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ABSTRACT  

Cten promotes cell migration however the knowledge of underlying signalling pathways is 

sparse. We have shown that Cten downregulates E-cadherin, a feature of epithelial to 

mesenchymal transition (EMT). This prompted us to investigate whether Cten further 

contributed to EMT processes to regulate cell motility. 

 

The regulation of Snail by Cten was investigated following overexpression, knockdown (by 

RNA-interference) or knockout of Cten in HCT116, Caco-2 and SW620 colorectal cancer 

(CRC) cell lines. Subsequently, the cycloheximide (CHX) pulse chase assay was used to 

investigate changes in Snail protein stability and the functional relevance of Cten-Snail 

signalling was investigated. 

 

Snail was identified as a downstream target of Cten signalling using multiple approaches of 

Cten expression manipulation. Furthermore, this activity was mediated through the SH2 

domain of Cten. The CHX assay confirmed that Cten was regulating Snail at a post 

transcriptional level and this was through the prevention of Snail degradation. Cell 

migration, invasion and colony formation efficiency were increased following forced 

expression of GFP-Cten but subsequently lost when Snail was knocked down, demonstrating 

a functional Cten-Snail signalling axis. 

 

In conclusion, we have described a novel Cten-Snail signaling pathway that contributes to 

cell motility in CRC, mediated by the stabilization of Snail protein. This finding potentially 

furthers the understanding of EMT regulatory networks in cancer metastasis. 
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INTRODUCTION 

Cten (also known as Tensin 4), is a member of the tensin protein family which localise to 

focal adhesions 1. The tensins share a common domain structure comprising an N-terminal 

actin binding domain (ABD), a C-terminal Src homology 2 (SH2) domain and a 

phosphotyrosine binding (PTB) domain. The PTB domain is known to bind β-integrins at 

focal adhesions and thus these proteins act as both mechanical and signalling platforms 

linking the cytoskeleton to the cell exterior 2. Cten however is a more distantly related 

protein which lacks the N-terminus ABD but still contains the C-terminus signal transduction 

components 3. 

 

Cten expression is mainly upregulated in tumour tissues including the colon, pancreas, 

breast and melanoma and is generally associated with metastasis 3-6. Experimentally, Cten 

has been shown to induce cell motility (fitting with a role in metastasis) however the 

underlying signalling mechanisms are not well established 7. In non-tumour breast epithelial 

cell lines, Cten was shown to regulate cell migration by a ‘tensin switch’ mechanism 

whereby the upregulation of Cten was associated with a decrease in Tensin 3 expression. 

Downstream, differential binding to DLC1 induced cell motility through RhoA-ROCK 

signalling 2,8. In CRC, and possibly cancer tissue in general, it is likely that alternative 

signaling mechanisms exist as firstly, we have not found no evidence of a tensin switch in 

CRC 9. Secondly, we found that DLC1 expression is often lost in CRC, suggesting that DLC1 is 

not a major player in Cten signaling. Despite the mechanistic differences, there is a common 

functional activity of Cten in stimulating cell migration and invasion, consequently 

alternative signalling mechanisms must be present 10,11. 
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EMT is a process whereby epithelial cells acquire a mesenchymal phenotype to enhance cell 

migration. This is a process native to physiological events such as wound healing and 

embryogenesis and it is also likely to play a role in metastasis 12-14. The loss of E-cadherin at 

adherens junctions causes disruption of cell to cell adhesion thereby allowing invasion and 

migration away from the primary tumour. However this is also accompanied by additional 

molecular changes which induce cell motility 15-18. Snail is a transcription factor central to 

the regulation of EMT through the downregulation of E-cadherin but is also known to 

regulate other genes associated with EMT 12-14.  Interestingly, we have previously shown 

that Cten represses E-cadherin and therefore may induce EMT 10.  

 

Considering the data that both we and others have published, we hypothesised that Cten 

may induce cell motility through the regulation of additional biomarkers of EMT. Here we 

demonstrate that Cten regulates the protein stability of Snail which is mediated via Cten’s 

SH2 domain. Furthermore we show that Cten signals through Snail to increase cell migration 

and invasion in CRC cell lines. 

 

MATERIALS AND METHODS 

Cell culture 

HCT116, Caco-2 and SW620 colorectal cell lines, a kind gift from Prof Ian Tomlinson, were 

cultured in DMEM (GlutaMAXTM supplement, Thermo Fisher Scientific, Carlsbad, CA) 

supplemented with 10% FBS and 1% penicillin/streptomycin. Cells were maintained at 37⁰C 

in a 5% CO2 atmosphere. Cell line identities were verified by high resolution melting (HRM) 

mutation analysis as described previously 19. 
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Cten deletion in SW620 

CRISPR/Cas9 gene technology allows editing of the genome of cell lines. We reasoned that 

by knocking out both copies of Cten in SW620, we would be able to carry out both gene 

knockdown and gene over expression experiments in isogenic cell lines. A plasmid construct 

expressing GFP-tagged Cas9 and guide RNA targeting exon 3 of Cten 

(CCGCCAGATCAAGGTGCCACGA) (Sigma, St Louis, MO) was transfected into SW620 cells. Ten 

μg CRISPR-Cas9 construct was transfected with 10 μl Lipofectamine according to the 

manufacturer’s instructions. Forty eight hours post transfection, GFP expressing cells were 

sorted into 96 well plates using the Astrios Cell Sorter (Beckman Coulter, High Wycombe, 

UK) and single cells were expanded to form clonal cell lines. Genomic DNA (gDNA) was 

extracted from the resulting clones using the Genelute Mammalian Genomic DNA Extraction 

Kit (Sigma) and the region around the CRISPR target site amplified (Supplementary table 1). 

Clones were screened for mutation by HRM and those revealing a shift in melting 

temperature from the wild type cell line were selected. The amplicons were cloned into a 

TOPO vector using the TOPO TA cloning kit (Thermo Fisher Scientific) and recombinants 

purified using the Genelute Plasmid Miniprep Kit (Sigma) according to the manufacturer’s 

protocol. In order to obtain homozygous knockout, a clone showing mutation of one allele 

was then expanded and put through another round of gene editing to mutate the second 

allele. 

 

Site-directed mutagenesis 

We have recently shown that the conserved arginine at position 474 is essential for the 

functioning of the SH2 domain in Cten (manuscript in preparation). In brief, the Phusion site 
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directed mutagenesis kit (Thermo Fisher Scientific) was used to convert the arginine to an 

alanine residue (GFP-CtenR474A) according to the manufacturer’s protocol. The presence of 

the mutation was confirmed by sequencing.  

  

Cell transfection 

Lipofectamine transfection reagent (Thermo Fisher Scientific) was used to transfect 

plasmids (for over expression) and small interfering RNA (siRNA) duplexes (for gene 

knockdown) into cells. Cells were grown in 6 well plates to 60-70% confluency. For over 

expression experiments, 5 μg GFP-Cten expression construct, GFP-CtenR474A or an empty 

vector control expressing GFP only (GFP-EV), were transfected with 10 μl Lipofectamine in 

Opti-MEM media (Thermo Fisher Scientific) according to the manufacturer’s protocol. 

Transfection reagents were replaced with DMEM after 6 hours and the cells were harvested 

24 hours post transfection. For knockdown experiments, cells were grown to 50% 

confluency and 100nM siRNA duplexes targeting Cten, Snail or Luciferase (Supplementary 

table 2) were transfected together with 10 μl Lipofectamine. The transfection reagents were 

replaced with DMEM after 6 hours and the cells were harvested 48 hours post transfection.  

For co-transfection, 10 μl Lipofectamine was transfected together with 5 μg plasmid and 

100 nM siRNA in Opti-MEM media according to the manufacturer’s instructions. The cells 

were incubated with the transfection reagents for 6 hours and experimentation performed 

48 hours post transfection. 

 

Western blot 

Cell lysates were obtained using RIPA buffer (Thermo Fisher Scientific) supplemented with 

phosphatase and protease inhibitor (Thermo Fisher Scientific). Fifty μg protein was heated 
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at 95⁰C for 5 minutes then cooled on ice for 5 minutes. The protein was  fractionated on a 4-

12% NUPAGE Bis-Tris gel with NUPAGE MOPS running buffer (Thermo Fisher Scientific) using 

the NUPAGE gel electrophoresis system (Thermo Fisher Scientific). Proteins were 

transferred onto a PVDF membrane (GE Life Science, Chicago, IL) using the Trans Blot semi-

dry transfer system (Biorad). Following blocking in 5% milk 0.01% tween PBS or 5% BSA 

0.01% tween TBS, membranes were incubated with optimally diluted primary antibodies; 

Cten 1:10,000 (Sigma) and Actin 1:50,000 (Sigma) diluted in 5% milk 0.01% tween and PBS, 

Snail 1:1,000 (Cell Signaling, Danvers, MA) diluted in 5% BSA 0.01% tween PBS overnight. 

Following washing, membranes were incubated with the appropriate anti-mouse or anti-

rabbit secondary antibody 1:10,000 (Sigma) for 1 hour at room temperature. The ECL prime 

detection kit (GE Life Sciences) was used for protein band visualisation using x-ray film (GE 

Life Sciences) or the C-DiGiT Blot Scanner (LI-COR, Lincoln, NE). 

 

Cycloheximide chase assay 

Cycloheximide inhibits translation allowing the rates of protein degradation to be evaluated. 

HCT116 cells were transfected with either GFP-Cten or GFP-EV and 24 hours post 

transfection were treated with 100 µg/ml CHX (Sigma). Protein lysates were collected 

following 0, 1, 2 or 4 hours exposure to CHX. Western blotting was performed as described 

above.  

 

Co-immunoprecipitation 

Cell lysates were pre-cleared by incubating with 20 µl protein G/A agarose beads (Thermo 

Fisher Scientific) at 4°C with rotation for 30 minutes. Lysates were centrifuged at 4°C at 

13,000 rpm for 5 minutes and the supernatant retained. Two µg Cten antibody was added 



Cten stabilises Snail during EMT  Thorpe et al. 

8 
 

to 500 µg pre-cleared lysate and incubated rotating overnight at 4°C. Thirty µl Protein A/G 

beads were added to the IP reactions and left rotating overnight at 4°C. Separately, 500 µg 

of pre-cleared lysate (without antibody) was also incubated with Protein A/G beads as a 

negative control. The beads were pelleted by centrifugation at 13,000 rpm at 4°C for 5 

minutes and washed twice in ice cold PBS. Beads were re-suspended in 10 µl NUPAGE 

loading Buffer (Thermo Fisher Scientific) and heated at 95° for 5 minutes, kept on ice for 5 

minutes and centrifuged for 2 minutes at 13,000 rpm before loading onto an SDS gel for 

western blot analysis. Fifty µg lysate was loaded for the input.  

 

Quantitative Reverse Transcription-PCR (qRT-PCR) 

qRT-PCR was used to quantify mRNA expression. RNA was extracted using the Total RNA 

Extraction Kit (Sigma) according to manufacturer’s protocol. For cDNA synthesis, 1 μg RNA 

together with 0.5 μg Random hexamers (Thermo Fisher Scientific) were heated for 5 

minutes at 70⁰C and then cooled for 5 minutes at 4⁰C. This was reverse transcribed using 

200 U M-MLV Reverse Transcriptase (Promega) and 0.5 mM dNTP’s (Promega), heated at 

37⁰C for 1 hour followed by 95⁰C for 10 minutes. Gene quantification was performed using 

Go Taq Mastermix (Promega, Madison, WI) and 250 nM each primer (Supplementary table 

1). The run cycle comprised 95°C for 2 minutes, 40x (95°C for 3 seconds, annealing 

temperature for 30 seconds) and a melt curve stage 95°C for 15 seconds, 60°C for 1 minute, 

95°C for 15 seconds 95°C for 15 seconds and 60°C for 15 seconds. HPRT was used as the 

endogenous control and PCR efficiency of the primer pairs was determined using the 

standard curve method. Since primer pairs had similar efficiency the 2-ΔΔCt method was used 

for gene quantification. 
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PrestoBlue proliferation assay 

PrestoBlue (Thermo Fisher Scientific) was used as an indirect method to measure the total 

number of live cells. A total of 1x105 cells were seeded in a 24 well plate and allowed to 

adhere for 3 hours. Cells were treated with 1 ml PrestoBlue for 1 hour and the absorbance 

measured using the Fluorstar plate reader (560/590 nm). Further readings were taken at 24, 

48 and 72 hour time points.  The blank fluorescence reading (PrestoBlue with no cells) was 

subtracted from each experimental reading. The blank corrected values were normalised to 

the 0 hour time point. 

 

Transwell cell migration and invasion assays 

The Transwell system (Corning, Corning, NY) was used to assess changes in cell migration. 

The Transwell inserts (6.5 mm diameter; 8 µm pore size) were incubated in DMEM at 37°C 

for 1 hour prior to use. Following this, 600 µl of DMEM (20% FBS) was added to the outer 

wells of the Transwell plate and the Transwell inserts placed inside. A total of 1x105 cells in 

DMEM (10% FBS) were seeded onto the Transwell insert. The plate was incubated at 37°C 

for 24 hours. Following this, the cells that had migrated through to the bottom of the 

outside well, using the higher FBS concentration as a chemoattractant, were manually 

counted. Triplicate wells were seeded for each experimental condition. The Transwell 

invasion assay was performed according to this protocol with the exception that 2x105 cells 

were seeded onto a Transwell insert coated in Basement membrane extract (3 mg/ml, 

Corning) and cells allowed to migrate for 48 hours prior to counting.  

 

Colony formation assay 
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Colony formation in soft agar was used to assess anchorage independent cell growth. One 

ml 1% agar layer (Sigma) containing DMEM was plated in 6 well plates. Overlaying this was 1 

ml 0.7% agarose layer (Sigma) containing 2,500 cells in DMEM. Plates were incubated at 

37°C for 21 days and fed with 0.5 ml of DMEM. Following this, the plates were stained with 

0.005% crystal violet 4% formaldehyde for 1 hour. The number of colonies of approximately 

>50 cells in size were manually counted and the colony formation efficiency determined 

(number of colonies counted/number of cells seeded x 100). 

 

Statistical analysis 

Statistical analysis was performed using GraphPad Prism (v6). The Shapiro-Wilk test was 

used to test for normality. The unpaired T test or ANOVA statistical tests were applied 

following for experiments with 2 or more than 2 treatment groups respectively.  

 

RESULTS 

Creation of a Cten knockout SW620 cell line 

The manipulation of Cten expression can be used to study its biological effects through over 

expression in cell lines expressing low endogenous levels of Cten, or by the depletion of 

Cten expression in high endogenously expressing cell lines. We have previously reported the 

endogenous expression of Cten across a panel of normal and colorectal cancer cell lines 10. 

SW620 normally expresses high levels of Cten. CRISPR-Cas9 technology was used to create a 

Cten knockout SW620 cell line. A clone was obtained in which both alleles of Cten had 

undergone frameshift mutations resulting in a truncated protein (SW620Cten). The presence 

of the mutations was confirmed by sequencing and the complete lack of Cten protein 

expression was confirmed by Western blotting (Figure 1a and 1b). The resulting sequences 
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were predicted to encode truncated proteins of length 333 and 191 amino acids (ORF 

Finder, NCBI) (Supplementary table 3). Functional evaluation of SW620Cten revealed that, 

consistent with previously published data, loss of Cten was associated with a reduction in 

both cell migration and invasion (Figure 1c and 1d) 7. The creation of isogenic cell lines with 

both the presence and absence of the full length Cten gene provides suitable a model to 

study Cten biology.  

 

Cten is a positive regulator of Snail Expression 

Since we found little evidence of DLC1 expression in colorectal cancer (Supplementary figure 

1), we investigated alternative Cten signalling mechanisms in this tumour type. We have 

shown that Cten is a regulator of E-cadherin expression, which suggests it may be involved 

in the regulation of EMT 10. We investigated whether Cten may also regulate Snail 

expression in colorectal cancer.  The colorectal cell line HCT116, which expresses very low 

endogenous levels of Cten, was transfected with either GFP-Cten or GFP-EV expression 

constructs and the changes in Snail protein expression investigated by western blot (Figure 

2a and supplementary figure 2). Over expression of GFP-Cten in HCT116 cells resulted in an 

increase in Snail expression compared to the lysate of those cells transfected with GFP-EV. 

This suggests that Cten positively regulates Snail expression. To demonstrate that this effect 

was not cell line specific, Cten was also over expressed in Caco-2 cells, also a low Cten 

expressing cell line. Consistent with this, Cten was shown to upregulate Snail protein 

expression. To further validate this result with another methodology, Cten was knocked 

down using siRNA duplexes in SW620, a cell line which expresses high levels of endogenous 

Cten. Knockdown of Cten was associated with a decrease in Snail protein expression. Finally, 

this was further validated in SW620Cten cells. Constitutive depletion of Cten in this way also 
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resulted in reduction of Snail levels. The data, in combination, confirm that Cten does 

indeed positively regulate Snail protein expression.  

 

Cten regulates Snail in an SH2 dependent manner 

Cten contains an SH2 and a PTB domain at its C-terminus. SH2 domains partake in signal 

transduction events via tyrosine phosphorylation and this domain in Cten and other Tensin 

family members has previously been shown to be critical for its activity 20,21. We sought to 

determine whether the SH2 domain of Cten was required for the upregulation of Snail 

expression. HCT116 cells were transfected with GFP-Cten, GFP-CtenR474A or GFP-EV 

expression constructs and the changes in Snail protein expression were assessed by western 

blot (Figure 2b and supplementary figure 2). Both GFP-Cten and GFP-CtenR474A were 

expressed to a similar level which allowed for comparison of Snail protein expression 

between the different treatment conditions. Over expression of GFP-Cten led to an increase 

in Snail protein expression. Over expression of GFP-CtenR474A also led to an increase in Snail 

expression compared to GFP-EV but this was less than the induction by GFP-Cten indicating 

that the SH2 domain of Cten could be important for the upregulation of Snail expression. 

 

Cten increases Snail protein stability 

To further investigate the mechanism of Snail upregulation by Cten we next performed qRT-

PCR to determine whether this was occurring at a transcriptional or post-transcriptional 

level. Cten was over expressed in HCT116 and knocked down in SW620 cells. In both 

experiments there was no change in Snail mRNA expression compared to the control (Figure 

3a and 3b). This suggests that the regulation of Snail by Cten is occurring at a post-

transcriptional level.  
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Expression may be regulated post-transcriptionally either by increased protein synthesis or 

reduced protein degradation. The CHX chase assay was used to determine whether Cten 

stabilised Snail protein preventing its degradation (Figure 3c). HCT116 cells following 

transfection of GFP-Cten or the empty vector control were treated with 100 µg/ml CHX to 

inhibit protein synthesis. This allowed for the tracking of protein degradation by western 

blot. Our data showed that when Cten was present, Snail protein degradation was markedly 

delayed. In the cells transfected with GFP-Cten, Snail protein expression was still highly 

expressed 2 hours after treatment whereas, in the control cells, Snail protein had mostly 

been degraded at 1 hour.  

 

Cten has been shown to form a complex with β-catenin in the nucleus. As both Cten and 

Snail translocate between the nucleus and cytoplasm, it was hypothesised that they could 

form a physical complex and once in complex, Cten could prevent the degradation of Snail 

protein. To investigate protein binding interactions, a co-immunoprecipitation experiment 

was performed however, this revealed that Snail and Cten proteins did not bind to each 

other using this assay (Figure 3d). Together, these results show that Cten regulates Snail 

protein stability but as they do not form a physical complex, this is probably due to signaling 

downstream of Cten mediated by the SH2 domain. 

 

The regulation of Snail by Cten is functionally active 

Having shown that Cten regulates Snail, we next wanted to investigate whether this 

interaction was functionally relevant. Both Cten and Snail regulate cell invasion and 

migration and since Cten regulates Snail expression, it is possible that Cten may regulate 
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these activities through Snail signaling. We have previously shown that Cten has no effect 

on cell proliferation but before performing further assays, it was necessary to determine 

whether Snail had any effect on cell number. Snail was knocked down using siRNA in 

HCT116 and following this, the PrestoBlue assay was performed to assess cell proliferation 

(Figure 4a and 4b). The PrestoBlue assay showed no change in activity when Snail was 

knocked down compared to the control. This suggests that Snail does not have any effect on 

cell proliferation in HCT116 cells. Next, we over expressed GFP-Cten in HCT116 and 

simultaneously knocked down Snail (Figure 4c and supplementary figure 2). Transwell 

migration, invasion and colony formation assays were then performed (Figure 4d-4f). Over 

expression of GFP-Cten was associated with an increase in cell migration and invasion which 

was subsequently lost when Snail was knocked down. Similarly, over expression of GFP-Cten 

was associated with an increase in colony formation efficiency which was reduced on 

depletion of Snail expression.  

 

The effect of Snail on Cten cell function was investigated in an additional cell line using an 

alternative methodology. In agreement with the findings in HCT116 cells, over expression of 

Cten in SW620∆Cten cells increased both cell migration and invasion and both cell functions 

were decreased on Snail knockdown (Figure 5 and supplementary figure 2). Together, the 

data implies that Cten regulates cell migration, invasion and colony formation through the 

upregulation of Snail protein.  

 

DISCUSSION 
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EMT is considered to play a critical role in cancer metastasis endowing a cell with greater 

migratory capabilities as well as properties of “stemness”. Although progress has been 

made in recent years to try and elucidate the underlying signaling mechanisms, there is still 

a lot about the regulation of this process that remains unknown. We have previously shown 

that Cten is a regulator of EMT and that it stimulates cell motility in tumour cells 10. To our 

knowledge, this is the first time that it has been shown that Cten may also mediate EMT 

through the positive regulation of Snail expression and that this regulation is achieved 

through enhancing the stability of Snail protein (summarized in figure 6).  

 

Using multiple approaches to modulate Cten expression, we have shown that any induced 

changes were followed by similar changes in expression of Snail protein. Multiple 

approaches were used to eliminate artefacts of methodology and this was validated in 

multiple cell lines to eliminate cell line specific effects. These data firmly establish the 

relationship between Cten and Snail. The SH2 domain of Cten is essential for several of the 

functions of Cten 20. Using a construct in which the SH2 domain in Cten was inactivated 

(CtenR474A) we were able to show reduced levels of induction with this construct. This shows 

that Cten signaling to Snail is mediated via the SH2 domain. 

 

Our data show that Cten regulation of Snail is through post-transcriptional mechanisms and 

most probably due to stabilization of Snail protein. We were unable to observe any change 

in Snail mRNA levels following modulation of Cten but the CHX chase experiments 

unequivocally showed delayed degradation in the presence of Cten.  Snail is a transcription 

factor which requires tight regulation to ensure appropriate expression of downstream 

targets. It is often regulated at the protein level to ensure signals can be promptly switched 
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off upon external stimuli and this fits with our data 22. The exact mechanism by which this 

stabilization occurs is unclear. We were unable to demonstrate the formation of a complex 

between Cten and Snail and thus an alternative explanation must be sought.  

 

Snail nuclear localisation is essential for its transcriptional activity. The phosphorylation of 

Snail regulates its export from the nucleus and subsequent degradation via the ubiquitin 

proteasome pathway 22. It would be of interest to determine whether Cten signaling is 

involved in this process. Also of interest, is to determine whether Cten regulates the 

expression of Snail downstream targets. Cten has been shown to regulate E-cadherin, a 

known target of Snail signaling however this regulation was at a post-transcriptional level 

and since Snail is a transcriptional regulator of E-cadherin, it is unlikely that these signal in 

the same pathway 10. Snail controls the transcriptional activity of a number of other genes 

involved in EMT in addition to genes involved in other cellular processes which could 

possibly also be targets of Cten 23.  

 

We are confident that Cten can be added to the list of genes which can regulate Snail and 

that this relationship is important to the functional activity of Cten. We over expressed Cten 

whilst at the same time knocking down Snail to create a situation where Cten was present 

but there was no Snail present. This resulted in an abrogation of the effect of Cten on cell 

migration, cell invasion and colony formation. These data confirm that the induction of Snail 

by Cten is not just a bystander phenomenon. We have previously found that Cten 

upregulates ILK and FAK to increase cell motility and both of these proteins are now known 

to play a role in EMT 6,11. It would be of interest to determine whether ILK or FAK are 

signaling intermediates in the Cten-Snail pathway. The role of EMT in cancer metastasis has 
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been well documented however most of this work has been performed in vitro. These 

studies were performed in cell lines and validation of these experiments in animal models is 

required to confirm that these effects also occur in vivo. There is accumulating in vitro 

evidence for the contribution of EMT to cancer metastasis however, the occurrence and 

relevance of EMT in vivo is debated. In mouse models of pancreatic and lung cancer, 

although EMT contributed to chemoresistance, it was not required by metastasising cells 

24,25. However, EMT is complex and at present is not fully understood and consequently 

these mouse models used may not fully recapitulate EMT processes in human cancer. 

 

In conclusion, we have uncovered a novel mechanism of Snail regulation in CRC which 

increases cell motility and colony formation. Knowledge of mechanisms regulating cell 

migration may help to identify novel markers for therapeutic targeting of cancer metastasis.  
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TABLE AND FIGURE LEGENDS 

Figure 1: Cten knockout abrogates cell motility. A) Sequencing of both Cten alleles following 

CRISPR-Cas9 genome editing of SW620 cells. B) Western blot analysis of Cten expression in 

SW620∆Cten and SW620∆control cells. C) Transwell migration over 24 hours in SW620∆Cten and 

SW620∆control cells.  D) Transwell invasion over 48 hours in SW620∆Cten and SW620∆control cells. 

 

Figure 2: Cten regulates Snail expression through SH2 domain signaling. A) Snail protein 

expression following over expression of GFP-Cten in HCT116 and Caco-2 cells or knockdown 

and knockout of Cten in SW620 cells. B) Over expression of GFP-Cten and mutant GFP-

CtenR474A in HCT116 and resultant changes in Snail protein expression.  

 

Figure 3: Cten stabilises Snail protein. A) qPCR of Snail expression following siRNA 

knockdown of Cten in SW620 cells. Control SW620 cells transfected with Luciferase 

targeting siRNA as a negative control (n=3). B) Snail mRNA expression following over 

expression of GFP-Cten in HCT116 (n=3). C) Treatment of GFP-Cten transfected HCT116 cells 

with CHX (100 µg/ml) for 0-4 hours and resultant changes in Snail protein expression. D) Co-

immunoprecipitation of Cten and Snail in HCT116 cells. Results are representative of at least 

3 experimental replicates. 

 

Figure 4: Cten signals through Snail to regulate cell functional activity in HCT116 cells. A) 

siRNA knockdown of Snail in HCT116 cells. siRNA targeting luciferase was used as a negative 

control. B) Treatment of HCT116 cells with PrestoBlue, assessed over 0-72 hours following 

Snail knockdown. C) Co-transfection of GFP-Cten or GFP-EV together with either Snail of 

Luciferase targeting siRNA. D) Transwell migration assay following manipulation of Cten and 
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Snail expression. E) Transwell invasion assay in HCT116 cells. F) Colony formation efficiency 

in soft agar over 21 days. Results are representative of at least 3 experimental replicates (* = 

p<0.05, **** = p<0.0001). 

 

Figure 5: Cten signals through Snail to regulate cell functional activity in SW620∆Cten cells. A) 

GFP-Cten or GFP-EV over expressed in SW620∆Cten cells and co-transfected with either Snail 

of Luciferase targeting siRNA. B) Transwell migration assay in in SW620∆Cten cells following 

manipulation of Cten expression. C) Transwell invasion assay in SW620∆Cten cells. Results 

representative of at least 3 experimental replicates (** = p<0.01, *** = p<0.001, **** = 

p<0.0001). 

 

Figure 6: The regulation of Snail protein stability by Cten. Cten signaling via the SH2 domain 

stabilizes Snail expression by inhibiting protein degradation. Once stabilized, Snail signaling 

promotes cell migration and invasion in colorectal cancer cell lines. 

 

Supplementary figure 1: DLC1 expression in CRC cell lines. A) DLC1 mRNA expression across 

a panel of CRC cell lines. B) DLC1 expression by western blot in the top expressing and 

additional CRC cell lines.  

 

Supplementary figure 2: Quantification of Snail protein expression. A) Quantification in 

Caco-2 cells following GFP-Cten over expression. B) Quantification of Snail following 

overexpression of GFP-CtenR474A or GFP-Cten in HCT116 cells. C) Quantification of Snail 

protein following manipulation of Cten and Snail expression in HCT116 cells. D) 

Quantification in Cten knockout SW620 cells. 
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Supplementary table 1: Primer sequences. 

 

Supplementary table 2: siRNA sequences.  

 

Supplementary table 3: Predicted amino acid sequence at both Cten alleles following 

CRISPR-Cas9 editing (ORF Finder, NCBI). 


