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Abstract

The paper studies stationary Markov perfect equilibria in multidimensional models
of dynamic bargaining, in which the alternative chosen in one period determines the
status quo for the next. We generalize a sufficient condition for existence of equilibrium
due to Anesi and Seidmann (2015). We then use this existence result to show that if
a weak gradient restriction holds at an alternative, then when players are sufficiently
patient, there is a continuum of equilibria with absorbing sets arbitrarily close to that
alternative. A sufficient condition for our gradient restriction is that the gradients of all
players’ utilities are linearly independent at that alternative. When the dimensionality
of the set of alternatives is high, this linear independence condition holds at almost
all alternatives, and equilibrium absorbing sets are dense in the set of alternatives.
This implies that constructive techniques, which are common in the literature, fail to
identify many plausible outcomes in dynamic bargaining games.

1 Introduction

Most formal political analyses of legislative policymaking, until recently, have used models

in which legislative interaction ends once a proposal is passed (e.g., Romer and Rosenthal

1978, Baron and Ferejohn 1989, and Banks and Duggan 2000, 2006). As pointed out

by Baron (1996) and later by Kalandrakis (2004), however, most legislatures have the

authority to change existing laws by enacting new legislation; so that laws continue in

effect only in the absence of new legislation. To explore this dynamic feature of legislative

policymaking, these authors have introduced an alternative model that casts the classical

spatial collective-choice problem into a dynamic bargaining framework. Each period begins

with a status quo policy inherited from the previous period, and a legislator is chosen

randomly to propose any feasible policy, which is then subject to an up or down vote.
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If the proposal is voted up, then it is implemented in that period and becomes the next

period’s status quo; if it is voted down, then the ongoing status quo is implemented and

remains in place until the next period. This process continues ad infinitum.

The problem immediately encountered in this framework is that existence results for

stationary Markov perfect equilibria provided in the extant game-theoretic literature do

not apply. The consequence has been a fast growing body of literature consisting of work

that explicitly constructs stationary Markovian equilibria for bargaining games with an

endogenous status quo, and then analyzes the properties of policy outcomes implied by

these constructions (e.g., Baron, 1996; Kalandrakis 2004, 2010, 2014; Bowen and Zahran,

2012; Nunnari, 2014; Richter, 2014; Baron and Bowen, 2014; Zápal, 2014; and Anesi and

Seidmann, 2015). These analyses are an important development in the study of legislative

dynamics; but almost all either assume that the space of alternatives is unidimensional, or

focus on pie-division settings where each bargainer’s utility only depends on her own share

of the pie. There are no known conditions that guarantee the existence of a stationary

Markovian equilibrium for more general multidimensional choice spaces.1

In this paper, we provide gradient restrictions at a given alternative that are sufficient

for existence of a stationary Markov perfect equilibrium in pure strategies with an absorb-

ing set close to that alternative, when players are sufficiently patient. In fact, our gradient

restriction holds at every interior alternative when there is private good that can be allo-

cated across the players, and it delivers a continuum of stationary Markov perfect equilibria

with distinct absorbing points close to that alternative. Thus, in a large class of models

of dynamic bargaining with an endogenous quo, equilibria are indeterminate—despite the

fact that stationary Markovian strategies depend on the history of play only through the

current status quo, sharply constraining the ability to punish and reward players for past

behavior. Our results have important implications for applied bargaining models of leg-

islative policymaking, where the norm is to construct a particular equilibrium in closed

form and to analyze the properties of this equilibrium selection as parameters are varied:

when players are sufficiently patient, the implicit equilibrium selection made in such anal-

yses may be a restrictive one, with the danger that insights derived from those analyses

are driven by the equilibrium selection, rather than equilibrium incentives in general. In

the absence of further justifications for such a selection, the multiplicity of equilibria we

highlight suggests limits on the usefulness of these constructions in predicting the policy

outcomes and understanding the dynamics and comparative statics of legislative bargain-

1An exception is Duggan and Kalandrakis (2012), who establish existence of stationary Markovian

equilibria in pure strategies for general environments. They modify the basic framework by adding noise

to the status quo transition and assuming preference shocks in each period. This paper concentrates on

existence conditions that do not rely on such noise.
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ing. Studies of dynamic bargaining with an endogenous status quo thus face an important

equilibrium refinement issue.

Our analysis allows the feasible set of alternatives to be any nonempty subset of multidi-

mensional Euclidean space, and we rely only on smoothness of utilities to apply techniques

from differential topology; we do not impose any functional form restrictions or assume

the existence of a private good. The bargaining protocol is the standard one, described

above, and we permit the voting rule to be any non-collegial rule, i.e., no player has a veto.

Our main indeterminacy result is that when players are sufficiently patient, a continuum of

stationary Markov perfect equilibria in pure strategies can be constructed with absorbing

sets close to any alternative at which a weak gradient restriction holds. This gradient re-

striction holds if the gradients of all players’ utilities are linearly independent at the given

alternative; and, generically, this in turn holds at almost all alternatives when the dimen-

sionality of the set of alternatives is greater than or equal to the number of players. Linear

independence of all players’ gradients is sufficient for our condition, but not necessary: we

provide a more general condition requiring only that linear independence of the gradients

of players belonging to a given “oversized” coalition (a decisive coalition that remains deci-

sive if any one member is removed), and that linear independence is maintained if a player

outside the coalition is switched with one inside. Given a high-dimensional set of alterna-

tives, our linear independence condition holds generically outside a set of alternatives with

measure zero, with the implication that equilibria typically abound in such models.

Though above indeterminacy result makes use of equilibria in which Pareto inefficient

alternatives are proposed and passed, we show in our companion working paper (Anesi

and Duggan 2017) that when players are sufficiently patient, a second gradient restriction

leads to a continuum of stationary Markov perfect equilibria in pure strategies with Pareto

optimal absorbing points close to a given Pareto optimal alternative. Thus, the use of

Pareto inefficient alternatives is not essential for the indeterminacy result, and refining away

equilibria with inefficient outcomes still leaves a continuum of equilibria. We emphasize

that both gradient restrictions are easily verified in economic environments and, together,

cover many applications encountered in the literature, including pie-division settings and,

more generally, the large class of economies with a private good component.

The analysis of equilibrium indeterminacy develops constructive techniques due to

Anesi and Seidmann (2015), who establish existence, but not indeterminacy, of stationary

Markov perfect equilibria for the pie-division model. The approach rests in identifying

possible absorbing sets of equilibria when players are sufficiently patient. In doing so, the

authors define the concept of a “simple solution” as a list of alternatives, each associated

with a decisive coalition supporting it, such that for every player: the player’s utility takes
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two values over the list of alternatives, a reward payoff and a punishment payoff; the player

is included in some but not all coalitions; and the player receives her reward payoff when

included in a coalition and receives her punishment payoff when excluded. The authors

show that in the pie-division setting, given any simple solution and assuming sufficiently

patient players, there is a stationary Markov perfect equilibrium with an absorbing set that

coincides with the simple solution. To capture more general environments, our equilibrium

construction uses the concept of “semi-simple solution,” which generalizes Anesi and Sei-

dmann’s (2015) simple solutions by allowing for the possibility of multiple punishment

payoffs. This gain in flexibility allows us to push their approach well beyond pie division

and to shed many of the assumptions usually made in the dynamic bargaining literature,

dropping convexity and compactness of the set of alternatives, and assuming only weak

gradient restrictions on players’ utilities.

As mentioned earlier, existence results for stationary Markov perfect equilibria provided

in the literature on stochastic games do not apply to the dynamic bargaining framework,

as they rely on continuity conditions on the transition probability that are violated in

the bargaining model (cf. Duggan 2017 for a more detailed discussion). Existence and

characterization results for Markov perfect equilibria have been obtained in alternative

frameworks of dynamic bargaining in which the policy space is finite (Anesi 2010; Diermeier

and Fong 2011, 2012; and Battaglini and Palfrey 2012) or without discounting (Anesi and

Seidmann 2014) or when the set of possible status quos is countable (Duggan 2017).

A roadmap of the paper is as follows. The bargaining framework and equilibrium

concept are defined in Section 2. Section 3 presents the concept of semi-simple solution

and establishes that when players are sufficiently patient, a semi-simple solution can be

obtained as the absorbing set of a stationary Markov perfect equilibrium in pure strategies.2

Section 4 shows that given any alternative, if the gradients of members of an oversized

coalition are linearly independent, and if linear independence is maintained when a player

outside the coalition is switched with one inside, then there is a continuum of semi-simple

solutions in an arbitrarily small neighborhood of that alternative. Section 5 combines

the above observations and presents our result on indeterminacy of equilibria in dynamic

bargaining games. Finally, Appendices A–B contain formal proofs omitted from the text.

2We also present the weaker concept of “mixed” semi-simple solution and show that it can be supported

if mixed proposal strategies are permitted in the working paper version of this paper (Anesi and Duggan

2017).
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2 Dynamic Bargaining Framework

In each of an infinite number of discrete periods, indexed t = 1, 2, . . ., a finite set of

players N ≡ {1, . . . , n}, with n ≥ 3, must reach a collective choice from a nonempty set

of alternatives, X ⊆ ℜd, with nonempty interior. Let xt denote the alternative chosen

in period t. Bargaining takes place as follows. Each period t begins with a status-quo

alternative xt−1, in place from the previous period. Player i is selected with probability

pi ∈ (0, 1) to propose a policy in X; all players then simultaneously vote to accept or to

reject the chosen proposal. It is accepted if a coalition C ∈ D of players vote to accept,

and it is rejected otherwise, where D ⊆ 2N \ {∅} is the nonempty collection of decisive

coalitions, which have the authority to decide policy in a given period. If proposal y is

accepted, then it is implemented in period t and becomes the status quo next period (i.e.,

xt = y); otherwise the previous status quo, xt−1, is implemented and remains the status

quo in period t+1 (i.e., xt = xt−1). This process continues ad infinitum. The initial status

quo, x0 ∈ X, is exogenously given.

We assume the voting rule D is proper, i.e., every pair of decisive coalitions has

nonempty intersection: C,C ′ ∈ D implies C ∩ C ′ 6= ∅. In addition, we assume D is

monotonic, i.e., any superset of a decisive coalition is itself decisive: C ∈ D and C ⊆ C ′

imply C ′ ∈ D. Finally, we assume that D is non-collegial, in the sense that no player has

a veto: we have N \ {i} ∈ D for all i ∈ N . Thus, we allow for any quota rule defined by

D = {C : |C| ≥ q}, the only restrictions on the quota q being n
2 < q < n. For future use,

we say a decisive coalition C is oversized if every member of the coalition is redundant:

for all i ∈ C, C \ {i} ∈ D. Let D∗ denote the collection of oversized coalitions, and note

that N ∈ D∗, since D is non-collegial.

The preferences of each player i over lotteries over sequences of alternatives are rep-

resented by a von Neumann-Morgenstern stage utility function ui : X → ℜ that is twice

continuously differentiable and bounded above. Say x is Pareto optimal if there is no

y ∈ X such that for all i ∈ N , we have ui(y) ≥ ui(x), with strict inequality for at least

one member of N . Given a sequence of alternatives
{

xt
}

∈ X∞, player i’s payoff is the

discounted sum (1− δi)
∑∞

t=1 δ
t−1
i ui(x

t), where δi ∈ [0, 1) is her discount factor.

A noteworthy special case of our general environment is that of a mixed economy, in

which an alternative x = (x1, . . . , xn, g) consists of a private component (x1, . . . , xn) ∈ ℜn
+

and possibly a public component g ∈ ℜd−n
+ , d ≥ n. Here, the set of alternatives is

X = {x ∈ ℜd : f(−
∑

i∈N xi, g) ≤ 0}, where f : ℜd−n+1
+ → ℜ is a continuous, weakly

monotonic function. We then require that each ui is strictly increasing in xi and constant

in x1, . . . , xi−1, xi+1, . . . , xn; more formally, ∂ui

∂xi
(x) > 0 and ∂ui

∂xj
(x) = 0 for all x and all

j 6= i. We interpret xi as an amount of a resource allocated to i, and our restriction on
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utilities reflects the assumption that there are no consumption externalities in the private

good. An obvious example of a mixed economy (where the public good level is fixed at

zero and therefore suppressed) is the setting of pie-division with free disposal, in which

X =
{

(x1, . . . , xn) ∈ [0, 1]n :
∑

i∈N xi ≤ 1
}

is the n-dimensional unit simplex; but mixed

economies with richer policy spaces are also common in the political economy literature

(e.g., Jackson and Moselle 2002).

An alternative setting is that of pie-division with no disposal, in which the pie must

be fully divided; it does not constitute a mixed economy, as defined above. This model,

which has received considerable attention in the literature on bargaining (both with and

without an endogenous status quo), is also captured by our framework. To this end, define

X = {(x1, . . . , xn−1) ∈ [0, 1]n−1 :
∑n−1

i=1 xi ≤ 1} as the (n − 1)-dimensional unit simplex,

and assume: (i) ∂ui

∂xi
(x) > 0 and ∂ui

∂xj
(x) = 0 for all x, all i < n, and all j ∈ N \ {i, n};

and (ii) there exists a differentiable, real-valued function v on [0, 1] with v′ > 0 such that

un(x) = v(1 −
∑n−1

i=1 xi) for all x = (x1, . . . , xn−1). The set of alternatives, formulated

thusly, has full dimension, and an alternative at which each player consumes a positive

amount belongs to the interior of X, so calculus-based methods can be directly applied.

We focus on subgame perfect equilibria in which players use pure stationary Markov

strategies, defined as follows. For any player i ∈ N , a stationary Markov strategy σi =

(πi, αi) consists of a proposal strategy πi : X → X, where πi(x) is the proposal made by

player i when the current status quo is x (conditional on her being selected to propose),

and a voting strategy αi : X
2 → {0, 1}, where αi(x, y) is the (degenerate) probability that

i votes to accept a proposal y when the current status quo is x. A stationary Markov

perfect equilibrium is a subgame perfect equilibrium in which all players use stationary

Markov strategies. We follow the standard approach of concentrating throughout on equi-

libria in stage-undominated voting strategies; i.e., those in which, at any voting stage, no

player uses a weakly dominated strategy. Hence, we refer to a pure stationary Markov

perfect equilibrium in stage-undominated voting strategies more succinctly as a stationary

bargaining equilibrium.

Every stationary Markov strategy profile σ = (σ1, . . . , σn) (in conjunction with recog-

nition probabilities) generates a transition function P σ : X2 → [0, 1], where P σ(x, y) is the

probability, given σ, that the alternative implemented in the next period is y, given that

the alternative implemented in the current period is x.3 We say that x ∈ X is an absorbing

point of σ if and only if P σ(x, x) = 1, and we denote the set of absorbing points of σ by

A(σ) ≡ {x ∈ X : P σ(x, x) = 1}. We will say that σ is no-delay if and only if: (i) A(σ) 6= ∅;

3As all players use pure strategies, P σ(x, ·) is a discrete probability density with |supp(P σ(x, ·))| ≤ n

for all x ∈ X.
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and (ii) for all x ∈ X, there is y ∈ A(σ) such that P σ(x, y) = 1. In words, a strategy

profile is no-delay if an absorbing point is implemented in every period (both on and off

the equilibrium path).

3 Semi-simple Solutions and Existence of Equilibria

Anesi and Seidmann (2015) show that in pie-division settings with free disposal, each

simple solution (as defined in the introduction) identifies alternatives that are absorbing

points of stationary bargaining equilibria for the corresponding bargaining games when

players are sufficiently patient. Simple solutions always exist in the pie division model

with free disposal, but there remains the possibility that a more general concept has greater

applicability in general environments yet is still sufficient for the construction of stationary

bargaining equilibria. In this section, we push the approach of Anesi and Seidmann (2015)

further to obtain the existence of stationary bargaining equilibria corresponding to sets

of alternatives exhibiting a more general structure. To this end, we propose the weaker

concept of semi-simple solution and show that when players are sufficiently patient, every

semi-simple solution can be supported as the absorbing set of a stationary bargaining

equilibrium. This generalizes the result of Anesi and Seidmann (2015), and as we show in

the following section, it allows us to obtain a continuum of stationary bargaining equilibria

near any alternative satisfying a general gradient restriction. In turn, this will imply

indeterminacy of stationary bargaining equilibria in a broad class of dynamic bargaining

games.

Definition 1. A set of alternatives S ⊂ X is a semi-simple solution if

(i) there is a one-to-one mapping ρ : S → N such that for all x ∈ S,

ρ(x) ∈ C(x) ≡

{

i ∈ N : ui(x) = max
z∈S

ui(z)

}

∈ D,

(ii) for all i ∈ N , ui is not constant on S.

In the definition of semi-simple solution, for any player i, we interpret maxz∈S ui(z)

as the player’s reward payoff, and payoffs below this value as punishments. Thus, part (i)

requires that for each x ∈ S, there is a decisive coalition that supports x to implement the

reward payoff of player ρ(x); and since uρ(x) is not constant on S, by part (ii), it follows

that there is also a decisive coalition willing to implement a punishment payoff for the

player. Semi-simple solutions are a generalization of Anesi and Seidmann’s (2015) simple

solutions,4 the critical difference between the two concepts being that, in the definition of a

4See Section 3 of our companion working paper for a proof.
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semi-simple solution, a player i does not have a single punishment payoff, but instead this

can vary across alternatives that do not solve maxz∈S ui(z). The first part of Definition 1

implies that a semi-simple solution contains at most n alternatives, and the second part

implies that the collection
{

C(x) : x ∈ S
}

of decisive coalitions has empty intersection.

It is known from the social choice literature that the number of coalitions must therefore

meet or exceed the Nakamura number of the voting rule; for the quota rule case, this means

that any simple solution S must satisfy |S| ≥ ⌈ n
n−q

⌉.5

Next, we generalize Anesi and Seidmann’s (2015) result to support any semi-simple

solution as the absorbing set of a stationary bargaining equilibrium. Thus, if one can show

that a semi-simple solution exists, then necessarily the dynamic bargaining game (with

discount factors close enough to one) will possess a stationary bargaining equilibrium.

However, existence of a semi-simple solution is not generally guaranteed. For instance, it

is readily checked that no semi-simple solution can exist in settings with a unidimensional

set of alternatives, n ≥ 3, majority rule, and single-peaked utilities, as in Baron (1996),

Kalandrakis (2014), and Zápal (2014).6

Theorem 1. Let S be a semi-simple solution. There is a threshold δ̄ ∈ (0, 1) such that if

mini∈N δi > δ̄, then there exists a no-delay stationary bargaining equilibrium σ such that

A(σ) = S.

The proof of Theorem 1 generally follows the lines of the construction of Anesi and

Seidmann (2015). To convey the idea of the proof, consider the special case in which

n = 5, D is majority rule, and assume that δi ≈ 1 for each player i. Let {x̄1, x̄2, x̄3, x̄4} be

a semi-simple solution with payoffs as depicted below,

1 2 3 4 5

x̄1 1 1 1 0 3

x̄2 1 1 0 1 2

x̄3 1 0 1 1 1

x̄4 0 1 1 1 0

so that C(x̄1) = {1, 2, 3, 5}, C(x̄2) = {1, 2, 4}, C(x̄3) = {1, 3, 4} and C(x̄4) = {2, 3, 4}.

(To fulfill Definition 1, define the mapping ρ on {x̄1, x̄2, x̄3, x̄4} by: ρ(x̄k) = k for all

k = 1, 2, 3, 4.) For each i ∈ N , let Ci be the decisive coalition defined by: Ci ≡ C(x̄i) if

i ∈ N \{5}, and C5 ≡ C(x̄1). We say that coalition Ci “forms” in period t if alternative x̄k is

5The Nakamura number of a general, non-collegial voting rule D is the size of the smallest collection of

decisive coalitions having empty intersection. In the foregoing, ⌈r⌉ is the smallest integer greater than or

equal to real number r.
6Also note that a semi-simple solution would not exist if D were collegial, as in Nunnari (2014).
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implemented, i.e., if xt = x̄k. Observe that the players in Ci, and only these players, receive

their reward payoff when Ci forms. Now consider a stationary Markov strategy profile σ

with the following features. In every period t, the current status quo reveals whether a

coalition formed in period t− 1 or not; then events unfold as follows: (a) if no coalition in

{Cj}j∈N formed in period t− 1, then every proposer i offers to form coalition Ci, and this

proposal is accepted by all the members of Ci; (b) if a coalition in {Cj}j∈N , say Ci, formed

in t−1, then every proposer j offers to form coalition Ci again in t by proposing x̄i; (c) if a

coalition in {Cj}j∈N , say Ci, formed in t− 1, then any (off-the-equilibrium-path) proposal

that does not involve forming Ci is rejected by the members of Ci. Observe that on the

path of play prescribed by σ, one of the alternatives in {x̄1, x̄2, x̄3, x̄4, x̄5} is implemented

in the first period and then never amended: in the first period, some coalition Ci forms

with probability pi and then forms in all future periods with probability one. The same

occurs following any period in which no coalition formed. Hence, each player’s maximum

utility in each period t is given by her reward payoff, which she obtains if and only if she

is a member of the coalition that forms in t.

Suppose that coalition Ci formed in period t − 1 and that, contrary to (b) above,

the proposer selected in period t does not offer to form Ci again. By accepting such a

proposal, each member j of Ci would face the risk of not being a member of the coalition

that will form and, therefore, of not receiving her reward payoff in all future periods. This

implies that, in period t, it is always profitable for the farsighted members of coalition Ci

to oppose any proposal that does not involve forming Ci again, as prescribed by (c). As Ci

is a majority coalition, it is thus impossible for any proposer j to prevent Ci from forming

in period t. Therefore, proposer j cannot profitably deviate from passing, as prescribed by

(b). By the same logic, if no coalition formed in period t− 1, then no player j can improve

on accepting an offer to form coalition Ci ∋ j, thereby obtaining her reward payoff with

probability one in all future periods. It is therefore optimal for proposer i to (successfully)

offer to form Ci, as prescribed by (a).

4 Multiplicity of Semi-simple Solutions

To leverage Theorem 1, it remains to find conditions under which semi-simple solutions

exist. Our approach is to exploit restrictions on the gradients of players’ utility functions at

an interior alternative x that are sufficient for existence of semi-simple solutions near x. To

provide a preliminary intuition, consider the case of the pie division with free disposal. In

this setting, one can easily satisfy the conditions of Definition 1 at any interior alternative

x = (x1, . . . , xn) by transferring shares of the pie between players: for example, given
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sufficiently small ǫ > 0, we can construct x̄i by transferring (n − 1)ǫ from player i to the

other players, increasing the consumption of every other player by ǫ. Then {x̄1, . . . , x̄n} is

a semi-simple solution in which each player i receives her unique punishment payoff from

x̄i and her reward payoff from x̄j for j 6= i. Of course, a continuum of semi-simple solutions

can thus be obtained arbitrarily close to x by varying ǫ. The crux of the proof of our first

existence result is to translate this simple argument into more general environments, where

we cannot freely adjust the players’ payoffs by re-allocating a transferable private good.

This is where our first gradient restriction, called (C1), kicks in: it allows us to apply the

logic of the pie-division model with free disposal to construct a continuum of semi-simple

solutions in any open neighborhood of an alternative satisfying the condition. Condition

(C1) can fail in pie division models with no disposal (this occurs when D is a quota rule

with q = n− 1), but at the end of this section, we state a result that yields a continuum of

semi-simple solutions near any Pareto optimal alternative satisfying a gradient restriction

that is satisfied in such settings.

More precisely, condition (C1) requires that the gradients of the members of some

oversized coalition C∗ are linearly independent at an interior alternative x; moreover,

there is some member j of the coalition such that if we switch j with any non-member

k, the gradients of members of the resulting coalition (C∗ \ {j}) ∪ {k} remain linearly

independent. The condition is obviously implied if the gradients {∇ui(x) : i ∈ N} of all

players are linearly independent, for in this case, the second requirement is in fact vacuously

satisfied.

(C1) There is an oversized coalition C∗ ∈ D∗ such that (i) the gradients {∇ui(x) : i ∈ C∗}

are linearly independent, and (ii) there exists j ∈ C∗ such that for all k ∈ N \ C∗,

the gradients {∇ui(x) : i ∈ (C∗ \ {j}) ∪ {k}} are linearly independent.

Intuitively, when condition (C1) holds at x, we can obtain all values of the utility profile

u = (ui)i∈C∗ in some open neighborhood of u(x) ∈ ℜ|C∗| by arbitrarily small variations of x,

i.e., the Jacobian of u at x has full row rank. As mentioned above, a sufficient condition for

(C1) that is satisfied in many economic applications is that the collection {∇ui(x) : i ∈ N}

of all players’ gradients is linearly independent. The latter condition is satisfied whenever

the set of alternatives has a private good component; a fortiori, given our formulation

of mixed economies, (C1) holds at any alternative x in the interior of X. In particular,

(C1) holds in the model of pie-division with free disposal, as studied in Baron and Bowen

(2014), Richter (2014), and Anesi and Seidmann (2015). Letting m∗ denote the size of the

smallest oversized coalition, i.e., m∗ = min{|C| : C ∈ D∗}, condition (C1) holds as well

in the model of pie division with no disposal as long as m∗ < n, for then if a coalition of
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size m∗ includes player n, it must exclude some player i < n, and the members’ gradients

will be linearly independent. More generally, (C1) holds if for every size m∗ coalition

C, the gradients {∇ui(x) : i ∈ C} are linearly independent; and for a quota rule, this

reduces to the requirement that the gradients of every coalition with q + 1 members are

linearly independent at x. In multidimensional settings with d ≥ m∗, Schofield’s (1980)

Singularity Theorem A establishes that for generic profiles of utility functions, (C1) holds

at every alternative outside a union of manifolds of dimension m∗ − 1 or less; that is, (C1)

generically holds on a closed set of alternatives with measure zero.7

The next result establishes a continuum of semi-simple solutions in non-collegial, dy-

namic bargaining games under (C1). In fact, we show that given any interior alternative

satisfying (C1), we can find a continuum of semi-simple solutions arbitrarily close to that

alternative.

Theorem 2. Let x be any interior point of X at which (C1) is satisfied. Every open

neighborhood U of x contains a continuum of semi-simple solutions.

For a sketch of the proof, consider a simple three-player majority-voting game, let

x be any interior point of X, and for simplicity assume that condition (C1) is satisfied

at x. Since the only oversized coalition is N = {1, 2, 3}, condition (C1) implies that

{∇ui(x) : i = 1, 2, 3} is linearly independent. Our approach, in the context of this example,

is to find a set of alternatives {x̄1, x̄2, x̄3} such that for each alternative k = 1, 2, 3, the

coalition supporting x̄k is C(x̄k) = N \ {k}, whereas player k receives her punishment

payoff from x̄k. Then each C(x̄k) is decisive, and we fulfill Definition 1 by specifying

the mapping ρ so that ρ(x̄k) = k + 1 for k = 1, 2, and ρ(x̄3) = 1. To this end, define

f as the function that maps vectors of alternatives (x1, x2, x3) ∈ X3 to corresponding

utility vectors (ui(x
j))i,j∈N ∈ ℜ9. The argument is depicted in Figure 1, where we place

(u1(x), u2(x), u3(x)) at the center of the simplex in ℜ3. Condition (C1) implies that the

Jacobian of f has full row rank at x. By the local submersion theorem (e.g., Guillemin

and Pollack, 1974), therefore, we can select alternatives x̄1, x̄2, x̄3 near x so as to give each

player i her punishment payoff at x̄i and the remaining players their reward payoffs, e.g.,

for sufficiently small ǫ > 0, we can set ui(x̄
i) = ui(x) − ǫ, whereas uj(x̄

i) = uj(x) + ǫ for

each j ∈ N \ {i}. Thus, {x̄1, x̄2, x̄3} is a semi-simple solution. It is readily checked that

we can use the same argument for a continuum of values of ǫ that each yield a different

semi-simple solution.

7Schofield’s (1980) result holds if we give the space of twice continuously differentiable utility profiles

the Whitney topology. Condition (C1) fails at alternatives x such that the rank of {∇ui(x) : i ∈ C∗} has

rank m∗ − r for r ≥ 1. Setting w = d and z = m∗ in Schofield’s theorem, the claim follows. Smale (1974)

establishes a similar result for the case of exchange economies.
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Figure 1: Mapping to utility vectors

The preceding argument illustrates the proof approach in a particular example, where

the only oversized coalition is the entire set of players, N itself. This is necessarily the

case if the voting rule is a quota rule with q = n − 1, but more generally (as in the

case of majority rule with n ≥ 5) the gradient restriction imposed in (C1) will be weaker

when satisfied using a smaller coalition C∗ $ N . Returning to the example of Figure

1, maintain majority rule, but now assume n = 5, and assume that (C1) is satisfied with

C∗ = {1, 2, 3, 4}. In this case, the the selection of four alternatives {x1, x̄2, x̄3, x̄4} proceeds

as above and satisfies part (i) of Definition 1—but we must address the possibility that a

player outside C∗, namely player 5, is indifferent over {x1, x̄2, x̄3, x̄4}. In case player 5 is

not indifferent, then we set x̄1 = x1; and otherwise, we perturb x1 as follows. Following

the argument of Figure 1, we can, by varying x1 in an arbitrarily small open set, vary the

payoffs of players in (C∗ \{1})∪{5} in an open set around (u2(x
1), u3(x

1), u4(x
1), u5(x

1)).

Thus, we can perturb x1 to x̄1 such that the utilities of players 2, 3, and 4 are unchanged

(preserving their reward and punishment payoffs), and such that player 5’s utility changes;

moreover, we can make the perturbation small enough that player 1’s payoff from x̄1

remains less than her reward payoff. In both cases, we obtain a set {x̄1, x̄2, x̄3, x̄4} such

that part (i) of Definition 1 is preserved, and such that player 5 is not indifferent over

{x̄1, x̄2, x̄3, x̄4}, fulfilling part (ii); that is, the set is a semi-simple solution. In the general

case, if multiple players outside C∗ are indifferent over the alternatives in the provisional

solution, then we iterate this procedure for each one.

Remark on pie division with no disposal and m
∗
= n. As mentioned above, Theo-
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rem 2 does not cover the model of pie division with no disposal when m∗ = n. Nevertheless,

the result can be adapted to cover that environment by adding the assumption that x is

Pareto optimal and weakening the gradient restriction of (C1) so that the gradients of

every size n− 1 coalition are linearly independent.

(C1*) (i) x is Pareto optimal, and (ii) for all i ∈ N , the gradients {∇uj(x) : j ∈ N \ {i}}

are linearly independent.

Although (C1) fails in the model of pie division with no disposal when m∗ = n, con-

dition (C1*) holds at all interior alternatives in this environment, capturing the settings

of Kalandrakis (2004 and 2010) and Bowen and Zahran (2012). These and the previous

examples show that conditions (C1) and (C1*) are easy to check and that they apply

to a range of economic environments of interest, and the following variant of Theorem 2

shows that (C1*) also leads to a continuum of semi-simple solutions near any alternative

satisfying the condition.8

Theorem 2*. Let x be any interior point of X at which (C1*) is satisfied. Every open

neighborhood U of x contains a continuum of semi-simple solutions.

5 Indeterminacy of Stationary Bargaining Equilibria

Theorem 1, combined with Theorem 2, immediately yields an equilibrium existence result

for the dynamic bargaining game: as discount factors become close to one, absorbing

points of stationary bargaining equilibria exist near every alternative that satisfies (C1).

Of greater importance are the implications of these results for the predictive power of

stationary bargaining equilibria in this class of games: when players are sufficiently patient,

the dynamic bargaining game admits a continuum of equilibria. The next result establishes

indeterminacy of stationary bargaining equilibria when any alternative satisfies (C1) and

players are sufficiently patient.

Theorem 3. Let x be any interior point of X at which (C1) is satisfied. For every open

neighborhood U of x, there exists δ̂ ∈ (0, 1) such that if mini∈N δi > δ̂, then there is

a continuum of semi-simple solutions in U corresponding to absorbing sets of no-delay

stationary bargaining equilibria with discount factors δ1, . . . , δn.

Note that the theorem is not an immediate corollary of Theorems 1 and 2. Indeed, the

threshold δ̄ = δ̄S identified in Theorem 1 was only shown to apply to a given semi-simple

8The proof of this theorem can be found in the working paper version (Anesi and Duggan 2017).
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solution S, not to the continuum of semi-simple solutions in U described in Theorem

2. Henceforth, let δ̄S be the threshold associated with S, and let S be the continuum

of semi-simple solutions from Theorem 2. It remains to be established that there is a

subcontinuum, say S∗, of that continuum such that δ̂ = sup
{

δ̄S : S ∈ S∗
}

< 1. To this

end, let U ⊆ X be an arbitrary open neighborhood of x. For each natural number k, set

Sk = {S ∈ S : δ̄S < 1− 1
k
}, and note that S =

⋃∞
k=1 S

k. Thus, S is the union of countably

many sets, and since S is a continuum, some set Sk is also a continuum.9 Then we set

S∗ = Sk and δ̂ = 1− 1
k

to complete the proof.

The political economy literature on bargaining games with an endogenous status quo

has devoted considerable attention to the set A∗ of dynamically stable alternatives, i.e.,

the alternatives that can be supported as long run outcomes of stationary bargaining

equilibria. Formally, we define A∗ to consist of every alternative x for which there exists

δ̂ ∈ (0, 1) such that if mini∈N δi > δ̂, then there is a stationary bargaining equilibrium

σ for discount factors δ1, . . . , δn such that x ∈ A(σ). In terms of predicting bargaining

outcomes, the characterization of dynamically stable alternatives is only informative if A∗

is “small” relative to the set of alternatives. This is typically not the case in the dynamic

bargaining game with a high-dimensional set of alternatives. As discussed above, when

d ≥ m∗ − 1, for generic utility profiles, condition (C1) is satisfied on a set of alternatives

with full measure, and thus the dynamically stable alternatives are dense in the set of

alternatives.

Corollary 1. If the set of alternatives at which (C1) holds is dense in intX, then the set

A∗ of dynamically stable alternatives is dense in intX.

This observation is reminiscent of the cycling results in the social choice literature

(e.g., McKelvey, 1979). Just as the top cycle is generically dense in the set of alternatives

in sufficiently high dimensional spaces, we find that long-run bargaining outcomes for any

such environment are highly indeterminate. Whereas McKelvey’s chaos theorem evokes the

picture of collective choices moving arbitrarily through the set of alternatives over time,

however, our results establish the possibility that collective choices via dynamic bargaining

can come to rest at arbitrary locations in the set of alternatives.

We conclude that as players become patient, stationary bargaining equilibria may not

only be indeterminate, but when the space of alternatives is high-dimensional, every in-

terior alternative can be approximated by equilibrium absorbing points. Note that the

indeterminacy is not created by the possibility of Pareto inefficient equilibria: our com-

panion working paper (Anesi and Duggan 2017) provides a second gradient restriction

9More precisely, if we had |Sk| < |S| for all k, then it would follow from König’s Theorem (e.g., Holz et

al., 1999) that |S| ≤
∑∞

k=1
|Sk| <

∏∞

k=1
|S| = |S|, a contradiction.
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under which near a given Pareto optimal alternative, we can find a continuum of semi-

simple solutions involving only Pareto optimal alternatives. In the absence of a priori

bounds on the players’ discount factors, our results demonstrate difficulties for the predic-

tion and analysis of outcomes in dynamic settings that must be addressed in future work

on dynamic bargaining with an endogenous status quo.

A Proof of Theorem 1

Let S = {x̄1, . . . , x̄m}, m ≤ n, be a semi-simple solution. We will proceed in six steps.

Step 1 defines the threshold δ̄ = δ̄(x̄1, . . . , x̄m). Steps 2 and 3 construct σ and verify that

it is a no-delay stationary Markov strategy profile. Step 4 derives players’ continuation

values from the definition of σ. Finally, Steps 5 and 6 use these continuation values to

establish that σ is a stationary bargaining equilibrium.

Step 1: Definition of δ̄(x̄1, . . . , x̄m). Let pmin ≡ mini∈N pi and, for each i ∈ N , let

δ̄i(x̄
1, . . . , x̄m) ≡

usupi −maxh ui(x̄
h)

usupi − pminminh ui(x̄h)− (1− pmin)maxh ui(x̄h)
,

where usupi > maxh ui(x̄
h) is an upper-bound for ui(X) (recall that the ui’s are bounded

above). By condition (ii) in the definition of a semi-simple solution,

pminmin
h

ui(x̄
h) + (1− pmin)max

h
ui(x̄

h) < max
h

ui(x̄
h)

and, therefore, δ̄i(x̄
1, . . . , x̄m) ∈ (0, 1) for every i ∈ N . This in turn implies that

δ̄(x̄1, . . . , x̄m) ≡ max
i∈N

δ̄i(x̄
1, . . . , x̄m) ∈ (0, 1) .

Moreover, as ui is continuous for each i, δ̄i is continuous in (x̄1, . . . , x̄m). Hence, δ̄ is a

continuous function of (x̄1, . . . , x̄m).

Henceforth, we assume that mini∈N δi > δ̄(x̄1, . . . , x̄m).

Step 2: Definition of stationary Markov strategy profile σ. The definition of

proposal strategies relies on an n-tuple of alternatives (“x1, . . . , “xn) ∈ {x̄1, . . . , x̄m}n, de-

fined as follows. From condition (i) in Definition 1, there exists a one-to-one mapping

ρ : {x̄1, . . . , x̄m} → N such that for all k = 1, . . . ,m, ρ(x̄k) ∈
{

i ∈ N : ui(x̄
k) = maxh ui(x̄

h)
}

.

For each i ∈ ρ
(

{x̄1, . . . , x̄m}
)

, we define “xi as the alternative x̄k in the semi-simple solution

such that x̄k = ρ−1(i). If N \ ρ
(

{x̄1, . . . , x̄m}
)

6= ∅ then, for each i /∈ ρ
(

{x̄1, . . . , x̄m}
)

, we

select “xi among the maximizers of ui on {x̄1, . . . , x̄m}. Observe that, by condition (ii) in
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Definition 1, we have ui(“xi) = maxh ui(x̄
h) > minh ui(x̄

h), for all i ∈ N . Moreover, since

ρ is one-to-one, we also have

∑

j∈N

pjui(“xj) ≤ pminmin
h

ui(x̄
h) + (1− pmin)max

h
ui(x̄

h),

for all i ∈ N .

We are now in a position to define σ = (σ1, . . . , σn). For each i ∈ N , σi prescribes the

following behavior to player i:

(a) In the proposal stage of any period t with ongoing status quo x, (conditional on

her being selected to make a proposal) she proposes

φi(x) ≡

{

x if x ∈ {x̄1, . . . , x̄m},

“xi otherwise;

(b) in the voting stage of any period t with ongoing status quo x, she accepts proposal

y if and only if Wi(y) > Wi(x),
10 where

Wi(z) ≡ (1− δi)ui(z) + δi
∑

j∈N

pjui
(

φj(z)
)

, for all z ∈ X .

It is easy to see that σ is stationary Markov.

Step 3: Verification that σ is no-delay with A(σ) = {x̄1, . . . , x̄m}. It follows imme-

diately from part (a) in the definition of σ that every element of the semi-simple solution is

absorbing, that is, {x̄1, . . . , x̄m} ⊆ A(σ). What remains to be established, therefore, is that

any status quo x /∈ {x̄1, . . . , x̄m} is immediately amended to an alternative in {x̄1, . . . , x̄m}

with probability one. To see this, observe that each proposer i ∈ N offers alternative “xi

in {x̄1, . . . , x̄m} when the status quo is x /∈ {x̄1, . . . , x̄m}. Moreover, by definition of a

semi-simple solution, there is a decisive coalition C(“xi) ∈ D such that

Wk(“xi) = uk(“xi)

= max
h

uk(x̄h)

> (1− δk)u
sup
k + δk

[

pminmin
h

uk(x̄
h) + (1− pmin)max

h
uk(x̄

h)
]

≥ (1− δk)uk(x) + δk
∑

j∈N

pjuk(“xj)

= Wk(x),

10These voting strategies are, in a sense, simpler than those used in Anesi and Seidmann’s (2015) result

with simple solutions, where indifferent voters reject proposals in some cases but not in others. This

difference in voting behavior is immaterial for the derivation of the result; but assuming that indifferent

voters always reject eases the exposition in our more general framework.
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for all k ∈ C(“xi). (The first inequality follows from Step 1: δk > δ̄k(x̄
1, . . . , x̄m) for all

k ∈ N .) From part (b) in the definition of σ, all players in the decisive coalition C(“xi)

accept “xi ∈ A(σ), which is therefore implemented.

Step 4: Continuation values. We denote by Vi(x|σ) player i’s expected discounted

payoff from implementing alternative x in a given period. Suppose first that x ∈ {x̄1, . . . , x̄m}.

It follows immediately from part (a) in the definition of σ that

Vi(x|σ) = ui(x) = (1− δi)ui(x) + δi
∑

j∈N

pjui
(

φj(x)
)

= Wi(x).

Suppose now that x /∈ {x̄1, . . . , x̄m}. Each player i receives (1 − δi)ui(x) in the current

period. Then, in the next period, player j is selected with probability pj and, as shown in

Step 3, successfully proposes “xj = φj(x). Hence,

Vi(x|σ) = (1− δi)ui(x) + δi
∑

j∈N

pjui
(

φj(x)
)

= Wi(x), (1)

for all i ∈ N and all x ∈ X.

Step 5: Verification that players do not cast stage-dominated votes. Consider

an arbitrary voting stage, in which a proposal y has been made to amend the current status

quo x. Coupled with (1), part (b) in the definition of σ guarantees that each player i only

accepts y if Vi(y|σ) > Vi(x|σ), and only rejects y if Vi(y|σ) ≤ Vi(x|σ).

Step 6: Verification that σ is a stationary bargaining equilibrium. It follows

from Step 5 (and the one-shot deviation principle) that, in any voting stage, no player can

profitably deviate from σ. To complete the proof of Theorem 1, we must therefore show

that there is no profitable (one-shot) deviation from σ in any proposal stage. Suppose

first that the current status quo x belongs to {x̄1, . . . , x̄m}. In this case, σ prescribes

proposer i to maintain x. If she deviates by proposing to change x to any other alternative

y 6= x, then her proposal will be rejected. Indeed, if y also belongs to {x̄1, . . . , x̄m},

then part (i) in Definition 1 implies that there is a decisive coalition C(x) ∈ D such that

Wi(x) = ui(x) ≥ ui(y) = Wi(y) for all i ∈ C(x); if y does not belong to {x̄1, . . . , x̄m}, then

similarly part (i) in Definition 1 implies that, for each member i of the decisive coalition
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C(x),

Wi(x) = ui(x)

= max
h

ui(x̄h)

> (1− δi)u
sup
i + δi

[

pminmin
h

ui(x̄
h) + (1− pmin)max

h
ui(x̄

h)
]

≥ (1− δi)ui(y) + δi
∑

j∈N

pjui(“xj)

= (1− δi)ui(y) + δi
∑

j∈N

pjui
(

φj(y)
)

= Wi(y) .

(The first inequality follows from Step 1: δi > δ̄i(x̄
1, . . . , x̄m) for all i ∈ N .) Hence, all

members of the decisive coalition reject y in both cases. It is therefore impossible for any

proposer to profitably deviate from σ when the current status quo is in {x̄1, . . . , x̄m}.

Suppose now that the current status quo x does not belong to {x̄1, . . . , x̄m}. If proposer

i plays according to σ, then she successfully proposes “xi (recall Step 3), thus obtaining

a dynamic payoff of Vi(“xi|σ) = ui(“xi) = maxh ui(x̄h). Because she could simply propose

x itself, instead of proposing an alternative that is rejected, it follows that if she has a

profitable deviation, then she can profit from making a successful proposal y. If y belongs

to {x̄1, . . . , x̄m}, then the deviation is not profitable since Vi(“xi|σ) = maxh ui(x̄
h) ≥ ui(y) =

Vi(y|σ). If y does not belong to {x̄1, . . . , x̄m}, then

Vi(“xi|σ) = max
h

ui(x̄h) > (1− δi)ui(y) + δi
∑

j∈N

pjui
(

φj(y)
)

= Vi(y|σ),

where as above, the inequality follows from δi > δ̄i(x̄
1, . . . , x̄m). Hence, the deviation is

again unprofitable. This completes the proof of the theorem.

B Proof of Theorem 2

Let x be an interior point of X that satisfies (C1) using coalition C∗ ∈ D∗, i.e., (i) the

gradients {∇ui(x) : i ∈ C∗} are linearly independent, and (ii) there exists j ∈ C∗ such that

for all k ∈ N \ C∗, the gradients {∇ui(x) : i ∈ (C∗ \ {j}) ∪ {k}} are linearly independent.

For simplicity, enumerate the members of C∗ as {1, . . . ,m}, and assume without loss

of generality that player j = 1 fulfills part (ii) of (C1). Now, let U ⊆ X be an open
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neighborhood of x. Define the mapping f : Xm → ℜm2

by

f(x1, . . . , xm) =































u1(x
1)

...

u1(x
m)

...

um(x1)
...

um(xm)































,

where for each player i = 1, . . . ,m, there are m rows giving player i’s payoff from alter-

natives x1, . . . , xm. The derivative of f at arbitrary (x1, . . . , xm) ∈ Xm is the m2 × md

matrix

Df(x1, . . . , xm) =





























































Du1(x
1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 Du1(x
m)

Du2(x
1) 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 Du2(x
m)

...
...

. . .
...

...

Dum(x1) 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 Dum(xm)





























































,

where we view Dui(x
j) as a 1× d row matrix. By assumption, the matrix Df(x1, . . . , xm)

has full row rank at (x, . . . , x). Moreover, we have d ≥ m, since the players’ gradients are

linearly independent, and therefore dm ≥ m2.

Let y = (y1, . . . , ym) = f(x, . . . , x), where yi = (ui(x), . . . , ui(x)) is then the m-fold

copy of player i’s utility from x. By the local submersion theorem (e.g., Guillemin and

Pollack, 1974), we can choose an arbitrarily small open set Ũ ⊆ U containing x such that
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the image Ṽ ≡ f(Ũm) is an open set containing y. Therefore, there exists ǫ > 0 such that

yǫ =

















































































u1(x)− ǫ

u1(x) + ǫ
...

u1(x) + ǫ

u2(x) + ǫ

u2(x)− ǫ

u2(x) + ǫ
...

u2(x) + ǫ

...

um(x) + ǫ
...

um(x) + ǫ

um(x)− ǫ

















































































belongs to Ṽ . Moreover, by part (ii) of (C1), we can choose Ũ sufficiently small that for

all x̃ ∈ Ũ and all k = m + 1, . . . , n, the gradients {∇ui(x̃) : i = 2, . . . ,m, k} are linearly

independent.

Since yǫ ∈ Ṽ , there is a vector (x1ǫ , . . . , x
m
ǫ ) ∈ Ũm such that f(x1ǫ , . . . , x

m
ǫ ) = yǫ.

We claim that for all i = 1, . . . ,m, ui is not constant on {x1ǫ , . . . , x
m
ǫ }. Indeed, for each

k = 1, . . . ,m and each i ∈ C∗ \ {k}, we have

ui(x
k
ǫ ) = ui(x) + ǫ = max

h
ui(x

h
ǫ ),

which is strictly greater than ui(x
i
ǫ) = ui(x)− ǫ = minh ui(x

h
ǫ ), as claimed. To fulfill part

(ii) of Definition 1, it remains for us to confront the possibility that players outside C∗ are

indifferent over the m alternatives, i.e., for some i ∈ N \C∗, ui is constant on {x1ǫ , . . . , x
m
ǫ }.

To address this problem, we iteratively perturb x1ǫ , and we construct these perturbations

recursively to break any indifferences over {x1ǫ , . . . , x
m
ǫ } among players m+1, . . . , n, while

continuing to punish player 1 and maintaining the reward payoffs of players 2, . . . ,m. To

begin, set z0 = x1ǫ .

Step 1: If player m+ 1 is indifferent over {z0, x2ǫ , . . . , x
m
ǫ }, then we form the coalition
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C1 = (C∗ \ {1}) ∪ {m+ 1}, which has size m. Define the mapping g1 : X → ℜm by

g1(z) =













u2(z)
...

um(z)

um+1(z)













,

which gives the vector of payoffs to players in C1. Since z0 ∈ Ũ , the gradients {∇ui(z
0) : i ∈

C1} are linearly independent, so that Dg1(z0) has full row rank. By the local submersion

theorem, we can choose an open set Ũ1 ⊆ Ũ containing z0 such that Ṽ 1 ≡ g1(Ũ1) is open.

Moreover, we can choose Ũ1 sufficiently small that for all z ∈ Ũ1, we have

u1(x) > u1(z).

Since Ṽ 1 is open and contains g1(z0), there exists ǫ1 > 0 such that

y1 =













u2(x
1
ǫ )

...

um(x1ǫ )

um+1(z
0) + ǫ1













belongs to Ṽ 1. Since y1 ∈ Ṽ 1, there is an alternative z1 ∈ Ũ1 such that g1(z1) = y1. If

player m+ 1 is not indifferent over {z0, x2ǫ , . . . , x
m
ǫ }, then set z1 = z0.

In general, assume we are given zk−1 ∈ Ũ such that (a) u1(x) > u1(z
k−1), (b) for all

i = 2, . . . ,m, we have ui(z
k−1) = ui(x

1
ǫ ), and (c) for all i = m+1, . . . ,m+ k− 1, ui is not

constant on {zk−1, x2ǫ , . . . , x
m
ǫ }. Then we proceed as follows.

Step k: If player m+k is indifferent over {zk−1, x2ǫ , . . . , x
m
ǫ }, then we form the coalition

Ck = (C∗ \ {1}) ∪ {m+ k}, which has size m. Define the mapping gk : X → ℜm by

gk(z) =













u2(z)
...

um(z)

um+k(z)













,

which gives the vector of payoffs to players in Ck. Since zk−1 ∈ Ũ , the gradients {∇ui(z
k−1) :

i ∈ Ck} are linearly independent, so that Dgk(zk−1) has full row rank. By the local submer-

sion theorem, we can choose an open set Ũk ⊆ Ũ containing zk−1 such that Ṽ k ≡ gk(Ũk)

is open. Moreover, by (a), we can choose Ũk sufficiently small that for all z ∈ Ũk, we have

u1(x) > u1(z).
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Finally, by (c), we can choose Ũk small enough that for all z ∈ Ũk and all i = m +

1, . . . ,m + k − 1, ui is not constant on {z, x2ǫ , . . . , x
m
ǫ }. Since Ṽ k is open and contains

gk(zk−1), there exists ǫk > 0 such that

yk =













u2(z
k−1)
...

um(zk−1)

um+k(z
k−1) + ǫk













belongs to Ṽ k. Since yk ∈ Ṽ k, there is an alternative zk ∈ Ũk such that gk(zk) = yk, and

by (b), we have ui(z
k) = ui(x

1
ǫ ) for all i = 2, . . . ,m. If player m+ k is not indifferent over

{zk−1, x2ǫ , . . . , x
m
ǫ }, then set zk = zk−1.

After Step n − m, we define the m-tuple (x̄1ǫ , . . . , x̄
m
ǫ ) = (zn−m, x2ǫ , . . . , x

m
ǫ ), and

we claim that {x̄1ǫ , x̄
2
ǫ , . . . , x̄

m
ǫ } is a semi-simple solution. Indeed, define the mapping

ρ : {x̄1ǫ , . . . , x̄
m
ǫ } → N such that ρ(x̄iǫ) = i + 1 for all i = 1, . . . ,m − 1 and ρ(x̄mǫ ) = 1.

For each k = 1, . . . ,m, the coalition C(x̄kǫ ) of players supporting x̄kǫ includes C∗ \ {k}, and

since C∗ is oversized, this implies C(x̄kǫ ) ∈ D. Of course, it follows that ρ is a one-to-one

selection from the coalitions C(x̄kǫ ). Thus, the set {x̄1ǫ , . . . , x̄
m
ǫ } satisfies parts (i) and (ii)

of Definition 1, i.e., it is a semi-simple solution contained in the open set U , as claimed.

Following the argument for ǫ > 0, we can similarly construct vectors yγ ∈ Ṽ and

(x1γ , . . . , x
m
γ ) ∈ Um for all γ ∈ (0, ǫ). By construction, γ1 6= γ2 implies u1(x

2
γ1
) = u1(x) +

γ1 6= u1(x) + γ2 = u1(x
2
γ2
) and, therefore, {x1γ1 , . . . , x

m
γ1
} 6= {x1γ2 , . . . , x

m
γ2
}. We conclude

that there is a continuum of semi-simple solutions contained in U .
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