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ABSTRACT

Despite the significant biological, behavioural and management differences between ductal

carcinoma in situ (DCIS) and invasive carcinoma of the breast, they share a great many

morphological and molecular similarities. Differentiation of these two different lesions in

breast pathological diagnosis is typically based on the presence of an intact barrier

between the malignant epithelial cells and stroma, namely the myoepithelial cell (MEC)

layer and surrounding basement membrane (BM). Despite being robust diagnostic criteria,

the identification of MECs and BM to differentiate in situ from invasive carcinoma is not

always straightforward. The MEC layer around DCIS may be interrupted and/or show an

altered immunoprofile. MECs may be absent in some benign locally infiltrative lesions such

as microglandular adenosis and infiltrating epitheliosis, and occasionally in non-infiltrative

lesions such as apocrine change, and in these contexts this does not denote malignancy

or invasive disease with metastatic potential. MECs may be also absent around some

malignant lesions such as papillary carcinomas yet they behave in an indolent fashion akin

to some DCIS. In Paget’s disease, malignant mammary epithelial cells extend anteriorly

from the ducts to infiltrate the epidermis of the nipple but do not usually infiltrate through

the basement membrane into the dermis. Conversely, BM-like material can be seen around

invasive carcinoma cells and around metastatic tumour cell deposits. Here, we review the

role of MECs and BM in breast pathology and highlight potential clinical implications.



INTRODUCTION

Ductal carcinoma in situ (DCIS) of the breast is defined as a proliferation of malignant

epithelial cells confined to the ducto-lobular system of the breast without evidence of

stromal invasion [1, 2]. Invasion is defined morphologically, as in other organ sites, by

the absence, or breaching, of the basement membrane (BM) barrier between the

malignant epithelial cells and surrounding stroma. In the breast there is an additional

myoepithelial cell (MEC) layer between the epithelium and the basement membrane. At

the molecular level, DCIS progresses to invasive carcinoma when malignant cells acquire

the invasive phenotype [1, 3] that is the capability to infiltrate through both the

myoepithelial and basement membrane layers. Because of challenges and limitations in

identifying BM components using immunocytochemistry (IHC), the MEC layer has gained

importance because of the greater simplicity of its identification immunohistochemically

and is thus used as a surrogate marker for invasion through the BM. The loss of the MEC

layer in breast pathology has become a key criteria for differentiating non-invasive from

invasive disease implying, possibly incorrectly in some contexts, direct exposure of the

malignant epithelial cells to the stroma and a subsequent ability to infiltrate and

metastasize.

Understanding the events that lead to invasiveness and the role of MECs and BM is crucial

in improving diagnosis and management of various breast lesions. This review addresses

the features and roles of MECs and BM in the understanding and diagnosis of breast

lesions, with an emphasis on DCIS, and highlights the morphological use of specific

features for differentiating benign from malignant lesions and in situ from invasive disease

that have significant management implications.

Features of DCIS progression to invasive carcinoma

During progression from in situ to invasive disease interactions between intraductal

malignant cells and peripheral MECs, which are thought to act as a ‘gatekeeper’ exerting

tumour suppressive effects [4], take place leading to loss of MECs unleashing the



progression to invasive disease [5, 6]. Molecular studies of DCIS and invasive breast

cancer (IBC) suggest that this progression is not only driven by genomic aberrations in

the malignant cells but also a result of complex processes involving interactions and cross

talks of tumour cells with the surrounding stromal environment including BM, stromal cells,

vascular spaces and immune cells [7-9] (Figure 1). In fact the process of progression to

invasive disease is multifactorial and complexity. It is thought that the activity of

proteolytic proteins secreted by the malignant cells to breach the BM and surrounding

stroma is sufficient to explain progression [9] however; results of clinical trials of inhibitors

of proteolytic enzymes to suppress tumour progression have not been promising [10]. In

view of the limited success in identifying genetic aberrations in the malignant cells of DCIS

that can predict invasion, despite all previous efforts, we believe that further

understanding the role of the microenvironment and its interaction with DCIS cells may

help in deciphering this complex process of invasion with the potential of improving patient

management.

Characterisation of DCIS-associated myoepithelial cells

MECs surround both normal terminal duct lobular units and larger ducts as well as

precancerous (in situ) lesions of the breast, forming a natural barrier and in the latter

situation separating the abnormally proliferating epithelial (luminal) cells from the

surrounding various stromal elements. It has been postulated that disruption of this barrier

is required for tumour invasion and metastasis [11].

Loss of physical barrier

MECs surrounding DCIS show some morphological differences to normal breast MECs and

there is evidence to indicate that DCIS-derived MECs lose the power to polarise luminal

epithelial cells [12]. Interestingly, discontinuity in expression of MEC markers in the

absence of microinvasion of tumour cells into the surrounding stroma has been observed,

raising the possibility that this could be the primary event which precedes tumour invasion

[13]. Such interruption in the MEC layer integrity may be due to mechanical factors,

immune reaction or loss of cellular renewal capacity [11]. The loss of tumour suppressor



control on the epithelial cells facing these interrupted MECs has been supported through

the analysis of the genetic and IHC features of cell clusters overlying focally disrupted

MECs [9, 11].

Tumour suppressor function

MECs have natural tumour suppressor functions, including maintenance of the BM and

epithelial cell polarity [14] and express several tumour suppressor proteins such as p63,

p73, 14-3-3-s, Maspin, WT1, and laminin 1. MECs also exhibit many other anti-

tumourigenic properties, such as inhibition of the growth of breast cancer cells by inducing

a G2/M cell cycle arrest, inhibiting tumour cell invasion, and lowering angiogenesis by

paracrine control [15, 16]. Evolving experimental evidence indicates that their tumour-

suppressive phenotype may partly be achieved by secreting protease inhibitors and

downregulating matrix metalloproteinases [4]. MECs also express several ECM structural

proteins and accumulate ECM rather than degrade it [17]. MECs participate in BM

production by expression and deposition of fibronectin, collagen IV and laminins. They also

have BM receptors, including integrins, which mediate cell–BM attachment and

occasionally cell–to-cell interactions [18].

At the molecular level, it has been shown that DCIS-associated MECs have molecular,

genetic, and epigenetic differences from MECs in normal breast tissue [19, 20]. These

changes include downregulation of genes that control normal MEC functions and

upregulation of genes for chemokines that enhance epithelial cell proliferation, migration,

and invasion [21, 22]. Allinen and colleagues examined the microenvironment of normal

and cancerous breast tissue and found that MECs in association with DCIS lesions exhibited

the most abundant gene expression changes of all the microenvironmental cell types [20],

although the predictive and functional relevance of these changes per se are not certain.

Other authors have identified specific differences in gene expression between normal and

DCIS-associated MECs such as increased lysyl oxidase (LOX) [23] and neuropillin 1 [24].



It has been noted that the sensitivity of some MEC markers is lower in DCIS-associated

MECs than in normal MECs, and this observation should be taken into consideration when

selecting MEC markers to distinguish in situ from IBC [21]. A summary of biomarkers used

to visualise MECs in routine diagnostic practice are included in Table 1.

Calponin, for instance, is an integral component of α-smooth muscle actin (SMA) and its 

down-regulation is consistent with compromised MECs. Maspin is one of the most

important tumour suppressors secreted by MECs and inhibits tumourigenesis, tumour cell

migration, angiogenesis, and metastatic spread [25]. Maspin is secreted in large quantities

by the normal MECs, while DCIS-associated MECs do not secrete it [26]. MECs secret

laminin 1, which is a major component of the BM structure and plays a crucial role in the

polarity of epithelial cells within the ducts. MECs associated with DCIS show deficient

laminin 1 deposition and hence loss of cellular polarity and differentiation facilitating

tumour invasion [12, 27]. MECs surrounding malignant cells also express elevated integrin

αvβ6, which has been shown to promote tumour proliferation and invasion through 

activation of TGF-β and MMP9 [28].  

MECs isolated from DCIS have been reported to show gene expression and epigenetic

changes when compared to MECs isolated from normal breast tissue [19, 20] but no study

has been able to demonstrate significant differences between MEC marker expression in

DCIS with or without associated invasive carcinoma. Exploring such differences is clearly

clinically important due to their potential as biomarkers of invasive progression.

Observed effects of lack of MECs on epithelial proliferative breast lesions

Despite the documented role of MECs in the progression of DCIS to invasive disease and

the application of MEC IHC marker by pathologists to differentiate in situ from invasive

tumours in routine practice, well recognised exceptions exist and potentially challenge this

dogma, which if not recognised can potentially lead to incorrect classification of a condition

as an invasive carcinoma. The biologically unexplained phenomenon of the absence of

peripheral MEC in lesions conventionally regarded as non-invasive, or even non-neoplastic,

is uncommonly observed in breast histopathology. Microglandular adenosis (MGA) and the



rare entity of so called “infiltrating epitheliosis” are two examples of non-malignant breast

lesions that lack peripheral MECs and show an infiltrative growth pattern [29-32].

MGA shows infiltrating single-layer glands surrounded by a distinct well-developed layer

of BM but lack a MEC layer. Cells of MGA show an immunophenotype that is different from

hyperplastic epithelial cells in other breast lesions; they lack oestrogen receptor expression

and show diffuse nuclear staining of S100 protein. Shared clonal driver mutations between

uncommon cases with MGA and synchronous invasive carcinoma, suggestive of a

precursor relationship, have been reported [33, 34]. Although atypia and carcinoma can

arise from MGA, no metastasis has been reported in cases of pure MGA, which is the

unequivocal hallmark, and key clinical relevance, of invasive disease. However, the

absence of peripheral MECs poses a diagnostic challenge when the proliferating cells also

show cytonuclear atypia and it can be extremely difficult to differentiate atypical MGA from

invasive carcinoma. Indeed distinction of atypical MGA from some specific invasive

carcinoma sub-types, such as acinic cell carcinoma, may occasionally be impossible in

routine practice. It has been reported that BM is present in MGA but absent in acinic cell

carcinoma [35], admittedly accepting that BM stains are capricious and difficult to

interpret. In addition, the infiltrative nature and morphology of MGA suggests that its BM

is produced by the proliferating cells, rather than being a native BM.

Infiltrating epitheliosis is another example of a hyperplasic but seemingly benign epithelial

lesion that shows an infiltrative growth pattern with focal absence of MECs. This lesion,

originally described by Azzopardi, is described using his original criteria as a lesion that

mimics carcinoma [36]. It is considered to be related to radial scar/complex sclerosing

lesions [36] and sometimes with sclerosed papillary lesions [37]. MECs are mainly lost at

the periphery of an infiltrative epitheliosis lesion with frequent preservation at the

epithelial-stroma interface in the centre. Interestingly, MECs may be demonstrated in the

proximal part of a duct but completely absent at the distal part where the infiltrative



pattern becomes more obvious. Unlike MGA, in infiltrating epitheliosis there is no evidence

of a thickened BM around areas lacking MECs.

A recent study has argued that infiltrative epitheliosis is neoplastic rather than

hyperplastic, based on the frequent presence of PIK3CA mutations [32]. This study also

identified shared clonal mutations in a case of infiltrating epitheliosis with synchronous

micropapillary DCIS and adenosquamous carcinoma, again suggesting possible precursor

status. Given that loss of MECs has been reported in around 20% of complex sclerosing

lesions/radial scars, and these have a risk of breast cancer of only 1.5-2x above the

general population, the frequency of such progression is likely to be rare (and currently

unknown).

The inability to identify MECs using traditional markers in the context of complex sclerosing

lesions may indicate phenotypic alterations in the MECs and a complex interaction between

the proliferating epithelial cells and MECs rather than their mechanical disappearance in

such cases. In addition, a lack of MECs in epithelial displacement/seeding after needling

procedures, such as fine needle aspiration cytology, core biopsy or localisation/guidewire

wire insertion, can be seen in association with both benign and malignant lesions and is

not used as a criteria for the diagnosis of invasion, albeit that its clinical significance is

somewhat unclear [38].

Intraductal papilloma is a benign entity typically showing an intact layer of MECs at the

epithelial-stroma interface [39]. However, a focal loss of MECs as demonstrated

immunohistochemically can be seen, particularly in areas showing epithelial hyperplasia

or when the proliferating epithelial cells show prominent apocrine differentiation [40, 41].

Infiltrative syringomatous tumour of the nipple is another controversial benign lesion

characterised by lack of peripheral MECs together with an infiltrative growth pattern of

glands and tubules mimicking tubular carcinoma or low grade adenosquamous carcinoma

[42]. However, MEC IHC in this setting often highlights an outer layer of cells of the tubules



in this lesion, which could be interpreted as retention of MECs. Other rare examples of

benign breast lesions featuring loss of peripheral MECs exist. We and others have observed

this phenomenon in rare cases of fibroadenoma that lacked MECs focally at the

epithelial/stroma interface.

Some apocrine lesions without MECs may be seen, as described by Cserni who noted that

lack of MECs in apocrine glands of the breast does not necessarily imply malignancy [43].

He described some benign apocrine papillary lesions of the breast lacking, or virtually

lacking, MECs, a potential pitfall that should not be diagnosed as malignancy [41]. Five

cases of encapsulated apocrine papillary carcinoma of the breast were described by Seal

et al. [44], with key histological features similar to those of classical encapsulated papillary

carcinoma (EPC) including an absence of MECs both within the papillary structures and at

the periphery. Cases were of pure apocrine appearance cytologically with variable degrees

of atypia and mitotic activity. All lacked evidence of true invasion of tissue outside of the

lesion and all had an indolent behaviour.

This collection of benign breast lesions indicates that the absence of MECs does not

automatically indicate malignancy and/or invasion but their absence is sometimes

associated with an infiltrative growth pattern. This may represent molecular changes in

the proliferating epithelial cells that drive disappearance of peripheral MECs with focal

infiltration of the adjacent stroma, but such changes are still not sufficient for a fully

malignant invasive phenotype.

EPC lacks peripheral MECs in approximately 80% of cases, however, their behaviour is

sufficiently indolent that it is widely considered as a lesion equivalent to in situ disease

[45, 46]. Pure EPC does not show a conventional infiltrative pattern of the stroma

characteristic of IBC, indicating that the absence of MECs in these tumours per se does

not drive the usual pattern of invasion seen in IBC. Solid papillary carcinoma (SPC) is

another example of a malignant papillary lesion that may lack peripheral MECs but behaves



in an indolent fashion similar to DCIS [47, 48]. Thus the absence of MECs does not per se

imply that the lesion has acquired an invasive behaviour akin to conventional IBC even if

it has acquired the in situ carcinoma characteristics of hyper-proliferation and cellular

atypia [49].

Another exception to the role of peripheral MECs in preventing invasion in in situ breast

lesions (i.e. DCIS) is Paget’s disease [50]. In Paget’s disease, the malignant mammary

epithelial cells escape their native environment and the confinement of the peripheral

MECs and BM and infiltrate and populate the epidermis of the nipple adjacent to the

involved mammary duct opening. Despite an absence of MECs and the native ducto-lobular

basement membrane, they remain confined to the epidermis and the majority do not

invade the underlying dermis or stromal tissue. This pattern indicates that MECs and native

BM of the ducto-lobular system are not the only barrier to invasion in DCIS and implies

that some as yet unknown tumour intrinsic factors are required for the progression from

in situ to invasion. In addition, the surrounding stromal environment (stromal fibroblasts,

immune cells and associated vasculature) could limit neoplastic cell spread.

Basement membrane and its role in the invasion process

The BM surrounding breast ducts is an essential barrier, formed mainly of collagen type

IV and laminin 1, along with some proteoglycans [51]. This layer is deposited by epithelial,

myoepithelial and stromal cells and plays key roles in homeostasis of normal architecture

and physiology [51, 52]. It must be remembered and emphasised that the fundamental

and original definition of invasive carcinoma is based on penetration through the BM and

establishment of growth within the stroma [53]. So, is the BM a rate-limiting barrier for

invasion? BMs are conceived to form a protective hurdle against primary infiltration of the

surrounding stroma by malignant epithelial cells, and invasion of the BM has been reported

as sufficient for breast cancer cells to develop a stable metastatic phenotype [54].

Although focal disruptions in the MEC layer can be observed in DCIS, the surrounding BM

is typically intact and continuous and can be used to indicate the in situ nature of the

lesion [9]. However, in the clinical setting it is often not simple; differentiating native BM



surrounding the ducto-lobular system from reactive BM around some invasive lesions may

be problematic. EPC shows a peripheral thick capsule/thickened BM-like structure which

was interpreted as an evidence of the in situ nature of these tumours [55]. However,

similar capsule/BM-like structure can be seen in other structures outside the breast

suggesting that this is a reactive process rather than an expansion of the surrounding

native BM material [56]. Conversely, BM-like structures have also been observed around

invasive tumours even at distant metastatic sites [57-59] and may be particularly

conspicuous in some forms such as adenoid cystic carcinoma. Other invasive lesions, such

as squamous cell carcinoma, show basement membrane surrounding the invasive tumour

nests [60]. Finally, some breast carcinomas show DCIS-like structures in the lymph nodes

(revertant DCIS [61]), typically surrounded by BM-like material. BM-like structures are

also present in benign lesions such as collagenous spherulosis. In these the material has

been found histochemically and immunohistochemically to be BM-like, consisting of type

IV collagen [62].

Overall, these findings raise questions in breast histopathology about what definition of

invasion can be used reliably in routine practice, taking into account the significant

management implications of in situ versus invasive diagnosis. Given the subjective nature

of interpretation of BM material staining, a panel of MEC markers is regarded as the gold

standard for assessment of invasion in breast pathology. However, while the presence of

MECs, as shown by IHC, has an excellent negative predictive value for invasion, their

absence does not always indicate invasive (and thus metastatic) capacity of a lesion.

In conclusion, the role of MECs and the BM in tumour progression is under-recognised.

However, much remains to be clarified about the molecular mechanisms and physiological

roles of MECs in tumour invasion and metastasis. Further research may lead to the

development of novel approaches for the prevention and treatment of breast cancer. This

is of particular relevance for pre-invasive breast lesions such as DCIS, where evaluation

of the MECs and BM may conceivably be useful targets for the prevention of invasive



disease. At the present time, however, pathologists should be aware of the pitfalls of

criteria used in routine practice to distinguish in situ from invasive disease. Although it is

convenient, and often useful, to use identification of loss of MECs by IHC as a surrogate

marker of invasion it must be remembered that such observations do not per se indicate

that the BM has been breached and this alone remains the key definition of, and

requirement for, invasion.
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Table 1: Immunohistochemistry of myoepithelial cells and basement membrane

MECs Markers Sensitivity Specificity Localisation Comments

Smooth muscle
actin (SMA)

High Low Cytoplasmic Any cell with substantial expression of
actin is positive for SMA (myofibroblasts
and blood vessels).

Sooth muscle
myosin heavy
chain (SMMHC)

Good Good Cytoplasmic Less sensitive than SMA, but more specific
and easy to interpret.

P63 High High Nuclear Focal gaps in staining in MEC layer.
Around 5-10% of invasive tumours,
particularly high-grade, metaplastic and
salivary-like carcinomas, express p63.

Calponin High Low Cytoplasmic Present in a subset of myofibroblasts and
smooth muscle in blood vessels.

H-caldesmon Good Good Cytoplasmic MEC around ducts and lobules may not
express H-caldesmon.

Maspin Good Good Cytoplasmic,
Nuclear

Some invasive carcinomas have been
reported as showing maspin expression.

CD10 Good Good Cytoplasmic Rarely expressed in the tumour cells of
invasive carcinomas and in some sarcomas.
Less sensitive than SMA.

Basal CKs
(CK5/6, CK14,
CK17)

Low Low Cytoplasmic,
Membranou
s

Low sensitivity and specificity.
Positive in carcinomas, particularly high
grade lesions.

p-cadherin Good Good Cytoplasmic No cross reactivity with other stromal cells
and 20-40% of invasive carcinoma may
show positivity.

p-75 Good Low Cytoplasmic,
Membranou
s

Expressed in blood vessels, nerves, and
epithelial/luminal cells in usual epithelial
hyperplasia and also expressed in 5% of
invasive carcinomas.

S100 Low Low Cytoplasmic,
Nuclear

May be positive in epithelial cells and
invasive carcinomas.

Other MEC
markers

CD109, caveolin 1, podoplanin, maspin,
nestin, alpha 1-integrin, and 14-3-3 sigma
(stratifin).

Basement Membrane Markers

Laminin Good Good Cytoplasmic May be difficult to interpret due to
background stromal staining but
comparison with normal parenchyma may
help.

Collagen IV Good Good Cytoplasmic Similar to laminin.

To demonstrate myoepithelial cells (MECs), a panel-based approach of 2 or more
immunocytochemical markers is recommended. Many departments therefore use, for
example, SMM and p63 in order to avoid false negative results in differentiating in situ
from invasive lesions. Aberrant expression of MEC markers is seen in salivary gland-like
and skin adnexal-like tumours of the breast, adenomyoepithelioma and metaplastic
mammary carcinomas.



Table 2 Non-malignant conditions associated with lack of myoepithelial cells

(MEC) and/or basement membrane (BM)

Lesion MEC BM Infiltrative Precursor to IBC Risk of IBC

Microglandular adenosis Absent Present Yes Yes Unknown

Infiltrating epitheliosis Focally
absent

Absent Yes Unknown Rare

Radial scar/complex
sclerosing lesion

Absent
in 20%

Present No No 1.5-2x

Intraductal papilloma Focally
absent

Present No If epithelial
atypia is present

2-3x

Infiltrative
syringomatous tumour
of the nipple

Absent No Yes Unknown Unknown

Fibroadenoma Rarely
absent

Present No No No

Benign apocrine,
including papillary foci

Absent Present No No No

Encapsulated apocrine
papillary carcinoma

Absent Present
/pseud
ocapsul
e

No Yes Higher
than DCIS

Encapsulated papillary
carcinomas

Absent in
80%

Present/
pseudoc
apsule

No No Higher than
DCIS

Paget’s disease Absent Absent Yes Yes Unknown



Figure Legends

Figure 1: Schematic representation of normal breast terminal duct (A) and ductal
carcinoma in situ with focus of early invasion (B). Normal ducts (A) present with
continuous myoepithelial cell (MEC) layer (b) and surrounding continuous well-defined
basement membrane (a). Although MECs surround both normal ducts and malignant in
situ lesions, MECs surrounding DCIS show some morphological differences and lose the
power to polarize epithelial cells. Changes in MEC layer continuity might be related to
mechanical factors, immune reaction, loss of cellular renewal capacity or exogenous
chemical influence. Stromal invasion and progression to invasive disease (c) starts with
breaching, or absence, of MEC layer and basement membrane barriers between the
malignant epithelial cells and surrounding stroma. Changes in the interaction between
malignant epithelial cells and stromal microenvironment, including the extracellular
matrix, fibroblasts and immune cells, are believed to also play a role in invasion.


