

i t)

(E − w2
i t)

2 + s2w4
i

, and 1 =
1

N

N∑
i

w4
i

(E − w2
i t)

2 + s2w4
i

, (15)

is valid for any particular realization of the random variables di. Therefore s and t

also become random variables, whose distribution functions can be found by solving the

equations for each realization of wi. As s and t are determined by a large number of

independent random variables, they must satisfy some generalization of the law of large

numbers and by numerical simulations we infer that the deviation of s and t from their

mean values become smaller and smaller as N → ∞. That means that the variables

s and t are self-averaging quantities implying that they can be replaced by their mean

values 〈s〉 and 〈t〉. Taken this fact into account and averaging the above equations over

wi we find

〈t〉 =
1

N

N∑
i

〈
w2
i (E − w2

i 〈t〉)
(E − w2

i 〈t〉)2 + 〈s〉2w4
i

〉
, and 1 =

1

N

N∑
i

〈
w4
i

(E − w2
i 〈t〉)2 + 〈s〉2w4

i

〉
.

(16)

As wi are identically distributed, we can simply replace wi with x and simplify the

system to

〈t〉 =

〈
x2(E − x2 〈t〉)

(E − x2 〈t〉)2 + 〈s〉2 x4

〉
x

, and 1 =

〈
x4

(E − x2 〈t〉)2 + 〈s〉2 x4

〉
x

, (17)
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where x is the Gaussian distributed random variable with 〈x〉 = 0 and 〈x2〉 = σ2.

In order to compute the average of the second equation, we first rearrange its right

hand side as follows

1 =
1

〈t〉2 + 〈s〉2

1 +
1

〈t〉2 + 〈s〉2

〈
2Ex2 − E2(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

〉
x

 , (18)

The above average over x can be now calculated using the Fourier transform of

P (x) = 1√
2π

∫∞
−∞ dκe

−iκxP̂ (κ), where P̂ (κ) = 1√
2π
e−

1
2
κ2σ2

:〈
2Ex2 − E2(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

〉
x

=
1√
2π

∫ ∞
−∞

dκ
1√
2π
e−

1
2
κ2σ2

∫ ∞
−∞

dx
(2Ex2 − E2)e−iκx(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

.

(19)

Once the integration is completed (see Appendix B for details), we get the expression

for the averaged equation

1 =
1

〈t〉2 + 〈s〉2

(
1 + 2 〈t〉2 +

i
√
E

2

√
π

2

1

σ

[
F+ (〈t〉 , 〈s〉)− F− (〈t〉 , 〈s〉)

])
, (20)

where we introduced the functions

F±(x, y) =
e
− E(x±iy)

2(x2+y2)σ2

√
x∓ iy

(
1± i erfi

[√
E(x± iy)

2(x2 + y2)σ2

])
. (21)

and erfi(z) stands for the imaginary error function.

A similar approach is taken to average the first simultaneous equation, which gives

〈t〉 =

√
E

2 〈s〉

√
π

8

1

σ

(
F− (〈t〉 , 〈s〉) + F+ (〈t〉 , 〈s〉)

)
. (22)

By solving the system of equations (20) and (22) numerically, we can find 〈s〉 and 〈t〉
and hence the density of states

ρ̂(E) =
2 〈s〉 〈t〉
πE

. (23)

In Fig. 2 we present the results of numerical simulations testing the validity of this

expression. One can show that t ∝
√
E and s = O(1) at E → 0. Therefore the density

of states, ρ̂(E) ∝ 1/
√
E, is singular at E = 0. The origin of this singularity can be

understood from the general expression (10), according to which the density of states is

given by a sum of Lorentzians. At di = 0 and E = 0 the contribution of each of them to
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Figure 2. The grey line represents the analytical result and the histogram shows the

numerical data. The numerical simulations were performed over 1000 realizations of

random matrices for N = 1000 and σ = 10.

ρ(0) has a maximum value proportional to w−2i . Since negative moments are divergent

for the Gaussian distribution, the density of states tends to infinity, if wi are random

Gaussian variables.

Employing the same method one can average the expression for the moments of the

eigenvectors (14):

Îq ≡
N∑
n

〈Iq(n)〉 =
N 〈s〉q Γ(q + 1)

(πρ̂(E)N)q

〈
x2q

[(E − x2 〈t〉)2 + 〈s〉2 x4]q

〉
x

=
EqΓ(q + 1)

2q 〈t〉qN q−1

〈
x2q

[(E − x2 〈t〉)2 + 〈s〉2 x4]q

〉
x

.

(24)

The calculation of the averaging over wi can be simplified first by noticing that

x2q

[(E − x2 〈t〉)2 + 〈s〉2 x4]q
=

1

(q − 1)!

[(
− 1

2y

d

dy

)q−1
x4−2q

(E − x2 〈t〉)2 + y2x4

]
y=〈s〉

, (25)

therefore the averaged moments of the eigenvectors can be written as

Îq =
qEq

2q 〈t〉qN q−1

[(
− 1

2y

d

dy

)q−1〈
x4−2q

(E − x2 〈t〉)2 + y2x4

〉
x

]
y=〈s〉

. (26)

The latter average can be evaluated exactly in the same way as one in Eq.(17). Once
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Figure 3. The numerical results are given by the symbols and the solid line depicts

our analytical result. In this numerical simulation over 1000 realizations of random

matrices, we used σ = 10.

the averaging is completed, we arrive at the final result for the moments

Îq =
q
√
E

2q 〈t〉qN q−1

(− 1

2y

d

dy

)q−1
1

σy

√
π

8

(〈t〉+ iy)q−1F−(〈t〉 , 〈s〉)

+ (〈t〉 − iy)q−1F+(〈t〉 , 〈s〉)



y=〈s〉

.

(27)

The derivatives can be calculated explicitly for any integer q. Since the final

expressions for Îq become quite lengthy for higher values of q, here we present only

an explicit formula for q = 2:

Î2 =

√
E

8N 〈t〉2 〈s〉2 σ

√
π

2

[(
〈t〉 − i 〈s〉
〈s〉

+
i

2

(
1 +

E(〈t〉+ i 〈s〉)
(〈t〉2 + 〈s〉2)σ2

))
F+(〈t〉 , 〈s〉)

(
〈t〉+ i 〈s〉
〈s〉

− i

2

(
1 +

E(〈t〉 − i 〈s〉)
(〈t〉2 + 〈s〉2)σ2

))
F−(〈t〉 , 〈s〉) +

√
2E 〈t〉

√
πσ(〈t〉2 + 〈s〉2)

]
.

(28)

In order to corroborate the validity of this expression we ran numerical simulations for

σ = 10. The numerical results presented in Fig. 3 along with the analytical solution

fully confirm its validity. The moment with q = 2 was calculated for the eigenvectors

corresponding the eigenvalues from the vicinity of E = 1.

According to Eq.(27) the scaling of Îq ∝ N1−q is exactly the same as in GUE,

indicating that the eigenvectors of this model are qualitatively similar to the GUE

eigenvectors. However, if one assumes that σ acquires N -dependence, then this
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Figure 4. This figure shows the results of numerical simulations (symbols) for Î2 at

σ = N1/2. The solid line represents our analytical result. The numerical simulations

were performed over 1000 realizations of random matrices.

conclusion can’t be drawn any more. To explore such a possibility, we study the model

with σ = Nγ, γ > 0.

Since σ → ∞, as N → ∞ we can analyse the asymptotic behaviour of the

simultaneous equations when σ → ∞, assuming that E ∝ O(1), so we set E = 1

for simplicity. One can show that in this limit 〈s〉 � 〈t〉, therefore we can expand all

the expression in 〈t〉 / 〈s〉 and keep only the leading order terms. Then the asymptotic

solution of the simultaneous equations is given by

〈t〉 ≈
√
π

4σ
, 〈s〉 ≈ 1. (29)

Substituting this result into the formula for Îq we find an asymptotic expression for the

moments:

Îq ≈ q

(
σ√
πN

)q−1 q−2∏
k=0

∣∣∣∣q − 5 + 4k

2

∣∣∣∣ (30)

This result holds for any σ � 1. In particular, for σ = Nγ we have Îq ∝ N (γ−1)(q−1). The

scaling of the moments with non-trivial power of N implies that the eigenvectors become

fractal in this case with the fractal dimension Dq = 1 − γ. There is a clear similarity

between this finding and recent results [14, 9] for non-ergodic states in the Rosenzweig-

Porter model [10]. Indeed, our results for σ = const and σ = Nγ show that there is a

transition at γ = 0 from ergodic to non-ergodic states. As the exponent (γ − 1)(q − 1)

of the scaling law must be negative, we conclude that our result breaks down for γ > 1,

where we expect that the eigenvectors become localized. Thus the model we discuss

here can be considered as a multiplicative analogue of the Rosenzweig-Porter model.

The presence of critical states for the random matrices of the form WH̃W , which don’t
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require any fine-tuning of parameters of a model, might be important for understanding

of emergence of such states in various applications such as, for example, critical wave

functions of certain biomolecules, reported recently in Ref. [15].

We computed Î2 numerically for σ = N1/2 for the eigenvectors, whose eigenvalues

are sufficiently close to E = 1, and found the the numerical results are in agreement

with our prediction. The corresponding results are given in Fig. 4.

4. Conclusions

We studied a general class of the structured random matrices given by Eq.(1). Our main

focus was on the statistical properties of the eigenvectors of such random matrices. Using

the supersymmetry technique we derived a very general expression for the local moments

of the eigenvectors. This result allowed us not only to make predictions about qualitative

nature of the eigenvectors, such as a degree of their ergodicity, but also to understand,

how particular components of the eigenvectors are affected by the corresponding matrix

elements of W and D.

We investigated in detail a special case of the model with D = 0 and Gaussian

distributed W . We found that when the variance of wi scales in a power-law fashion

with N , the eigenvectors of the model become critical and are characterized by a non-

trivial fractal dimension, making such ensemble of random matrices to be similar to the

Rosenzweig-Porter model.

It would be interesting to generalize our results to other random matrix ensembles.

Particularly, in many applications instead of the matrix H̃ from the GUE one should

deal with matrices from the Gaussian Orthogonal Ensemble or Wishart matrices.

KT acknowledges support from the Engineering and Physical Sciences Research

Council [grant number EP/M5065881/1].

Appendix A. Pre-exponential factors in Efetov’s parametrization

The pre-exponential factors calculated by employing Efetov’s parametrization are given

as follows:

gBBaa =
E − dn − w2

nt+ isw2
nλ1 + isw2

n(λ1 − λ2)αα∗

(E − dn − w2
nt)

2 + s2w4
n

, (A.1)

gBBar = −
µ1sw

2
n

(
1 +

αα∗

2

)(
1− ββ∗

2

)
+ µ∗2sw

2
nα
∗β

(E − dn − w2
nt)

2 + s2w4
n

, (A.2)

gBBra = −
µ∗1sw

2
n

(
1− ββ∗

2

)(
1 +

αα∗

2

)
+ µ2sw

2
nβ
∗α

(E − dn − w2
nt)

2 + s2w4
n

, (A.3)

gBBrr =
E − dn − w2

nt− isw2
nλ1 + isw2

n(λ1 − λ2)ββ∗

(E − dn − w2
nt)

2 + s2w4
n

. (A.4)
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The integration measure reads

dµ(T ) = − dλ1dλ2
(λ1 − λ2)2

dφ1dφ2dαdα∗dβdβ∗, (A.5)

where λ1 ∈ [1,∞), λ2 ∈ [−1, 1], φ2, φ2 ∈ [0, 2π], and α, α∗, β, β∗ are Grassmann

variables, for which the following convention is used∫
dα α =

∫
dα∗ α∗ =

∫
dβ β =

∫
dβ∗ β∗ =

1√
2π
. (A.6)

Appendix B. Computing the average in Eq.(19)

The integral over x can be computed by the application of the residue theorem, which

gives ∫ ∞
−∞

dx
(2Ex2 〈t〉 − E2)e−iκx(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

=
π
(
〈t〉2 + 〈s〉2

)√
E

2 〈s〉

×

(
〈t〉 − i 〈s〉√
〈t〉+ i 〈s〉

e
−i|κ|

√
E

〈t〉+i〈s〉 +
〈t〉+ i 〈s〉√
〈t〉 − i 〈s〉

e
i|κ|

√
E

〈t〉−〈s〉

)
,

(B.1)

where we made the following assumptions: E > 0, 〈t〉 > 0 and 〈s〉 > 0.

Therefore the average is equal to〈
2Ex2 − E2(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

〉
x

=
1√
2π

∫ ∞
−∞

dκ
1√
2π
e−

1
2
κ2σ2 π

(
〈t〉2 + 〈s〉2

)√
E

2 〈s〉

×

(
〈t〉 − i 〈s〉√
〈t〉+ i 〈s〉

e
−i|κ|

√
E

〈t〉+i〈s〉 +
〈t〉+ i 〈s〉√
〈t〉 − i 〈s〉

e
i|κ|

√
E

〈t〉−〈s〉

)
,

(B.2)

computing the integral over κ we arrive at the result〈
2Ex2 − E2(

x2 − E〈t〉
〈t〉2+〈s〉2

)2
+ E2〈s〉2

(〈t〉2+〈s〉2)
2

〉
x

=
1

〈t〉2 + 〈s〉2

×

1 +

√
E

2 〈s〉

√
π

2

e
− E〈t〉

(〈t〉2+〈s〉2)σ2√
〈t〉2 + 〈s〉2σ

e E
2(〈t〉−i〈s〉)σ2 (〈t〉 − i 〈s〉)3/2

×

(
1− erf

[√
− E

2(〈t〉+ i 〈s〉)σ2

])

+ e
E

2(〈t〉+i〈s〉)σ2 (〈t〉+ i 〈s〉)3/2
(

1− erf

[√
− E

2(〈t〉 − i 〈s〉)σ2

])
,

(B.3)
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where erf is the error function. The expression above can be simplified down to

1 =
1

〈t〉2 + 〈s〉2

1 +

√
E

2 〈s〉

√
π

2

e
− E〈t〉

(〈t〉2+〈s〉2)σ2√
〈t〉2 + 〈s〉2σ

e E
2(〈t〉−i〈s〉)σ2 (〈t〉 − i 〈s〉)3/2

×

(
1− ierfi

[√
E

2(〈t〉+ i 〈s〉)σ2

])
+ e

E
2(〈t〉+i〈s〉)σ2 (〈t〉+ i 〈s〉)3/2

×

(
1 + ierfi

[√
E

2(〈t〉 − i 〈s〉)σ2

]).
(B.4)

In the integral for the moments we are then able to compute the average by applying

the Fourier transform and integrating over the expressions

1

〈t〉2 + y2

〈
(x2)2−q(

x2 − E〈t〉
〈t〉2+y2

)2
+ E2y2

(〈t〉2+y2)2

〉
x

=
1√
2π

∫ ∞
−∞

dκ
1√
2π
e−

1
2
κ2σ2

1

〈t〉2 + y2

∫ ∞
−∞

dx
(x2)2−qe−iκx(

x2 − E〈t〉
〈t〉2+y2

)2
+ E2y2

(〈t〉2+y2)2

.

(B.5)

Once the integral over x has been completed we arrive at the following

1

〈t〉2 + y2

〈
(x2)2−q(

x2 − E〈t〉
〈t〉2+y2

)2
+ E2y2

(〈t〉2+y2)2

〉
x

=
E

1
2
−q

2y

∫ ∞
0

dκe−
1
2
κ2σ2

(
(〈t〉+ iy)q−

3
2 e
−iκ

√
E

〈t〉+iy + (〈t〉 − iy)q−
3
2 e

iκ
√

E
〈t〉−iy

)
,

(B.6)

the integral over κ can also be calculated, which yields the final expression for the

moments averaged over wi, this is valid for any integer q

Îq =
q
√
E

2q 〈t〉qN q−1

(− 1

2y

d

dy

)q−1
1

σy

√
π

8

e− E
2(〈t〉+iy)σ2 (〈t〉+ iy)q−

3
2

1− ierfi

[√
E

2(〈t〉+ iy)σ2

]+ e
− E

2(〈t〉−iy)σ2 (〈t〉 − iy)q−
3
2

1 + ierfi

[√
E

2(〈t〉 − iy)σ2

]

y=〈s〉

.

(B.7)
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