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 Abstract 

The catalytic properties of ruthenium nanoparticles (RuNPs) supported in carbon nanoreactors of different 

diameters – single walled carbon nanotubes (SWNTs, width of cavity 1.5 nm) and hollow graphitised nanofibers 

(GNFs, width of cavity 50-70 nm) – were evaluated using exploratory alkene hydrogenation reactions and 

compared to RuNPs adsorbed on the surface of SWNT or deposited on carbon black in commercially available 

Ru/C. Supercritical CO2 is shown to be essential to enable efficient transport of reactants to the catalytic RuNPs, 

particularly for the very narrow RuNP@SWNT nanoreactors. Though the RuNPs in SWNT are observed to be 

highly active, they simultaneously reduce the accessible volume of very narrow SWNTs by 30-40 % resulting in 

lower overall turnover numbers (TONs). In contrast, RuNPs confined in wider GNFs were completely accessible 

and demonstrated remarkable activity compared to unconfined RuNPs on the outer surface of SWNTs or carbon 

black. Control of the nanoscale environment around the catalytic RuNPs significantly enhances the stability of 

the catalyst and influences the local concentration of reactant molecules in close proximity to the RuNPs, 

illustrating the comparable importance of confinement to that of metal loading and size of NPs in the catalyst. 

Interestingly, extreme spatial confinement also appeared not to be the best strategy for controlling the 

selectivity of hydrogenations in a competitive reaction of norbornene and benzonorbornadiene, with wider 

RuNP@GNF nanoreactors displaying enhanced selectivity for the hydrogenation of the aromatic group 

containing alkene (benzonorbornadiene). This is attributed to the presence of nanoscale graphitic step-edges 

within the GNF making them an attractive alternative to the extremely narrow SWNT nanoreactors for 

preparative catalysis. 
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1. Introduction 

Gaining control of chemical reactions in order to improve the yield of a particular product and/or change the 

reaction pathway is a great challenge in chemical synthesis. One method commonly used to achieve this is to 

perform reactions in sterically confined environments using materials such as zeolites, porous silica or alumina, 

molecular cages and carbon nanomaterials to act as nanoscale reaction vessels or nanoreactors.1-9 All of these 

systems have nanosized pores, holes or channels of different geometries and diameters which are capable of 

accommodating reactants and affecting the distribution of products by imparting some form of steric effect on 

the transition states or intermediates of reactions.   

   Carbon nanostructures (CNS) have recently become of great interest for use as nanoreactors in a variety of 

different catalytic chemical reactions as they are robust, chemically inert, and available in a large range of 

well-defined pore shapes and sizes. Most importantly, due to recent advances in production, CNS are now 

readily available in large quantities at low cost which opens up the potential for application in large-scale 

preparative syntheses for the first time.10-12 

   In addition to acting as reaction vessels and templates to the formation of specific products, CNS also make 

the ideal support materials for metal nanoparticle (MNP) catalysts. By immobilizing catalytic NPs inside CNS it is 

possible to combine all of the advantages of nanoreactors, offering control of the size and shape of the reaction 

volume, with the inherent advantages of heterogeneous catalysis, i.e. enhanced stability and recyclability of 

metal nanoparticles.13-17 As a result a significant number of studies have reported the application of multi-walled 

carbon nanotubes (MWNTs) and hollow graphitised nanofibers (GNFs), with internal channels ranging from 5-50 

nm, as nanoscale reaction vessels and flow reactors for catalytic chemical reactions. In which their 

commensurate hollow structure facilitates encapsulation of the metal nanoparticles inside the nanotube and 

provides the perfect environment for reactions to occur within a strictly controlled nanoscale volume.9, 17-22 Serp 

et al. performed the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over a bimetallic Pt_Ru 

catalyst confined inside MWNTs and compared the metal catalyst activity with both the same sized free standing 

MNPs and MNPs supported on the outside surface of MWNTs.17 A significant increase in catalytic performance 

with higher turnover frequency and selectivity for cinnamyl alcohol was observed for the catalyst inserted in 

MWNTs as a result of the confinement and enrichment of reactant concentration inside the nanotubes due to 

stronger interactions between the molecules and the internal surface of the carbon nanostructures. Pan et al. 

reported that Rh nanoparticles confined inside carbon nanotubes substantially enhanced ethanol conversion 

compared with the same catalyst located outside of the nanotubes.9 Moreover, platinum nanoparticles both 

inserted into GNFs and adsorbed on to the outside surface were probed in the competitive hydrosilylation 

reaction of phenylacetylene by Solomonsz et al., demonstrating significant changes in the selectivity of reactions 

of aromatic and aliphatic molecules within the nanoreactor.18 
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   The latest studies reveal that the size and shape of the nanotube channel enhances the stability and selectivity 

of the confined NP catalysts allowing strict control of the nanoparticle size, functionality and reactivity by 

providing stabilization to the NPs, preventing aggregation into larger particles and bulk metal.23-26 Less is known 

about the use of narrower SWNTs and double-walled carbon nanotubes (DWNTs), with an internal mean 

diameter of ~1-2 nm, however it has been shown that they enable the formation of small, highly stable metal 

nanoparticles.25 The advantageous nature of MNPs@SWNT catalysts, in which the cavity dimensions are 

commensurate with the size of small organic reactant molecules, is that they impart significant steric influence 

on reaction pathways thus exhibiting greater effects on the products of reactions than wider MWNTs.  We 

recently carried out hydrogenation reactions of alkenes catalyzed by RuNPs confined within extremely narrow 

SWNTs and observed very high yields of the products as a result of an enrichment of reactant species inside the 

nanonoreactor due to confinement effects.27 Narrow DWNTs (nanotube diameter of 1-1.5 nm) were utilised to 

stabilise Pd-V bimetallic nanoparticles and the resultant catalyst was shown to be more active for benzene 

hydroxylation than the same NPs in wider, and hence less confined MWNT (nanotube diameter = 4-8 nm).28  

Similar enhancements in activity as a result of extreme nanotube confinement have also been reported for 

sub-nanometre titania NPs in DWNTs for propylene epoxidation29 and Re NPs in DWNT for benzene 

hydroxylation.30  

There are also a few examples of non-catalysed chemical reactions within SWNT, such as a study by Miners et 

al. who reported the effect of SWNT diameter on the selectivity of N-phenylacetamide bromination within SWNT 

and showed that the inner cavity of the nanotube changed the regioselectivity and activity of a bromination 

reaction.10, 31-32 These studies demonstrate that the extreme confinement imposed by the unique reaction 

environment of SWNT-based nanoreactors can significantly alter the selectively and rate of chemical reactions. 

In addition the SWNT support changes the chemical and physical properties of the NP catalyst, allowing strict 

control of the NP functionality and reactivity as well as NP size.27  

Thus, confinement of catalytic processes in very narrow carbon nanoreactors has been shown to control the size 

and shape selectivity of hydrogenation reactions. In this study we explore the effects of such extreme 

confinement on the mass transport of reactants and products into and out of SWNT-based catalytic 

nanoreactors and compare this to GNFs, which are wider, and therefore more accessible to reactants and 

crucially, in contrast to MWNTS, have structured internal channels which can also influence chemical reactions.  

2. Experimental 

SWNTs, GNFs and C60 were purchased from Helix Material Solutions (Arc-discharge, USA), Pyrograf Products Inc 

(PR19, chemical vapor deposition, USA) and SES Research (USA), respectively. All other reagents and solvents 

were purchased from Sigma-Aldrich (UK) and used without further purification. All of the glassware required to 

perform the experiments was thoroughly cleaned with ‘aqua regia’ (concentrated hydrochloric and nitric acids 

(3:1)) and rinsed with deionized water prior to use. 

Catalyst preparation: 
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SWNTs were annealed at 380 °C for 20 minutes to open their termini and remove any residual amorphous carbon 

from the internal cavities; a 20-30 % weight loss was observed prior to use. Average SWNT length after thermal 

treatment was reported previously to be 2.43 ± 0.85 µm.33 GNFs were thermally annealed at 450 C for 1 hour 

prior to use. The average length after thermal treatment was measured by TEM to be  15.34 ± 12.10 µm, (see 

Electronic Supplementary Information file (ESI) Figure S-2).  

RuNPs@SWNT and RuNPs@GNF - The metal carbonyl precursor, Ru3(CO)12 (1.05 mg/0.21 mg, masses equivalent 

to the wt.% of Ru metal required for SWNT and GNF respectively) were combined with freshly opened  SWNTs 

(10 mg) or GNFs (10 mg) in a quartz ampoule, and sealed under vacuum (10-6 bar) heated at 140 °C for 3 days. 

After 3 days, the sample inside the quartz ampoule was cooled by immersing in an ice bath. The sample was 

then removed from the ampoule, sonicated in tetrahydrofuran (10 mL) for 15 minutes, then filtered through a 

PTFE membrane filter (pore size 0.2 μm) and repetitively washed with tetrahydrofuran (3 x 10 mL). After 

washing, the sample was sealed in a quartz ampoule under an argon atmosphere and heated at 600 °C for 2 

hours to decompose the metal carbonyl into the desired pure metal nanoparticles.  

RuNPs/(C60@SWNT) - Freshly opened SWNT (10 mg) and C60 (20 mg) were sealed under vacuum (10-6 bar) in a 

quartz ampoule and heated at 500 °C for 2 days. After 2 days, the sample was removed from the ampoule and 

sonicated in toluene (10 mL) for 15 minutes. The sample was then filtered through a nylon membrane filter (pore 

size 0.2 μm) and repetitively washed with toluene (3 x 10 mL). After washing, the C60@SWNT (10 mg) and 

Ru3(CO)12 (0.65 mg, a mass equivalent to the wt.% of Ru metal required) were combined in a quartz ampoule 

and sealed under an argon atmosphere and heated at 600 °C for 2 hours decompose the metal carbonyl into the 

desired pure metal nanoparticles. 

HRTEM analysis was performed on a JEOL 2100 Field emission gun microscope with an information limit of 0.12 

nm at 100 kV or 200kV. High resolution scanning transmission microcpy (HRSTEM) images were acquired using 

the JEOL digital STEM system. Samples (RuNPs@SWNT, RuNPs/C60@SWNT, RuNPs@GNF and Ru/C) were 

prepared for TEM analysis by dispersing the materials in HPLC grade iso-propanol using ultra-sonication, then 

drop casting the resultant suspension onto a lacey carbon film coated copper grid. 1H NMR spectra were 

recorded using a Bruker DPX300 NMR spectrometer. 1H NMR spectra were taken in CDCl3 and were referenced 

to residual trimethysilane (TMS) (0 ppm) and reported as follows: chemical shift, multiplicity (s = singlet, d = 

doublet, t = triplet, dd = doublet of doublet, m = multiplet). TGA analysis was performed on a TA Instruments 

TGA-SDTQ600 analyser. Samples for TGA analyses were heated in an inert atmosphere up to 1000 °C with a 

heating rate of 10 °C/min. The powder X-ray diffraction (XRD) patterns were obtained using a PANanalytical 

X’Pert PRO diffrctometer equipped witha Cu-Ka radiation source operating at 40 kV and 40 mA, with 0.05252° 

step size and 5925.18 second step time. Surface area analysis was performed using the Brunauer–Emmett–Teller 

(BET) method based on adsorption data in the relative pressure (P/Po) range 0.02 to 0.22 by measuring nitrogen 

sorption isotherms of the samples (50 mg) at -196 °C on a Micromeritics ASAP 2020 sorptometer. X-ray 

photoelectron spectrocopy (XPS) samples were analysed using the Kratos AXIS ULTRA with a mono-chromated 

Al kα X-ray source (1486.6eV) operated at 10 mA emission current and 12 kV anode potential (120 W). 
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Benzonorbornadiene (2a) synthesis by Diels Alder reaction 

Benzonorbornadiene was synthesized according to the previously reported procedure.34 1,2-Dibromobenzene 

(5.00 g, 21.45 mmol) and cyclopentadiene (1.42 g, 21.45 mmol) were stirred in toluene (13 mL) at 0 oC under Ar. 

n-BuLi (12 mL, 1.78M in hexanes, 21.45 mmol) was added to this solution dropwise over 30 min during which 

the reaction solution became first yellow then cloudy white. After an additional 10 min at 0 oC the mixture was 

allowed to warm to room temperature, stirred overnight and treated with H2O (20 mL) and extracted with 

hexanes (3 × 30 mL). The organic layer was dried over MgSO4, filtered, and concentrated to obtain yellow oil. 

The product was purified by chromatography on silica gel eluting with hexanes to provide a clear and colourless 

oil (1.6 g, 0.11 mmol, 65 %).  

Benzonorbornadiene (1,4-dihydro-1,4-methano-naphthalene) (2a); 1H NMR (300 MHz, 297 K, CDCl3, δ, ppm): 

7.24-7.21 (m, 2 H), 6.95-6.92 (m, 2H), 6.80 (m, 2 H), 3.90 (m, 2 H), 2.34-2.30 (m, 1H), 2.26-2.23 (m, 1H). 

Hydrogenation reactions using lab glassware: 

All reactions were performed in a pyrex pressure tube (10 bar) with a stirring bar. RuNPs@carbon nanoreactor 

(in each case an amount equivalent 0.0017 mmol% of Ru in the reaction mixture) was suspended in cyclooctane 

(1 mL) in the bottom of the tube and the resulting mixture was saturated with H2  by bubbling a mixture of 10 % 

H2 and 90 % Argon gas (1 bar) through the solution at 25 °C for 30 minutes. The alkene (0.05 mL) was then added 

to the resulting H2 saturated solution. The tube was sealed and the resultant suspension was heated at 110 °C 

for 24 hour. After this, the reaction was stopped and the mixture was cooled down to room temperature. The 

resultant material was analyzed by 1H NMR spectroscopy.  

Hydrogenation reactions using a high pressure scCO2 batch reactor: 

In general, RuNPs@carbon nanoreactor (0.0017 mmol% of Ru) and alkene substrate (1 mmol) were put into a 

high pressure reactor (10 mL). The reactor volume was degassed thoroughly with H2 for 30 min. Then, the reactor 

was sealed and pressurized with H2 (10 bar) and heated to 110 °C by adding CO2 (100 bar) and left for 24 hour. 

At the end of the reaction, the reactor was cooled and depressurized.  The resultant material was analyzed by 

1H NMR spectroscopy. All catalytic reactions were performed in duplicate, and the yields given are averages of 

the two experiments. 

Norbornane (1b); 1H NMR (300 MHz, 297 K, CDCl3, δ, ppm): 2.21 (m, 2 H), 1.50 (m, 4H), 1.18 (m, 6 H). 

1,4-Methano-1,2,3,4-tetrahydronaphthalene (2b); 1H NMR (300 MHz, 297 K, CDCl3, δ, ppm): 7.30-7.10 (m, 4 H, 

ArH), 3.50-3.35 (m, 2H, CH), 2.10-1.50 and 1.50-1.10 (m, 6H, CH2). 

 

The use of high pressure scCO2 batch reactor:  

In general, the autoclave reactor was loaded with RuNPs@SWNT and norbornene substrate (1 mmol) and an 

O-ring was placed to seal the reactor. The reactor volume was degassed thoroughly with H2 for 30 min by opening 
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the outlet valve. Then, the reactor was sealed and pressurized with H2 (10 bar) and heated initially to 40 °C in 

order to add the CO2 (50 bar) as a supercritical phase using a pickle pump and then heated slowly to 110 °C to 

make sure that overall pressure is 100 bar by adding more scCO2 at this temperature. The reaction was then left 

for 24 hour and cooled under room temperature to depressurize slowly by opening outlet valve. 

 

3. Result and Discussion 

In our study, a simple and efficient approach for catalyst synthesis in the inner cavity of carbon nanotubes is 

used to create very active Ru nanoparticles within an extremely constrained carbon nanoreactor environment.35 

In this approach, Ru3(CO)12 molecules inserted from the vapour phase into the freshly opened SWNT are 

decomposed to form Ru nanoparticles within the nanotube (RuNPs@SWNT). High resolution transmission 

electron microscopy (HRTEM) imaging of the resultant hybrid nanomaterial RuNPs@SWNT reveals the shape, 

size and location of Ru nanoparticles inside the nanoreactor. HRTEM confirmed that the RuNPs were located 

mostly inside the SWNT, where the nanotube sidewall stabilises and templates the formation of NPs resulting in 

small, well defined particles with a narrow size distribution, (dNP = 0.74 ± 0.18 nm, Table 1). A combination of 

thermogravimetric analysis (TGA) and inductively coupled plasma optical emission spectrometry (ICP-OES) was 

used to determine the precise loading of Ru in RuNPs@SWNT showing the material to be 1.6 % Ru by weight.  

This represents the maxiumum loading of Ru nanoparticles into SWNT with the remaining Ru material deposited 

and subsequently washed from the outer walls of the nanoutbes prior to nanoparticle formation, an essential 

step to ensure no unconfined nanoparticles are present to take part in the reaction (see supporting information 

file Figures S-13 and Table S-1).  However, TEM reveals a small portion (<10 %) of NPs are located on the outside 

of the nanotubes where they do not benefit from the same templating effect and therefore are larger and less 

uniform (dNP = 2.49 ± 0.85 nm (Figure 1a and Figure S-1 in Electronic Supplementary Material). Energy dispersive 

X-ray spectroscopy (EDX), XPS, and lattice spacing analysis of HRTEM images and powder XRD are consistent 

with a hexagonally close packed structure of metallic the RuNPs (see Figure 1 and ESI for full details).36 
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Figure 1. a-c) HRTEM images of RuNPs@SWNT loaded with 1.6 % of Ru by wt. Black and white arrows indicate 

RuNPs inside and outside of the SWNT respectively, and enlarged region (c) showing the Ru [002] lattice spacing 

(d = 0.21 nm) of an individual, hcp structured, metallic NP which corresponds to the 2θ peak centred at 42.2° in 

the XRD (see ESI). d) HRTEM image of RuNPs/C60@SWNT loaded with 3.1 % of Ru by wt. after filling the SWNT 

with C60, and e), HRTEM image of the C60@SWNT support material showing the internal channels of the SWNT 

are completely full of C60. Enlarged region (inset) shows only single C60@SWNT structure in which a 0.3 nm van 

der Waals gap can be observed between C60 molecules and the SWNT wall confirming that there is no space for 

reactants or Ru NP precursors to fit. White arrows show RuNPs located on the outside of the SWNT and the 

black arrows show C60 molecules. f) The size distribution of RuNPs located inside the SWNT highlights the narrow 

diameter distribution of the RuNPs (blue), and g), the size distribution of RuNPs on the outside of the SWNT 
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(red) is observed to be greater than the confined NPs inside and comparable to the NPs located on the outside 

of the SWNT in RuNPs@SWNT. Scale bars: 2 nm in all images. 

Table 1. Nanoparticle sizing data and theoretical active Ru surface area for all carbon nanoreactor supported RuNP 

catalysts. 

Catalyst 

Average size of 

RuNPs (nm) 

Theoretical active Ru 

surface area (m2/g of 

catalyst)a 

RuNPs@SWNT 0.74 ± 0.18 7.46 

RuNPs/C60@SWNT 2.56 ± 0.62 4.31 

RuNPs@GNF 3.58 ± 1.14 1.00 

Ru/Cc 6.63 ± 2.45 2.69 

a The active Ru surface area of the RuNPs catalysts was calculated assuming all of the NPs to be the average 
diameter measured by TEM (see SI file for full details). 

 

The RuNPs@SWNT catalyst was then investigated using exploratory alkene hydrogenation reactions and as the 

RuNPs are located predominantly within the nanotube channel all reactions are assumed to be performed under 

the effects of extreme confinement. When selecting an appropriate reactant it is important that the van der 

Waals size of the reactant molecules is smaller than the 1.5 nm diameter of the SWNT channel. As the 

hydrogenation of cycloalkenes and butanal in continuous flow reactors has recently been demonstrated in 

nanotubes, in this study we selected a bicyclic alkene norbornene (1a) and a tricyclic alkene benzonorbornadiene 

(2a), both of which have non-planar angular shapes, and in the case of 2a an additional aromatic ring increasing 

the steric bulk as compared to 1a (Scheme 1).27 

The RuNPs@SWNT catalyst was initially tested in the hydrogenation reaction of norbornene using 

molecular hydrogen in a conventional organic solvent, cyclooctane, at atmospheric pressure using laboratory 

glassware. Very low catalytic activity was observed for RuNP@SWNT under these conditions (a 10 % yield of 

norbornane in 24 h), and is attributed to the restricted space in the narrow nanotube channels hindering access 

of the solvent/reactants to the confined metal catalyst. Typically, the use of supercritical CO2 (scCO2) can 

eliminate such mass transfer problems in nano- or microporous structures,27 therefore, a high pressure scCO2 

batch reactor system was utilized in which the excellent diffusivity and mass transfer properties of scCO2 are 

exploited to efficiently deliver the reagents to the RuNP catalyst surface within the narrow nanoreactors (Figure 

2). 
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Figure 2. A schematic diagram of the scCO2 hydrogenation batch reactor. 

Test hydrogenation reactions were performed using the scCO2 batch reactor in the presence of RuNPs@SWNT, 

and norbornene showed a higher TON (total number of product molecules formed per available Ru active site, 

see supporting information for details of how this was calculated),27 than the larger benzonorbornadiene under 

identical reaction conditions (Scheme 1 and Table 2). Control reactions using as-received SWNTs showed no 

reactivity despite EDX and TEM (see supporting information Figure S-1) showing the presence of residual Ni/Y 

catalyst from nanotube synthesis implying all of the nickel is completely passivated by layers of graphitic carbon 

shells (Table 2).   

 

Scheme 1. Hydrogenation of norbornene and benzonorbornadiene in the presence of RuNPs@SWNT. 

Table 2.  Hydrogenation reactions of norbornene and benzonorbornadiene in the presence of RuNPs@SWNT, 

RuNPs/C60@SWNT, RuNPs@GNF and commercial Ru/C using a high pressure scCO2 batch reactor.  

Catalyst 

Yieldc of Products (%) / TONd 

1b                                            2b 

Ratio of TONs for 

1b:2b 

SWNTa 0 N/A N/A 

RuNPs@SWNT 91 / 2959 61 / 1983 1.5:1 
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Reaction conditions: alkene (1 mmol), catalyst (equivalent of 0.0017 mmol of ruthenium in the reaction mixture), H2 (10 
bar), scCO2 (100 bar), 24 h, 110 °C. a SWNT was annealed at 380 °C for 20 minutes to open their termini prior to use. b GNF 

was annealed at 450 C for 1 hour prior to use.  c Yield determined by 1H NMR with an error of ± 2 %. dThe turnover number 

(TON) was calculated as the ratio of the number of molecules of substrate consumed in the reaction per number of 
available Ru active sites in catalyst used in the reaction (see SI file for details of the calculation of the theoretical number of 
active Ru sites in each catalyst). 

 

Crucially, to verify the precise location of the reaction it was important to investigate the effect of the small 

portion of larger RuNPs located on the outside of the SWNT which were more readily accessible than the RuNPs 

confined within the nanotube channel. A control material was therefore synthesised, in which RuNPs are located 

solely on the outside of SWNT, RuNPs/C60@SWNT. This material was prepared by filling of the internal cavities 

of the SWNT support material with C60 to block the channels prior to exposure to the RuNP precursor, Ru3CO12 

vapour (see ESI Figure S-4a for HRTEM of the C60@SWNT support material). HRTEM and gas absorption 

measurements (Figure S-14-15), which reveal an absence of 1-2 nm pores in the C60@SWNT support, agree with 

the fact that the C60 molecules completely block the inner channels of the SWNTs, such that the Ru3CO12 can 

only deposit on the outside of the nanotubes and subsequent thermal treatment causes decomposition of the 

precursor resulting in RuNPs formation exclusively on the outer surface of the SWNT (Figures 1d and S-4b). 

Removal of the templating effect of the inner nanotube cavity during NP formation resulted in the Ru 

nanoparticles of diameter 2.56 ± 0.66 nm on the nanotube surface exhibiting a wider size distribution 

significantly larger as compared to nanoparticles formed inside, but comparible to the NPs located on the 

outside of, nanaotubes in RuNPs@SWNT (c.f. average NP sizes of 0.74 ± 0.18 nm and 2.49 ± 0.85 nm for NPs 

inside and outside respectively). This allowed comparison of the catalytic activity of RuNPs located on the 

outside of the SWNT (RuNPs/C60@SWNT) with RuNPs located inside the nanotube (RuNPs@SWNT). For 

reference C60@SWNT exhibited no catalytic activity when tested in scCO2 hydrogenation reactions, (Table 2). 

    In comparison with RuNPs@SWNT, RuNPs/C60@SWNT showed very low catalytic performance in scCO2 

reactions implying that the larger NPs on the outer walls of the nanoreactor are less active than the smaller 

RuNPs confined within the nanoreactor.37-38 Interestingly, the RuNPs on the outside of the C60@SWNT support 

(dNP = 2.56 nm) are similar in size to the RuNPs inside the GNF in the RuNPs@GNFs catalyst (dNP = 3.58 nm), see 

below for details, but give siginificantly lower reaction yields, (Table 2).  It is hypothesised, therefore, that the 

lack of activity of the RuNPs/C60@SWNT catalyst is most likely a result of the lack of confinement for the 

reactions, which cannot create a similarly high local concentration of the reactant molecules around the catalyst 

nanoparticles in RuNPs/C60@SWNT as in RuNPs@SWNT (and RuNPs@GNF) leading to a lower yield of the 

C60@SWNT 0 N/A N/A 

RuNPs/C60@SWNT 12 / 675 7 / 393 1.7:1 

GNFb 0 N/A N/A 

RuNPs@GNF 46 / 11216 17 / 4145 2.7:1 

Ru/C 51 / 7428 21 / 3058 2.4:1 
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products in the case of the former material. This is consistent with the previously reported examples of enhanced 

local concentration of reactants inside nanotubes resulting in higher yields and is consistent with our observation 

of low norbornene conversion (~10 %) in the reaction catalyzed by RuNPs@SWNT performed in cyclooctane 

solvent in which the reaction only takes place on the accessible Ru nanoparticles located on the outside surface 

of SWNT in the absence of high pressure scCO2  (c.f. RuNPs/C60@SWNT showed 6% norbornene conversion to 

norbornane using the same conditions).18-19, 26, 31-32 It is therefore concluded that the RuNPs located inside the 

carbon nanoreactor are significantly more active and are responsible for the majority of product formation, and 

thus, the contribution of the minority of RuNPs on the outside of the SWNT (~10% by HRTEM) and GNF (~7% by  

STEM, Figure 3c) for RuNPs@SWNT and RuNPS@GNF catalysts respectively, is neglibible (see ESI for details). 

The general observed trend of higher TONs for norbornene, compared to benzonorbornadiene, is most 

likely due to the steric bulk of the additional benzyl group hindering adsorption of benzonorbornadiene on the 

Ru NP surface, as well as potentially an electron withdrawing effect of the additional benzene ring compared to 

norbornene.39 Interestingly, however, there is a significant difference in the relative TONs of reactions of 1b and 

2b for each of the SWNT catalysts, highlighted by considering the ratio of TONs, Table 2, implying the shape of 

the catalyst affects the reactions in an appreciable way. The extremely confined RuNPs@SWNT system, where 

the ratio of TONs of 1b:2b is dramatically lower than for the unconfined RuNPs/C60@SWNT system, appears to 

have a higher affinity for 2b, potentially due to favourable π-π interactions between the aromatic group and the 

nanotube sidewall.  Cleary understanding the nature and extent of the confinement in these systems is crucial 

to selecting the correct environment for a specific reaction. 

To fully understand the impact of the restricted reaction space within the SWNT,27 hydrogenation of 

norbornene and benzonorbornadiene was performed with catalysts which provide lower (RuNPs@GNF) and no 

confinement (RuNPs/carbon black) of reactants around the catalytic nanoparticles. To achieve this, GNFs were 

used, which have an inner diameter of 52 ± 13 nm and an outer diameter of 99 ± 25 nm, and are, like MWNTs, 

significantly wider than SWNTs, allowing reactants in (and products out) more readily and thus can be considered 

as providing a lower level of confinement. In addition, unlike the entirely smooth MWNTs, GNFs have a unique 

step-edge internal structure, which stabilses the RuNPs and has the capacity to impart additional confinement 

effects on reactions which will be probed in this study. RuNPs within the GNF (RuNPs@GNF) were formed using 

similar conditions to RuNPs@SWNT, however due to the significantly lower surface area of the GNFs only 1% Ru 

by weight was used, to ensure that RuNPs were only formed in the cavity of the GNFs.18  In identical fashion to 

SWNT, it is the internal structure of the GNF which templates the formation of the RuNPs, stabilising the NPs 

and controlling their size and shape.  HRTEM imaging confirms that RuNPs are located solely inside the GNF, at 

the step-edges formed by rolled-up graphitic sheets, with a mean nanoparticle diameter of 3.58 ± 1.14 nm 

(Figure 3a, Table 1). HRTEM and XRD analyses (see ESI for full details) confirm the metallic nature of the RuNPs 

and STEM, (Figures 3c and S-3), approximates the amount of RuNP material on the outer surface to be ~7 %.  

XPS reveals a characteristic Ru 3d 5/2 peak at 280.2 eV for all three carbon nanostructure supported RuNPs 

materials which is consistent with the previously reported literature for metallic ruthenium.40 
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In addition, commercially available Ru/C, containing 5% Ru by weight, was used as a control material in 

which the RuNPs are located on the surface of carbon black which imparts no confinement effects. HRTEM 

confirmed that the metal nanoparticles are distributed throughout the carbon support in Ru/C and showed a 

wide distribution of NP sizes, with a mean diameter of 6.63 ± 2.45 nm (Figure 3f, Table 1).  It is important to note 

that as the RuNPs are not identical sizes across the catalysts in this study, it is not possible to unambiguously 

assign all differences in reactivity soley to the effect of confinement. However, as the shape and size of the NPs 

in each material is a direct result of the confinement experienced during formation, and the differences in 

reactivity cannot be explained solely by considering the size of the NPs, vital information can be obtained by 

comparing the reactivity of the catalysts. 

In similar fashion to the SWNT nanoreactors, the catalytic activities of RuNPs@GNF and Ru/C, along 

with the as-supplied GNFs as a control, were investigated in hydrogenation of norbornene and 

benznorbornodiene (Table 2). The empty GNFs displayed no catalytic activity at all. Interestingly, the 

RuNPs@GNF catalyst exhibited turnover numbers for norbornene (11216) and benzonorbornadiene (4145) 

conversion, which are significantly higher when compared to RuNPs@SWNT (c.f. (2959) and (1983) respectively), 

and the unconfined Ru nanoparticles in commercial Ru/C or in RuNPs/C60@SWNT.  This is possibly due to the 

RuNPs inside of the much wider GNF cavity being more accessible for the reactant molecules coupled with the 

formation of favourable π-π interactions with both 1a and 2a at the step-edge enhancing the local concentration 

of the reactants near the RuNPs, and therefore the rate of reaction.41  
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Figure 3. a-b) HRTEM images of RuNPs@GNF loaded with RuNPs (1 % by wt), with enlarged region (b) showing 

the Ru [002] lattice spacing (d = 0.21 nm) of an individual, hcp structured, metallic NP which corresponds to the 

2θ peak centred at 42.2° in the XRD (see ESI). Black arrows show RuNPs on the step edges inside the GNF. c) 

Dark-field scanning TEM image of RuNPs@GNF loaded with RuNPs. Only a very small amount of Ru material (~7 

% approximated by TEM analysis), is located on the outer surface of the GNF so all conversion is assumed to be 

a result of reactions catalysed by RuNPs on the inside of the GNF.  d) HRTEM image of commercial Ru/C loaded 

with RuNPs (5 % by wt.). White arrows show RuNPs located on the carbon support. e) The size distribution of 

RuNPs on the outside of the GNFs (green), and d), the size distribution of RuNPs on the carbon (purple) shows 

the wide distribution of diameters of the RuNPs in the material. Scale bars: 10 nm in all images. 

Previous studies have revealed that both the size and crystal structure of RuNPs have important effects on the 

catalytic activity of RuNPs in hydrogentation.42-45  Li et al. reported that the size and loading of hcp RuNPs 

supported on mulit-walled carbon nanotubes for the hydrogentation of long-chain alkenes was optimum for 1.3 

nm NPs and and metal loadings of 1% by wt., while in solution 3.1 nm RuNPs were observed to be the most 

active.42,43  Dupont et al. reported that 2.6 ± 0.4 nm RuNPs were the most active for the partial hydrogenation of 

benzene, with TON of up to 165 for supported RuNPs catalysts.44  It is also observed that distortions to the lattice 
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planes of hcp RuNPs45 or changes in crystal packing to face-centred cubic Ru36 results in significant effects to 

both the activity and selectivity of RuNP catalysed reactions.   

Our hydronegation results, in which all RuNPs catalysts have the same hcp structure (confirmed by 

HRTEM, see ESI Figure S-5), show an interesting trend in activity, consistent for indivudal reactions with both 

alkene starting materials with TONs in the order of RuNPs@GNF>Ru/C>RuNPs@SWNT>RuNPs/C60@SWNT. It is 

important to highlight that the mass of catalyst in each reaction was scaled so the same molar percent of of Ru 

was present in all our reactions (0.0017 mmol% of Ru), and the trend in activity cannot be rationalised by simply 

considering the average NP size or total NP surface area for each sample, (for our series, the total surface area 

of RuNPs@SWNT>RuNPs/C60@SWNT>RuNPs@GNF>Ru/C), nor the extent of confinement, where the 

confinement in RuNPs@SWNT> RuNPs@GNF >RuNPs/C60@SWNT >Ru/C. Therefore the enhancement in activity 

observed upon confinement inside GNF must be a result of a balance of surface area of RuNP, confinemement 

of the reaction and accessibility of the catalytic centres. Indeed, GNF provides an optimum balance of RuNP 

confinement, leading to stabilisation and enhancement of local concentrations of rectants around the 

nanoparticles, and the ease of accessibility of the reactants to catalytic centres (hindered in the case of 

RuNP@SWNT). Recently, similar effects were observed in the oxygen reduction reaction catalysed by 

PtNP@GNF.46 

In addition the RuNPs@GNFs catalyst shows a marked enhancement in reactivity for the production of 

1b (1b:2b ratio = 2.7:1) compared to the unconfined Ru/C catalyst (ratio = 2.4:1) (Table 2) implying remarkable 

TON for 1b, rationalised as a result of faster diffusion of the non-aromatic molecules to and from the step-edge 

compared to the aromatic benzonorbornadiene which may interact more strongly with the sp2 carbon of the 

step-edge and therefore diffuse to and from the RuNPs less rapidly. In contrast RuNPs@SWNT shows the 

opposite effect exhibiting and enhanced reactivity for the production of 2b (1b:2b ratio = 1.5:1), potentially due 

to strong interactions between the aromatic core of 2a and the narrow inner channel of the SWNT.  

In summary, these results reveal that the confinement imposed by the carbon nanoreactor can not only 

increase the activity of the Ru catalyst by both templating the formation of small, very active and stable RuNPs 

and potentially by increasing the local concentration of reactant molecules in the vicinity of the Ru catalyst but 

can also dramatically affect the efficiency of individual reactions depending on the size and shape of the reactant 

molecules. This is highlighted by the RuNPs@SWNT catalyst which shows that RuNPs confined in narrow SWNT 

are particularly efficient at converting aromatic 2a whilst the less constrained GNF catalyst are highly active and 

show enhanced relative conversion of 1a compared to the unconstrained (carbon black) reaction environment. 

Understanding the accessibility of the different catalysts is essential in order to fully appreciate the role that 

confinement plays in the performance of these materials.    

These results are in agreement with previous observations that performing reactions in confinement 

has a number of important effects on catalysis and alters the outcome of reactions in a complex  fashion;15 by 

enhancing the activity of nanaoparticle cataltysts,47 increasing the local concentration of reagents and thus 

increasing the rate of reactions,48 and by imposing restritions on both the transition states of intermediates41 

and the flow of reactants in and products out of the nanoreactor.27  
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    To investigate the 3D structure of the materials the experimentally measured active surface area of 

RuNPs@SWNT, RuNPs@GNF and commercial Ru/C catalysts were compared with theoretically calculated 

surface areas based on ideal models of the materials, i.e. assuming the entire catalyst is perfectly formed and 

accessible to reagents (see ESI for full details). Brunauer-Emmett-Teller (BET) measurements based on 

isothermal N2 gas adsorption at -196 °C (77 K) were performed for RuNPs@SWNT, RuNPs@GNF and commercial 

Ru/C catalysts along with control measurements of the support materials, i.e. SWNT, GNF and amorphous 

carbon materials to quantify both surface area (Table 3) and pore volume and size distribution (see supporting 

information Figure S-14-17 and Table 3-4). This provided a reasonable gauge of how much of the internal volume 

of the catalysts were accessible to gaseous N2, and comparison to the theoretical maximum values, revealed the 

portion of the internal volume which is either blocked by Ru nanoparticles large enough to completely fill the 

channels or other inherent material such as amorphous carbon and residual Ni/Y catalyst present following the 

initial nanotube synthesis. BET measurements showed that the commercial Ru/C (929 m2/g) has the largest 

surface compared to that of RuNPs@SWNT (352 m2/g) and RuNPs@GNF (29 m2/g) (see Table 3). 

Table 3. Theoretical and BET surface area calculations for SWNT, GNF, RuNPs@SWNT, RuNPs@GNF and 
commercial Ru/C.  

Catalyst 
Theoretical Surface Area 
(m2/g) 

BET Surface Area (m2/g) 

SWNTa 2630.00 507.90 

RuNPs@SWNT 2637.46 351.94 

C60@SWNT 1315.00 120.99 

RuNPs/C60@SWNT 1319.31 164.82 

GNFb 35.00 12.08 

RuNPs@GNF 35.99 28.53 

Carbon Black N/A 900.00 

Ru/Cc N/A 929.41 

a SWNT was annealed at 380 C for 20 min prior to use. b GNF was annealed at 450 C for 1 hour prior to use. c 

BET surface area value for the carbon black used to synthesize the Ru/C was obtained from the manufacturer 

(Sigma-Aldrich). 

     

The increased BET surface area of Ru/C and RuNPs@GNF compared to the background carbon and empty GNF 

supports respectively is attributed to the presence of the RuNPs.  In contrast RuNPs@SWNT (352 m2/g) exhibited 

a lower BET surface area than that of the background SWNT (508 m2/g). This is rationalised as a consequence of 
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a small number of large (>1.2 nm) RuNPs blocking a significant percentage (c.a. 30-40 %) of the entrances and/or 

channels/pores of the narrow nanotubes and not allowing N2 to access the full internal volume of the material.   

    Typically, carbon nanomaterials have very large surface areas due to their nanometre scale features; 

see theoretical specific surface calculated for each sample (Table S-3 in ESI). Peigney et. al. investigated the 

theoretical surface area of CNT and reported that the specific surface area of SWNT, independent of its diameter 

and length, is the same as that of both sides of a graphene sheet, i.e. 2630 m2/g.49 As we opened the ends of the 

nanotubes prior to use, i.e. both internal and external walls of the nanotubes can be assumed to be accessible, 

the theoretical surface area for the SWNT sample is 2630 m2/g. However, in reality the majority of SWNT form 

bundles and therefore it is difficult to approximate an accurate number for the theoretical surface area for 

nanotubes as the outer surface of most single nanotubes are not available as they are contained within the 

bundles.  Clearly the experimental value for SWNT, 508 m2/g, is dramatically lower and can be considered as the 

effect of bundling. 

    When considering the accessibility of GNFs it is important to understand that their structure is different 

to the concentric tubes of traditionally MWNTs and consists of stacked truncated cones of graphite layers 

arranged at an angle along the main axis.50  The internal surface has a succession of step edges which can act as 

anchoring points for guest molecules while the exterior surfaces are atomically flat. Therefore there is no 

reported framework for calculating a theoretical value for the surface area of GNFs.  

    In our approach we approximated the internal surfaces of a GNF to be flat and the sidewalls to consist 

of ~75 graphene layers (using an average thickness value of a GNF as 25 nm). Therefore utilizing the same 

mathematical approach used by Peigney et al. for MWNTs, we calculated as theoretical surface area of 35 m2/g, 

which is significantly higher that of the BET measurement (12 m2/g). This is rationalized as the effect of the 

overlapping of the truncated cones in the internal channels decreasing the internal surface area compared to 

our theoretical model, but could also be a result of the presence of a number of GNFs in the sample with thicker 

sidewalls.   Therefore, though it is difficult to comment on the RuNPs@SWNT sample, as a significant portion of 

the material appears to be blocked and inaccessible, c.f. an observed surface area of >4 times lower than 

predicted.  This comparison does reveal that even though the Ru/C catalyst has a higher surface area than 

RuNPs@GNF, both in terms of total catalyst and the RuNPs, it is significantly less active. This must be due to the 

size and shape of the pores, i.e. the nature of the confinement imposed. 

 

Scheme 2. Competitive reactions of norbornene and benzonorbornadiene in the presence RuNPs@SWNT using 

a scCO2 high pressure rig.  
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 Figure 4. Schematic representation of the competitive hydrogenation of norbornene (red) and 

benzonorbornadiene (green) over RuNPs (blue) within SWNT. This shows how the extremely confined space 

within the nanotube channel traps the reactants close to the catalytic nanoparticles, effectively increasing the 

local concentration of reagents and increasing the rate of reaction. 

 

Table 4. Competitive hydrogenation reactions of norbornene and benzonorbornadiene in the presence of 

RuNPs@SWNT, RuNPs/C60@SWNT, RuNPs@GNF and commercial Ru/C using a high pressure scCO2 batch 

reactor.  

   Catalyst Yielda of Products (%) / TONb 

 1b                                    2b 

Ratio of TONs for 1b:2b 

RuNPs@SWNT 70 / 1138 89 / 1447 0.79:1 

RuNPs/C60@SWNT  7 /   197 13 /  366 0.54:1 

RuNPs@GNF 21 / 2560 42 / 5120 0.5:1 

Ru/C 52 / 3787 53 / 3860 0.98:1 

 

Reaction conditions; substrates (0.5 mmol of each alkene), catalyst (0.0017 m mol% of Ru in each reaction system), H2 (10 

bar), scCO2 (100 bar), 24 h, 110 °C. a Yield determined by 1H NMR with an error ± 2 % (See Figure S-9 in Electronic 

Supplementary Material). bThe turnover number (TON) was calculated as the ratio of the number of molecules of substrate 

consumed in the reaction per theoretical number of true active Ru sites in catalyst used in the reaction.  

To probe these effects of confinement further competitive reactions were investigated in which equimolar 

amounts of norbornene and benzonorbornadiene were simultaneously reduced within the nanoreactor catalyst 

(Scheme 2 and Figure 4).  

Competitive reactions reveal that the confined space of carbon nanoreactors considerably affects the 

selectivity of the reactions compared to reactions performed in the absence of confinement (Ru/C) (Table 4).  

For all reactions in carbon nanoreactors benzonorbornadiene was preferentially reduced over norbornene in 

the presence of carbon nanoreactors due to the strong aromatic character of the nanotube. In fact the TONs of 

2b in the competitive reactions are larger than the individual reactions for RuNPs@GNF and Ru/C despite a 

reduction in the starting concentration (Table 2), indicating that the presence of equimolar quatities of 1a may 

have an effect on π-π interactions of the aromatic ring of 2a and the sp2 hybridized carbon network of the interior 
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of the nanotubes being amplified in the rpesense of the non-aromatic 1a leading to an increased local 

concentration of the aromatic reactant in proximity to RuNPs catalyst thus promoting reduction of 2a.41  

RuNPs@GNF exhibited both the highest activity (total TON = 5680) and also the greatest selectivity towards 

2b formation (ratio 1b:2b = 0.5:1) compared to RuNPs@SWNT (ratio of 0.79:1) (Table 4).  This can be explained 

by considering the nature of the confinement imposed by the step-edges of the internal channel of the GNF.  

Any increase in the local concentration of the reactants at the step-edges compared to the local concentration 

inside the nanotube cavity and bulk would result in a much higher rate of reaction.48 As shown in Figure 3a, the 

step-edges enable a very well-ordered distribution of RuNPs. The height of the step-edges, ~3 nm, provides a 

controlled space, which forms favourable - interactions between the aromatic 2a and the sp2 hybridized 

carbon step-edges and thus increases the concentration of 2a in the vicinity of the RuNPs and consequently 

increases the observed conversion of the aromatic compound. The same effect is observed for SWNT, with the 

formation of 2b observed to be enhanced compared to 1b in the individual reactions (see ratio of TONs in Table 

2), however, the physical size of the aromatic compound means that there will be a significant steric barrier to 

the movement of the molecules into the narrow SWNT channels compared to the relatively larger space at the 

step edges in GNF which explains the lower observed TON for the SWNT catalyst.  

4. Conclusions 

In conclusion, a series of RuNPs@carbon nanoreactor catalysts have been synthesized and the catalytic 

properties of these materials have been assessed and the role of confinement explored.  Overall, the 

confinement imposed by RuNPs@SWNT and RuNPs@GNF results in dramatic changes to reactions compared to 

commercially used Ru/C which exhibits no confinement. The affinity of aromatic groups for the interior channels 

of carbon nanoreactors results in enhanced conversion of aromatic reagents in competitive hydrogenation 

reactions providing the ability to alter the selectivity of chemical reactions using support/reactant interactions.  

Interestlingly the extreme confinement imposed by the shape of the SWNT nanoreactors is found to be a double 

edged sword, as though they exhibit enhanced selectivity towards aromatic substrates, as a result of strong 

interactions between the aromatic species and nanotube sidewall, the constricted space inside the SWNT lowers 

TONs in general.  Remarkably it is the wider, structured interiors of GNF which have a greater effect on reactions, 

enhancing the activity and resulting in much higher TONs than the extremely narrow SWNT and thus offer the 

best of both worlds, in that they are wide enough not to limit diffusion of reactants but structured enough to 

impart the positive effects of reaction confinement.   
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and ICP-OES data for RuNPs@SWNT, TGA data for RuNPs@GNF, details of the TON calculations used for single 

and competitive hydrogenation reactions, BET surface area, theoretical surface area calculations and pore size 

distributions for  RuNPs@SWNT, RuNPs/C60@SWNT, RuNPs@GNF and Ru/C) is available in the online version of 
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