
1

An Experimental Study of Hyper-Heuristic Selection and Acceptance Mechanism for
Combinatorial t-way Test Suite Generation

KAMAL Z. ZAMLI and FAKHRUD DIN

 IBM Centre of Excellence
Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang
Lebuhraya Tun Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia

 Email: kamalz@ump.edu.my

GRAHAM KENDALL
School of Computer Science

University of Nottingham Malaysia Campus
Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

Email: Graham.Kendall@nottingham.edu.my

BESTOUN S. AHMED

Department of Computer Science
 Faculty of Electrical Engineering

Czech Technical University Karlovo n’am 13, 121 35 Praha 2, Czech Republic
Email: bestoon82@gmail.com

Abstract

Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t-way test generation
strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony
Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and
Harmony Search (HS). Although useful, meta-heuristic algorithms that make up these strategies often require
specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained.
Hyper-heuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or
generation of meta-heuristics automatically during the search process. This paper describes our experience with
four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter
(EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference
Selection (FIS), using the t-way test generation problem as a case study. Based on the experimental results, we
offer insights on why each strategy differs in terms of its performance.

Keywords: Software Testing; t-way Testing; Hyper-Heuristics; Meta-Heuristics; Fuzzy Inference Selection;

1. Introduction

Testing is an important process in software development to help identify areas where the software is not
performing as expected. This process is often expensive owing to the time taken to execute the set of test cases.
It has been a research focus to find suitable sampling strategies to generate a small yet efficient set of test cases
for testing a software system.

Over the years, a plethora of sampling strategies has been proposed in the literature (including that of boundary
value analysis, equivalence partitioning, and decision tables; to name just a few). Although useful for some
classes of software testing problems, these sampling strategies have not been designed to effectively deal with
faults due to interaction. For this reason, many (sampling) t-way strategies (where t indicates the interaction
strength) have been proposed in the scientific literature. Some early algebraic based t-way strategies exploit
exact mathematical properties of orthogonal arrays. These t-way strategies are often fast and produce optimal
solutions, yet, they impose restrictions on the supported configurations and interaction strength. The emergence
of computational based t-way strategies ease these restrictions allowing for the support for arbitrary
configuration at the expense of producing high quality solutions rather than guaranteed optimal solutions.

2

Tackling this issue, and formulating interaction testing as an optimization problem, recent efforts have focused
on the adoption of meta-heuristic algorithms as the basis for t-way testing strategy. Search Based Software
Engineering (SBSE) [24], has developed many meta-heuristic based t-way strategies (e.g. based on Genetic
Algorithms (GA) [14, 33], Particle Swarm Optimization (PSO) [4, 32, 45], Harmony Search (HS) [6], Ant
Colony Optimization Algorithm (ACO) [14, 41], Simulated Annealing [17] and Cuckoo Search (CS) [2]),
which have been reported in the scientific literature.

Meta-heuristic based strategies are known to produce a good quality t-way test suite. However, as suggested by
the No Free Lunch theorem [44], the search for a single meta-heuristic that can outperform others in all
optimization problem instances is fruitless. Hybridization of more than one meta-heuristic can be useful in
enhancing the performance of t-way strategies, as hybridization can capitalize on the strengths and compensate
the deficiencies of each individual algorithm.

Hybridization could be in the form of the integration of two or more search operators from different meta-
heuristics, partly or in full, creating a new algorithm. Hybridization could also be an ensemble of two or more
heuristics and running them sequentially or in parallel. Hyper-heuristics can also be viewed as a form of
hybridization. Unlike the hybridization (including ensembles) of meta-heuristics, hyper-heuristics permit the
integration of two or more meta-heuristic search operators from different meta-heuristics through one defined
parent heuristic via non-domain feedback (i.e. (meta)-heuristic to choose (meta)-heuristics [10]). With a hyper-
heuristic, the selection of a particular search operator to be used at any particular instance can be adaptively (and
dynamically) decided based on the feedback from its previous performance.

In this paper, we explore the hybridization of meta-heuristics utilizing a hyper-heuristic approach. We present a
new t-way testing strategy. In the context of our study, this paper focuses on an experimental study of hyper-
heuristic selection and acceptance mechanism for adaptively selecting low-level search operators. Although
there has been existing work (e.g. timetabling problems), this methodology has not been considered for t-way
test generation as a case study. This paper describes our comparative studies with four hyper-heuristic selection
and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ) [9], Choice Function (CF)
[20, 28], Improvement Selection Rules (ISR) [49], and the newly developed Fuzzy Inference Selection (FIS).
These mechanisms utilize four common search operators comprising a Genetic Algorithm (GA) crossover
search operator [25], Teaching Learning based Optimization (TLBO) algorithm’s peer learning search operator
[39], Flower Algorithm’s global Pollination (FPA) search operator [48] and Jaya algorithm’s search operator
[38].

The contributions of this paper can be summarized as follows:
• A new experimental study of existing hyper-heuristic selection and acceptance mechanisms, using t-way test

generation as a case study. The study also benchmarks the results against existing meta-heuristic based
strategies. Based on the results, we provide guidelines for choosing the appropriate mechanism and some
insights on why each strategy differs in terms of performance.

• A new hyper-heuristic selection and acceptance mechanism based on Fuzzy Inference Selection (FIS).

The paper is organized as follows. Section 2 presents the theoretical framework covering the t-way test
generation problem, its mathematical notation, related work as well as the main components of the hyper-
heuristic. Section 3 describes the hyper-heuristic selection and acceptance mechanisms along with a description
of each search operator. Section 4 presents our benchmarking experiments. Section 5 discusses our experimental
observations. Finally, section 6 gives our concluding remarks along with the scope for future work.

2. Theoretical Framework

2.1. The t-way Test Generation Problem

Mathematically, the t-way test generation problem can be expressed by Equation 1.

 𝑓𝑓(𝑍𝑍) = |{𝐼𝐼 𝑖𝑖𝑖𝑖 𝑉𝑉𝑉𝑉𝑉𝑉: 𝑍𝑍 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐼𝐼}| (1)

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡𝑡𝑡 𝑍𝑍 = 𝑍𝑍1, 𝑍𝑍2, … , 𝑍𝑍𝑖𝑖 𝑖𝑖𝑖𝑖 𝑃𝑃1,𝑃𝑃2, … …𝑃𝑃𝑖𝑖 ; 𝑖𝑖 = 1, 2, … , 𝑁𝑁

where, f(Z) is an objective function (or the fitness evaluation), Z (i.e., the test case candidate) is the set of
decision variables Zi, VIL is the set of non-covered interaction tuples (I), the vertical bars | · | represent the
cardinality of the set and the objective value is the number of non-covered interaction tuples covered by Z, Pi is
the set of possible range of values for each decision variable, that is, Pi = discrete decision variables

3

(Zi(1)<Zi(2)<……<Zi(K)); N is the number of decision variables (i.e. parameters); and K is the number of
possible values for the discrete variables.

A simple configurable software system is used as a model to illustrate the t-way test generation problem. Figure
1 represents the topology of a modern e-commerce software system based on the Internet [3]. The system may
use different components or parameters. In this example, the system comprises five parameters. The client side
has two parameters or two types of clients: those who use smart phones and those who use normal computers.
There are different configurations in both cases. On the other side are different servers and databases.

Figure 1. An E-commerce Software System [3]

The term “value” (i.e. v) is used to describe the configuration of each component. Thus, the system in Figure 1
can be summarized as a five-parameter system with a combination of three parameters with two values, and two
parameters with three values, as in Table 1.

Table 1. An E- Commerce System Components and Configurations
 Components or Parameters

Payment
Server

Smart
Phone

Web
Server

User
Browser

Business
Database

Configurations
or Values

Master Card iPhone iPlanet Chrome SQL
Visa Card Blackberry Apache Explorer Oracle

 Firefox Access

To reduce the risk and ensure the quality of such software, manufacturers may need to test all combinations of
interactions (i.e. exhaustive testing), which requires 72 test cases (i.e. 2×2×2×3×3). However, testing of all
combinations is practically impossible given large configurations or large components. Considering the pairwise
(2-way) test generation for the E-commerce yields only 9 test cases (see Table 2). It should be noted that all the
2-way interaction tuples between parameters are covered at-least once.

Table 2. Pairwise Test Suite for E-Commerce System
Test No. Payment Server Smart Phone Web Server User Browser Business Database

1 Master Card Blackberry iPlanet Firefox Oracle
2 Visa Card iPhone Apache Firefox SQL
3 Master Card iPhone iPlanet Explorer Access
4 Visa Card Blackberry Apache Chrome Access
5 Visa Card iPhone iPlanet Chrome Oracle
6 Master Card Blackberry Apache Explorer SQL
7 Master Card iPhone iPlanet Chrome SQL
8 Visa Card iPhone Apache Explorer Oracle
9 Visa Card iPhone iPlanet Firefox Access

4

2.2. The Covering Array Notation

In general, t-way testing has strong associations with the mathematical concept of Covering Arrays (CA). For
this reason, t-way testing often adopts CA notation for representing t-way tests [42]. The notation CAλ (N;t,k,v)
represents an array of size N with v values, such that every N×t sub-array contains all ordered subsets from the v
values of size t at least λ times, and k is the number of components. To cover all t-interactions of the
components, it is normally sufficient for each component to occur once in the CA. Therefore, with λ=1, the
notation becomes CA (N;t,k,v). When the CA contains a minimum number of rows (N), it can be considered an
optimal CA according to the definition in Equation 2.

 𝐶𝐶𝐶𝐶𝐶𝐶(𝑡𝑡, 𝑘𝑘, 𝑣𝑣) = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑁𝑁:Ǝ 𝐶𝐶𝐶𝐶𝜆𝜆(𝑁𝑁; 𝑡𝑡, 𝑘𝑘, 𝑣𝑣)} (2)

To improve readability, it is customary to represent the covering array as CA (N;t,k,v) or simply CA(N;t,vk).
Considering CA (9; 2, 34) as an example, the covering array represents the strength of 2 with 4 parameters and 3
values each. In the case when the number of component values varies, this can be handled by Mixed Covering
Array (MCA), MCA(N;t,k,(v1,v2,…vk)) [16]. Similar to the covering array, the notation can be represented by
MCA (N;t,k,vk). Using our earlier example of the E-commerce system in Figure 1, the test suite can be
represented as MCA (9; 2, 2332).

2.3. Meta-Heuristic based t-way Strategies

The t-way test suite generation is an NP-hard problem [31] and significant research efforts have been carried out
to investigate the problem. Computationally, the current approach can be categorized into one-parameter-at-a-
time (OPAT) and one-test-at-a-time (OTAT) methods [35].

Derived from the in-parameter-order (IPO) strategy [31], the OPAT method begins with an initial array
comprising of several selected parameters. The array is then horizontally extended until reaching all the selected
parameters based on the required interaction coverage. This is followed by vertical extension, if necessary, to
cover the remaining uncovered interactions. The iteration continues until all the interactions are covered.

Credited to the work of AETG [15], the OTAT method normally iterates over all the combinatorial interaction
elements and generates a complete test case per iteration. While iterating, the strategy greedily checks whether
the generated solution is the best fit value (i.e. covering the most uncovered interactions) from a list of potential
solutions.

Adopting either the OPAT or the OTAT method, much effort has recently been focused on the use of meta-
heuristic algorithms as part of the computational approach for t-way test suite generation. Termed Search based
Software Engineering (SBSE), the adoption of meta-heuristic based strategies often produces more optimal test
suite sizes although there may be tradeoffs in terms of computational costs.

Meta-heuristic based strategies can start with a population of random solutions. Then, one or more search
operators are iteratively applied to the population in an effort to improve the overall fitness (i.e. in terms of
greedily covering the interaction combinations). While there are many variations, the main difference between
meta-heuristic strategies are the search operators. As far as the t-way test suite construction, meta-heuristics
such as Genetic Algorithms (GA) [41], Ant Colony Optimization (ACO) [14], Simulated Annealing (SA) [18,
21], Particle Swarm Optimization (PSTG [4], DPSO [45], APSO [32]), Cuckoo Search (CS) [2] and Harmony
Search Strategy (e.g. HSS) [6] have been reported in the scientific literature.

Each meta-heuristic algorithm has its own advantages and disadvantages. With hybridization, each algorithm
can exploit the strengths and cover the weaknesses of the collaborating algorithms. Many recent results from the
scientific literature (e.g. [22, 40]) seem to indicate that hybridization improves the performance of meta-
heuristic algorithms.

We propose an elegant form of hybridization based on the use of hyper-heuristics. To be specific, our work
investigates the use of common heuristic selection and acceptance mechanisms, based on Exponential Monte
Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR) and the newly
developed Fuzzy Inference Selection (FIS), for selection based hyper-heuristics as a strategy for t-way test suite
constructions. Additionally, we also evaluate the effectiveness of our newly developed fuzzy inference based
heuristic selection and acceptance mechanism.

5

2.4. Hyper-Heuristics and Related Work

Hyper-heuristics are alternative to meta-heuristics. Hyper-heuristics can be viewed as a high-level methodology
which performs a search over the space formed by a set of low level heuristics which operate on the problem
space. Unlike typical meta-heuristics, there is a logical separation between the problem domain and the high
level hyper-heuristic. Apart from increasing the level of generality, hyper-heuristics can also be competitive
with bespoke meta-heuristics.

Generally, hyper-heuristics can be classified as generative or selective [10]. Generative hyper-heuristics
combine low-level heuristics to generate new higher level heuristics. Selective hyper-heuristics select from a set
of low-level heuristics. Our work is based on selective hyper-heuristics. Selective hyper-heuristics can be online
or offline. The former is unsupervised and learning happens dynamically during the search process, whilst the
latter requires an additional training step prior to addressing the problem. For our work, we deal with online
selective hyper-heuristics.

Owing to how the search process is undertaken, the aforementioned hyper-heuristic classification (i.e. selective
or generative) can further be extended to either perturbative or constructive [10]. Perturbative heuristics (also
known as improvement heuristics) manipulate complete candidate solutions by iteratively changing their
component(s). In the case of selection methodologies, perturbative hyper-heuristics provide a combination of
low-level meta-heuristic operators and/or simple heuristic searches with the aim of selecting and applying them
for the improvement of the current solution. Some problems addressed with such hyper-heuristics are vehicle
routing [40], project scheduling [8], timetabling [11], GA parameter tuning [23], and CAs construction [27, 49].

Constructive hyper-heuristics process partial candidate solutions by iteratively extending missing element(s) to
build complete solutions. As a selection methodology, this approach combines several pre-existing low-level
constructive meta-heuristic operators, selecting and using the (perceived) best heuristic for the current problem
state. Combinatorial optimization problems such as production scheduling [13], cutting and packing [43], and
timetabling [7] have been successfully addressed with this approach.

In the context of the current study, some previous hyper-heuristics research is particularly relevant. Choice
Function (CF) and Exponential Monte Carlo with Counter (EMCQ) [9] are among the earliest hyper-heuristics
reported in the scientific literature. CF exploits the reinforcement learning framework to penalize and reward
(meta)-heuristics through a set of choice functions (f1, f2, f3). The first parameter f1 relates to the effectiveness of
the currently employed heuristic. The second parameter f2 evaluates the effectiveness of two heuristics when
used consecutively. The third parameter f3 increases the probability of a heuristic being selected, over time, to
encourage exploration. EMCQ adopts a simulated annealing like probability density function that is a function
of the number of iterations. A worsening fitness causes EMCQ to decrease its acceptance probability. Both CF
and EMCQ are further discussed in the next section.

With regard to the use of a fuzzy inference system, as part of a hyper-heuristic, Asmuni et al. [7] developed a
constructive hyper-heuristic for addressing the timetabling problem. In their work, the Mamdani type fuzzy
system is responsible for scheduling courses based on the perceived difficulty. Different orderings are
considered, for example, the event with the highest crisp value (most difficult) is scheduled first. Recently,
Gudino-Penaloza et al. [23] developed a new hyper-heuristic using a Takagi-Sugeno based fuzzy inference
system to adaptively adjust the control parameters of a GA. Although using fuzzy inference system, the works
of both Asmuni et al. and Gudino-Penaloza et al. have a slightly different focus. Specifically, our work deals
with heuristic selection and not event ordering or adaptive meta-heuristic parameter control adjustment.

As far as the t-way test suite generation problem is concerned, the work of Jia et al. [27] can be considered the
pioneering effort to investigate the usefulness of hyper-heuristics for t-way test generation. Similar to EMCQ,
the work adopts a simulated annealing based hyper-heuristic, called HHSA, to select from variants of six
operators (i.e. single/multiple/smart mutation, simple/smart add and delete row). HHSA demonstrates good
performance in terms of test suite size as well as displaying elements of learning in the selection of the search
operators.

Complementing Jia et al., Zamli et al. [49] implemented improvement selection rules (ISR) utilizing a selection
hyper-heuristic based on tabu search and three measures (quality, diversify and intensify) to assist the heuristic
selection process. Although showing promising results, the ISR selection rules are too strict, supporting only
Boolean outcomes. Furthermore, the original ISR also implemented full meta-heuristic algorithms (i.e.
comprising of Teaching Learning based Optimization (TLBO) [39], Global Neighborhood Algorithm (GNA)
[5], Particle Swarm Optimization (PSO)[29], and Cuckoo Search Algorithm (CS) [47]) as its search operators.
As such, the original ISR implementation is computationally heavy. Addressing the limitation of ISR, the
proposed FIS adopts fuzzy rules that are able to accommodate partial truth allowing smoother transition between

6

the search operators. Additionally, it also incorporates lightweight search operators to minimize computational
resources.

3. The Hyper-Heuristic Selection and Acceptance Mechanism

The selection and acceptance mechanism for selection based hyper-heuristics is shown in Figure 2. The hyper-
heuristic selection and acceptance mechanism is represented by the dashed rectangle.

Non-domain feedback
on the quality of the

solution

 GA Crossover
 Search Operator

 TLBO Peer Learning
 Search Operator

Potential Solutions

Hyper-Heuristic Selection and
Acceptance Mechanism

Search Operators

D
om

ai
n

B
ar

ri
er

s

HYPER-HEURISTIC

 Flower Global
 Pollination Search Operator

 Jaya Search Operator

Figure 2. The Hyper-Heuristic Selection and Acceptance Mechanism

We compare the performance of Exponential Monte Carlo with counter (EMCQ), Choice Function (CF),
Improvement Selection Rules (ISR) and the newly developed Fuzzy Inference Selection (FIS) as the selection
and acceptance mechanism. We use four common search operators comprising of a GA crossover operator, a
TLBO peer learning search operator, an FPA global pollination search operator and Jaya algorithm’s search
operator.

The selection of the search operators needs to take into account the balance between diversification and
intensification. As such, any arbitrary (but balanced) selection of the search operators is also possible. In our
case, the FPA global pollination and the Jaya algorithm serve as the global search operators. The GA crossover
and the TLBO peer learning serve as the local search operators.

3.1 Description of the Selection and Acceptance Mechanism

The next subsections detail the selection and acceptance mechanisms.

3.1.1 The Exponential Monte Carlo with Counter

The Exponential Monte Carlo with Counter (EMCQ) is a parameter free hyper-heuristic developed by Ayob and
Kendall [9]. EMCQ probabilistically accepts lesser quality solutions (similar to simulated annealing [30]) in
order to escape from local optima. In EMCQ, the probability density is defined in Equation 3 as:

 Ψ= 𝑒𝑒−𝛿𝛿∗𝑇𝑇/𝑞𝑞 (3)

where δ is the difference in fitness value between the current solution (Si) and the previous solution (S0) (i.e. δ=
f(Si) – f(S0)), t is the iteration counter, and q is a control parameter for consecutive non-improving iterations.

Like simulated annealing, the probability density, Ψ, decreases towards zero as T increases. However, unlike
simulated annealing, EMCQ does not use any specific cooling schedule, hence, it has no specific parameters that
require tuning. Another feature is that EMCQ allows dynamic manipulation of the q parameter to increase or
decrease the probability of accepting lesser quality moves. To be specific, q is always incremented upon a poor
move, and reset to 1 upon a good move in order to enhance the diversification of the solution.

7

Referring to the pseudo code of EMCQ in Figure 3, line 1 initializes the populations of the required t-way
interactions, I = {I1, I2… IM}. The value of M depends on the given inputs interaction strength (t), parameter (k)
and its corresponding value (v). Specifically, M captures the number of required interactions that needs to be
captured in the constructed covering array. Mathematically, M can be obtained as the sum of products of each
individual’s t-wise interaction. For example, for CA (9;2, 34), M takes the value of 3x3+3x3+3x3+3x3+3x3+3x3
= 54. If MCA (9; 2, 32 22) is considered, then M takes the value of 3x3+3x2+3x2+3x2+3x2+2x2= 37. Line 2
defines the maximum iteration ϴmax and population size, S. Line 3 randomly initializes the initial population of
solutions Z = {Z1, Z2… ZN}. Line 4 selects the random initial search operator, H0. Line 5 applies H0 to generate
initial solution, S0. Line 6 sets Sbest = S0 as an initial value and Hi =H0 as the initial search operator. The main
loop starts in line 7 and will iterate until the coverage of all interaction tuples (I). Line 8 assigns 1 to variable T
which acts as a loop counter. The inner while loop starts in line 9 with ϴmax as the maximum number of
iterations. Line 10 applies the current Hi to produce best Si to be added in the final test suite, Fs. Line 11
computes the fitness difference, δ = f(Si) – f(Sbest). In lines 12-15, if the fitness improves (i.e. δ > 0), Hi is kept
for the next iteration. Here, q is reset to 1 in line 14 (i.e. because the fitness improves). Line 17 computes the
probability density, Ψ. In line 18, upon a poor move, the solution might be accepted based on the probability
density Ψ. If accepted, Hi is kept and q is reset to 1 (as in lines 19-21), otherwise, Hi is changed and q is
incremented by 1 (see lines 23-25). Lines 27-28 update the values of Sbest and T for the next iteration. If there
are uncovered t-wise interaction, the mentioned procedure is repeated again until termination.

Figure 3. Pseudo Code for EMCQ

3.1.2 The Choice Function

8

The Choice Function (CF), termed Choice Function Accept All Moves, was first proposed by Kendall et al.[28].
Based on the reward and punish approach, CF utilizes the choice function (F) to select from a set of low level
heuristics. The corresponding values of F are calculated and updated for each individual low level search
operator during execution. In our implementation, we adopt the variant of the choice function implementation
by Drake et al. [20]; the Modified Choice Function.

Similar to the original choice function implementation, the calculation of F depends on three parameters f1, f2,
and f3. Parameter f1 measures the effectiveness of the currently employed search operator hi. The value of f1 for a
particular search operator is evaluated using Equation 4:

 𝑓𝑓1(𝐻𝐻𝑖𝑖) = 𝐼𝐼((𝑆𝑆𝑖𝑖(𝐻𝐻𝑖𝑖))/𝑇𝑇(𝐻𝐻𝑖𝑖) + 𝜙𝜙 𝑓𝑓1(𝐻𝐻𝑖𝑖) (4)

where I(S𝑖𝑖(H𝑖𝑖) is the change in solution fitness produced by hi, T(H𝑖𝑖) is the time taken by the search operator hi,
and ϕ is a parameter from the interval (0,1) which gives greater importance to the heuristic’s recent
performance.

Parameter f2 (Hi,Hj) measures the effectiveness of the current search operator hi when employed immediately
following hj. The value of f2 is computed using Equation 5.

 𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗) = 𝐼𝐼((𝑆𝑆𝑖𝑖(𝐻𝐻𝑖𝑖), (𝑆𝑆𝑗𝑗(𝐻𝐻𝑗𝑗))/𝑇𝑇�𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗� + 𝜙𝜙𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗) (5)

where I((S𝑖𝑖(𝐻𝐻𝑖𝑖), (S𝑗𝑗(H𝑗𝑗)) is the change in fitness of hi and hj, T (Hi, Hj) is the time taken by both the heuristics
and ϕ is same as in f1.

Parameter f3 captures the time elapsed since the search operator hk had been called. The parameter f3 is computed
using Equation 6:

 𝑓𝑓3(𝐻𝐻𝑘𝑘) = 𝜏𝜏(𝐻𝐻𝑘𝑘) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 = 0 𝑡𝑡𝑡𝑡 𝑁𝑁 − 1 (6)

where N is equal to the total number of available operators.

Using the calculated f1, f2, and f3 values, the Modified Choice Function F gives a score to each search operator in
order to select the best one based on Equation 7.

 𝐹𝐹𝑡𝑡(𝐻𝐻𝑖𝑖) = 𝜙𝜙𝑓𝑓1(𝐻𝐻𝑖𝑖) + 𝜙𝜙𝑓𝑓2(𝐻𝐻𝑖𝑖 ,𝐻𝐻𝑗𝑗) + 𝛿𝛿𝑓𝑓3(𝐻𝐻𝑖𝑖) (7)

where t represents the current invocation.

Following the recommendation by Drake et al. [20], the values of ϕ and δ are initially set at 0.5. If the solution
fitness improves in any iteration, ϕ is given the highest value of the interval (0, 1) whereas δ is given the lowest
value. In case of a low-quality solution, the value of ϕ is decreased by 0.01 and the value of δ is automatically
increased (see Equation 9). This leads to the diversification of the heuristic search process. The settings make
the intensification factor prominent in the evaluation of F. For each iteration, the values of ϕt and δt in the
Modified Choice Function are calculated as shown in Equations 8 and 9:

 𝜙𝜙𝑡𝑡 =

�
0.99, 𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚{𝜙𝜙𝑡𝑡−1 − 0.01,0.01} , 𝑖𝑖𝑖𝑖 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (8)

 𝛿𝛿𝑡𝑡 = 1 − 𝜙𝜙𝑡𝑡

 (9)

For each heuristic, the value 0.01 always ensures some non-negative influence of the ϕ on the value of F. The
complete pseudo code for the Modified Choice Function is shown in Figure 4.

9

Lines 1-3 perform the necessary initialization related to the t-way problem (similar to the case of EMCQ). Line
4 initializes the value of ϕ and δ. Line 5 randomly selects any meta-heuristic Hi to produce an initial solution Si.
The initial values for the three measures f1, f2, and f3 are computed (6-8). Line 9 sets the current heuristic Hi to
last heuristic Hj. The main loop starts in line 10 and will iterate until the coverage of all interaction tuples (I).
Line 11 assigns 1 to variable T which acts as a loop counter. The inner while loop starts in line 12 with ϴmax as
the maximum number of iterations. The marking of the heuristics for selection begins in line 13 with the
computation of the Modified Choice Function F. Line 14 applies the search operator which maximizes F. The
best Si is added to the final test suite, Fs. The computation of the three measures is performed in lines 15-17. If
the solution fitness improves (i.e. I((S𝑖𝑖(𝐻𝐻𝑖𝑖) ≥ 0)) the values of ϕ and δ are set to 0.99 and 0.01 (in lines 19-20)
respectively. In line 21, the solution fitness of the last heuristic, Hj is also computed. In the case of a poor
fitness, ϕ is decreased linearly (lines 24-25) and the new value for δ as δ = 1 - ϕ is computed in line 27. The
solution fitness of the current heuristic is set to 0.00 (line 28) as it is poor. Lines 30-31 update Hj and T for the
next iteration.

Figure 4: Modified Choice Function

3.1.3 Improvement Selection Rules

The improvement selection rules (ISR) is proposed by Zamli et al. [49]. The main feature of ISR is that it
exploits three rules via its improvement, diversification and intensification operators. The improvement operator

10

checks for improvements in the objective function. The diversification operator measures how diverse the
current and the previously generated solutions are against the population of potential candidate solutions.
Finally, the intensification operator evaluates how close the current and the previously generated solution are
against the population of solutions. Apart from its three operators, ISR also exploits a Tabu List to penalize its
poorly performing heuristics. Figure 5 summarizes the pseudo code for ISR.

Figure 5. Improvement Selection Rules

Lines 1-3 perform the t-way problem initialization (similar to the EMCQ and the choice function described
earlier). Lines 4-5 select H0 randomly to produce S0 from the four available meta-heuristics. The main loop
starts in line 6 and will iterate until the coverage of all interaction tuples (I). Line 7 assigns 1 to variable T which
acts as a loop counter. The inner while loop starts in line 8 with ϴmax as the maximum number of iterations. In
line 9, Hi is summoned to produce the best Si to be added to the final test suite, Fs. To decide whether to select a
new LLH or not, the three operators, comprising the improvement, diversification and intensification (lines 10-
12) will be used. The improvement operator compares the current Si against the previous Si-1 from the final test
suite Fs. F1 evaluates to true only if Si ≥ previous Si-1. The diversification operator exploits the hamming distance
measure to evaluate the diversification of each Si solution (i.e. in terms of how far Si is from the population of
candidate solutions). Like the diversification operator, the intensification operator also exploits the hamming
distance to evaluate the intensification of each previous S solution. Unlike the diversification operator, the
intensification operator measures the intensification value, Iv, of Si against the final test suite Fs population (i.e.
how close is Sbest to the final test suite). To be more specific, the intensification value can be defined as the
cumulative sum of the hamming distance of each individual Fs population with Si. Here, the current value of Iv
will be compared to the previous value of Iv (i.e. from the previous iteration). F3 evaluates to true only if the
current Iv ≤ the previous Iv.

In line 13, the selection and acceptance mechanism, Ψ (Hi, F1, F2, F3) evaluates to true, if and only if, F1 = true
and F2 = true and F3 = true. If Ψ (Hi, F1, F2, F3) evaluates to false, the new Hi will be selected (and the current
Hi will be put in the Tabu List).

11

Referring to lines 18-22, the current Hi is penalized and will miss at least one turn from being selected in the
next iteration. Apart from one’s own performance in terms of objective value improvement, diversification, and
intensification, a particular search operator can be chosen more frequently than others owing to the random
selection of search operators within the Tabu List (line 19).

3.1.4 Fuzzy Inference Selection

Finding the right fuzzy membership estimation is actually a very challenging process (as the only restriction that
a membership function has to satisfy is its value be in [0,1] range). Design choices are often problem dependent,
hence, cannot be easily generalized. Literature [36] suggests at least three approaches for membership function
estimation (i.e. expert-driven approaches via knowledge acquisition from experts, data-driven approaches via
structuralisation of data, and principle of justifiable granularity via information granularity in terms of sufficient
experimental evidence and high specificity). In our current work, we have adopted the variant of expert-driven
(as we have exploited existing knowledge on the fuzzy inference as well as on our problem domain).

A number of design choices are relevant in the implementation of the proposed Fuzzy Inference Selection (FIS)
as follows:

• Mamdani with triangular/trapezoidal membership – As fuzzy rules can be expressed as linguistic constraints
that are easy to understand and maintain, Mamdani inference is preferred over Sugeno. Furthermore,
previous studies which combine fuzzy and meta-heuristics often favor Mamdani inference. In fact, the
majority of these studies used Mamdani inference with centroid defuzzification and implemented either
triangular/trapezoidal or Gaussian membership function. Empirical analysis using both types of membership
functions showed that triangular/trapezoidal membership functions gave better performance over Gaussian
ones [12, 19]. Therefore, in this study, the fuzzy inference system that uses Mamdani type inference with
triangular/trapezoidal membership function and centroid defuzzification has been chosen for our
implementation.

• Membership cardinality, fuzzy rules and normalization – The proposed FIS as the search operator selection
and acceptance mechanism is derived from our earlier work on ISR described in [49]. Like ISR, FIS adopts
three operators (i.e. improvement, diversification intensification) based on a Hamming distance measure.
Recall that the improvement operator checks for improvements in the quality of the objective function. The
diversification operator measures how diverse the current and the previously generated solutions are against
the population of potential candidate solutions. Finally, the intensification operator evaluates how close the
current and the previously generated solutions are against the population of solutions. Based on the three
defined operators, we propose three membership functions representing input for each operator. Owing to its
origin, the FIS fuzzy rules have been designed based on the ISR Boolean logic. However, unlike ISR which
uses strict Boolean logic, the proposed FIS also accepts partial truth (i.e. based on some degree of
membership) allowing more objective control to maintain or potentially change any particular search
operator during runtime. In this case, the operator selection is set as the output variable. Concerning
normalization of input and output values, we exploit our knowledge on the maximum possible hamming
distance range based on the specified input parameters and its values.

• Linguistic terms and their overlapping functions – We have chosen three overlapping (and equal-width)
linguistic terms for all membership functions between the multiple interval ranges of 0, 25, 50, 75 and 100.
The choice for the number of linguistic terms can be seen as two sides of the same coin. Too many linguistic
terms invite more rules, hence, potentially introduce more elaborate computations (and it also affects the
widths and the interval ranges). Too little linguistic terms hinder good decision making. As our application
involves non-intricate fuzzy decision making, we foresee three linguistic terms for inputs and two linguistic
terms for output are sufficiently adequate. Concerning overlapping, we have adopted the work of Mizumoto
[34] which suggests that overlapping linguistic terms must start at their center points, where the performance
of the fuzzy system is at best (i.e. considering completely non-overlapping of linguistic terms may not fire
any rules given out-of-range input values).

Given the aforementioned design choices, we have elaborately experimented with a number of
triangular/trapezoidal membership function estimations (with 3 membership functions, 3 input linguistic terms
and 2 output linguistic terms) and evaluated our results (i.e. guided by optimal mean results) against the well-
known covering arrays as published in [45]. As suggested by our findings, the current membership function
estimation (as shown in Figure 6) gives the best overall performances.

12

OUTPUT MEMBERSHIP

FUZZY INFERENCE SELECTION

Maintain Selection Rules
RULE 1 : IF Quality IS Excellent AND Diversification IS Excellent AND Intensification IS Excellent
 THEN Selection IS Maintain;

May Change Selection Rules
RULE 2 : IF Quality IS Excellent AND Diversification IS Excellent AND Intensification IS Good
 THEN Selection IS May_Change;
RULE 3 : IF Quality IS Excellent AND Diversification IS Good AND Intensification IS Excellent
 THEN Selection IS May_Change;
RULE 4 : IF Quality IS Good AND Diversification IS Excellent AND Intensification IS Excellent
 THEN Selection IS May_Change;

Change Selection Rules
RULE 5 : IF Quality IS Poor THEN Selection IS Change;
RULE 6 : IF Diversification IS Poor THEN Selection IS Change;
RULE 7 : IF Intensification IS Poor THEN Selection IS Change;
RULE 8 : IF Quality IS Good AND Diversification is Good AND Intensification IS Good
 THEN Selection IS Change;

FUZZY RULES

CRISP
OUTPUT

Centroid

DEFUZZIFIER

Intensification Measure

Quality Measure

INPUT MEMBERSHIP

Diversification
value

Intensification
value

Quality
value

CR
IS

P
IN

PU
TS

0.00
0.25
0.50
0.75

1.00

100 20 30 40 50 60 70 80 90 100

Good ExcellentPoor

D
eg

re
e

of

M
em

be
rs

hi
p

Diversification
Measure

Normalized
Percentage Inputs

0.00
0.25
0.50
0.75

1.00

100 20 30 40 50 60 70 80 90 100

Good ExcellentPoor

D
eg

re
e

of

M
em

be
rs

hi
p

Normalized
Percentage Inputs

Normalized
Percentage Inputs

0.00
0.25
0.50
0.75

1.00

Good PoorExcellent

D
eg

re
e

of

M
em

be
rs

hi
p

100 20 30 40 50 60 70 80 90 100

0.00
0.25

0.50
0.75
1.00

100 20 30 40 50 60 70 80 90 100

May
Change MaintainChange

D
eg

re
e

of

M
em

be
rs

hi
p

Operator Selection

Output

Figure 6. Fuzzy Inference Selection

The block, labeled INPUT MEMBERSHIP takes the crisp values of the three operators and fuzzifies them. The
fuzzification process is based on three defined triangular/trapezoidal membership functions with linguistic terms
namely Poor, Good and Excellent. It is worth noting that the triangular/trapezoidal membership functions for the
diversification operator and improvement operator are identical. The values in the range of 0-50 are considered
Poor. The values in the range of 25-75 are considered Good and the values in the range of 50-100 are
considered Excellent. In the case of the intensification operator, the Excellent range and the Poor range are
swapped (i.e. Excellent range is defined from 0-50 whilst the Poor range is defined from 50-100). There is no
change as far as the Good range is concerned.

Given the defined membership functions and based on the parameter inputs (i.e. interaction strength (t),
parameter (k) and its corresponding value (v)), each of the crisp input from each operator need to undergo
normalized scaling to fit in the defined percentage range. In general, the normalized values are computed as
follows (based on Equation 10):

 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = (𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 100)/(𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚) (10)

The Fmax value depends on the operator. Concerning the diversification operator, the Fmax corresponds to the
maximum diversity possible (i.e. all the values within inputs are completely changed). For this reason, Fmax is
always equal to the input parameter (k). As for the intensification operator, Fmax corresponds to the maximum
intensification possible (i.e. again with all the values within inputs are completely changed). As such, Fmax for
the intensification operator is also always equal to the input parameter (k). Contrary to this, Fmax calculation is
different for the improvement operator. Here, Fmax corresponds to the maximum possible interaction coverage
given as input parameter (k) and interaction strength (t). Specifically, Fmax for the improvement operator can be
mathematically defined by Equation 11.

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐶𝐶𝑘𝑘 𝑡𝑡 =
𝑘𝑘!

𝑡𝑡! (𝑘𝑘 − 𝑡𝑡)!
 (11)

13

For the OUTPUT MEMBERSHIP block, a single output operator called Selection is defined. The Selection
operator has three linguistic terms called Change, May Change, and Maintain represented by the triangular/
trapezoidal membership function (similar to intensification and diversification operators) taking the ranges of 0-
50, 25-75 and 50-100 respectively.

The FUZZY RULES block lists the linguistic rules of FIS. The total number of rules r for a fuzzy system is
determined by Equation 12.

 𝑟𝑟 = ∏ 𝑓𝑓𝑖𝑖 𝑁𝑁
𝑖𝑖 (12)

where N is the total number of crisp inputs and fi is the number of terms for each input variable.

In our case, there are potentially 33 or 27 rules for the FIS (as each operator takes three linguistic terms). Based
on our observation, the rules can be reduced to 8 rules as shown in Figure 6. Specifically, the selection of the
search operator will not be changed (i.e. Maintain) if all three operators’ values are evaluated as Excellent. The
search operator may be changed (i.e. May Change) if any of the two operators’ values are Excellent and the third
value is Good. FIS changes (i.e. Change) the search operator for the next iteration if any one of the operators is
Poor or all operators are Good.

Finally, the Fuzzy Inference Selection aggregates the reasoning and takes fuzzy actions in light of input/output
memberships, linguistic variables and fuzzy rules. The fuzzy results are then forwarded to the DEFUZZIFIER
block. This block translates the fuzzy results into crisp output using the Center of Gravity, based on the defined
DEFUZZIFIER block in order to produce crisp values for the control variables (see Equation 13).

 𝑈𝑈 = ∫
𝑈𝑈 𝜇𝜇 (𝑈𝑈) 𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀

∫ 𝜇𝜇 (𝑈𝑈) 𝑑𝑑𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀

Summing up, Figure 7 summarizes the complete FIS pseudo code.

(13)

14

Figure 7. Fuzzy Inference Selection

Lines 1-3 perform t-way problem initialization similar to the earlier described hyper-heuristics. The maximum
operator value, F_Max, is computed in line 4. Line 5 defines the fuzzy rules used by the FIS. The main loop
starts in line 6 which repeats the necessary steps until the coverage of all interaction tuples (I). Line 7 sets
variable T to value 1. The inner loop starts in line 8 that runs for ϴmax. Line 9 selects Hi in order to produce a
solution Si and add it to Fs. Lines 10-12 compute the values of the three operators (i.e. improvement F1,
diversification F2, as well as intensification F3). These values will be utilized for the fuzzy based selection of Hi.
Line 13 computes the scaled value for each operator Fi as Fscaled as Fscaled = (Factual×100)/Fmax . Lines 14-17,
encompass the FIS logic. In line 14, the scaled value of each operator and the Selection output variable are
translated into linguistic terms with trapezoidal membership functions (as depicted in the INPUT/OUTPUT
MEMBERSHIP blocks in Figure 6). FIS, in line 15, combines all the fuzzy information for the DEFUZZIFIER
block. The defuzzifier produces the crisp output in Line 16. Line 17 assigns the crisp output to the Selection
variable. In lines 18-25, the fuzzy inference selection will decide, based on the Selection value, whether to
maintain, change or may change the heuristic Hi for the next iteration. In case, the operator is found Poor (lines
18-19), the current Hi will be replaced in the next iteration. When the Selection variable is in range (Selection >
40.0 and ≤ 60.0), the current Hi may or may not be changed for the next iteration (lines 21-22). FIS keeps the
current Hi (line 24) for the next iteration if the Selection variable is greater than 60. Line 26 updates T for the
next iteration.

3.2 Description of the Search Operators

The next subsections provide the description of the adopted search operators.

3.2.1 The Genetic Algorithm Crossover Search Operator

15

The crossover search operator is derived from the Genetic Algorithm [25]. The complete algorithm is defined in
Figure 8. Initially, Sbest is set to Z0 in line 1. The loop starts in line 2. The crossover operation occurs between a
randomly selected Zi against the existing Zi in the population over the randomized length (α) (in lines 3-5). If the
newly updated Zi has a better fitness value, the value of Zi is updated accordingly (in lines 6-7). The fitness of
the current Zi is checked against Sbest. Sbest will be updated if it has better fitness than Zi (in lines 9-10).

Figure 8. GA Crossover Search Operator

3.2.2 Teaching Learning based Optimization Peer Learning Search Operator

As the name suggests, the TLBO peer learning search operator is derived from the learning phase of the
Teaching Learning based Optimization Algorithm [39]. The algorithm was originally proposed as a local search
operator. Figure 9 presents the complete algorithm.

Initially, Sbest is set to Z0 in line 1. The loop starts from line 2. The learning happens within the loop (lines 3-10).
The idea is that each student attempts to improve his knowledge through interaction with his peers. To be
specific, the student Zi will select a random peer learner Zj (where Zi ≠ Zj) (line 3). The scaling factor is set
randomly chosen from (0,1) in line 4. If Zi has better fitness than Zj, the latter is moved toward the former (line
6) and vice versa (line 9). If the newly updated Zi has a poorer fitness value, no update is made to Zi (in lines 11-
12). The fitness of the current Zi is checked against Sbest and will be updated if it has better fitness than Zi (in
lines 14-15).

16

Figure 9. TLBO Algorithm’s Peer Learning Search Operator

3.2.3 Flower Pollination Algorithm Global Pollination Operator

The FPA global pollination search operator is derived from the Flower Pollination Algorithm [48]. The global
pollination operator exploits Lévy Flight motion to update all the (column-wise) values for Zi of interest instead
of only perturbing one value, thus, making it a global search operator. The complete algorithm is summarized in
Figure 10.

Considering the flow of the global pollination operator, Sbest is initially set to Z0 in line 1. The loop starts in line
2. The value of Zi will be iteratively updated using the transformation equation exploiting the Lévy Flight
motion (in lines 4-6). The Lévy Flight motion is a random walk that takes a sequence of jumps, which are
selected from a heavy tailed probability function. For our Lévy Flight implementation, we adopt the well-
known Mantegna’s algorithm [47]. Within this algorithm, a step length can be defined as (See Equation 14):

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑢𝑢

[𝑣𝑣]
1
𝛽𝛽
 (14)

where 𝑢𝑢 and 𝑣𝑣 are approximated from the normal Gausian distribution in which:

 𝑢𝑢 ≈ 𝑁𝑁(0,𝜎𝜎𝑢𝑢2) ∙ 𝜎𝜎𝑢𝑢 𝑣𝑣 ≈ 𝑁𝑁(0,𝜎𝜎𝑣𝑣2) ∙ 𝜎𝜎𝑣𝑣
 (15)

For 𝑣𝑣 value estimation, we use 𝜎𝜎𝑣𝑣 = 1. For 𝑢𝑢 value estimation, we evaluate the Gamma function(ᴦ) with the
value of 𝛽𝛽 = 1.5 [46], and obtain 𝜎𝜎𝑢𝑢 using Equation 16:

 𝜎𝜎𝑢𝑢 = �
 ᴦ(1+𝛽𝛽) × 𝑠𝑠𝑠𝑠𝑠𝑠� 𝜋𝜋𝜋𝜋2 �

 ᴦ � (1+𝛽𝛽)
2 � × 𝛽𝛽 × 2 �𝛽𝛽−12 �

�

1
𝛽𝛽

 (16)

In our case, the Gamma function(ᴦ) implementation is adopted from William et al. [37].

If the newly updated Zi has a better fitness value, then the current Zi is replaced (in lines 6-7). The value of Sbest
is also updated if it has a better fitness value than that of Zi (in lines 8-9). If the newly updated Zi has a poorer
fitness value, no update is made to Zi (in lines 12-16). The fitness of the current Zi is checked against Sbest. Sbest
will be updated if it has better fitness than Zi (in lines 13-14).

17

Figure 10. Flower Algorithm’s Global Pollination Operator

3.2.4 Jaya Algorithm’s Search Operator

The Jaya search operator is derived from the Jaya algorithm [38]. The complete description of the Jaya operator
is summarized in Figure 11.

Unlike the search operators described earlier (i.e. keeping track of only Sbest), the Jaya search operator keeps
track of both Sbest and Spoor. As seen in line 6, the Jaya search operator exploits both Sbest and Spoor as part of its
transformation equation. Although biased towards global search, the transformation equation can also address
local search. In the case when ΔS= Sbest -Spoor is sufficiently small, the transformation equation offset (in line
with the term ʊ·(Sbest – Zi) - ζ·(Spoor – Zi)) will be insignificant relative to the current location of Zi allowing
steady intensification process.

As far as the flow of the Jaya operator is concerned, lines 1-2 sets up the initial values for Sbest = Z0 and Spoor =
Sbest. The loop starts from line 3. Two random values ʊ and ζ are generated to compensate and scale down the
delta differences between Zi with Sbest and Spoor in the transformation equation (in lines 4-6). If the newly
updated Zi has a better fitness value, then the current Zi is replaced accordingly (in lines 7-8). In a similar
manner, the value of Sbest is also updated if it has a better fitness value than that of Zi (in lines 9-10). In the case
when the newly updated Zi has a poorer fitness value, no update is made to Zi (in lines 13-20). In such a case, the
fitness of the current Zi is checked against both the fitness of Sbest and Spoor. If the fitness of the current Zi is
better than that of Sbest, Zi is assigned to Sbest (in lines 14-15). Similarly, if the fitness of the current Zi is poorer
than that of Spoor, Zi is assigned to Spoor (in lines 17-18).

18

Figure 11. Jaya Search Operator

4. The Experiments

Our experiments focus on three related goals: (1) to characterize the performance of the implemented hyper-
heuristic with each other; (2) to gauge the distribution pattern of the selected search operators by each hyper-
heuristic selection and acceptance mechanism; and (3) to benchmark the implemented hyper-heuristics against
other meta-heuristic approaches.

We have divided our experiments into three parts. In the first part, we highlight the average time and size
performance of the implemented hyper-heuristics. In the second part, we benchmark the size performance of our
hyper-heuristic implementation against themselves as well as against existing meta-heuristic based strategies.

As highlighted in an earlier section (see Figure 2), although all the hyper-heuristics are adopting different
selection and acceptance mechanisms, they employ the same low level search operators (i.e. based on GA
crossover search operator, TLBO peer learning search operator, FPA global pollination search operator, and
Jaya search operator). In our experiments, all the hyper-heuristics have the same population size (ϴmax = 20) and
the same maximum number of iterations (S=100). All the hyper-heuristics use the same data structure and are
implemented using the Java programming language. For these reasons, comparative experiments amongst the
various hyper-heuristics, we believe, are fair.

The same observation cannot be generalized in the case of meta-heuristics based strategies. Each meta-heuristic
requires the specific parameter settings (e.g. PSO relies on population size, inertia weight, social and cognitive
parameters, while Cuckoo Search relies on elitism probability, iteration and population). As the meta-heuristic
based strategy implementations are not available to us, we cannot modify the algorithm internal settings and
fairly run our own experiments. For this reason, we opt only to compare test size performance and its average.

Our experimental platform comprises of a PC running Windows 10, CPU 2.9 GHz Intel Core i5, 16 GB 1867
MHz DDR3 RAM and a 512 MB of flash HDD. We represent all our experimental results in the tables for all

19

the corresponding strategies. With the exception of the hyper-heuristic results, all other results are based on each
strategy’s respective publication. Cells marked “NA” (not available) indicate that the results were not available
for those specific configurations of the strategy. In line with the published results and the evidence in the
literature, we have run each experiment 30 times and report the best and the average size (as shaded cells) as
well as the best average time (as bold cells in Table 3) whenever possible for these runs to give a better
indication for the performance of the strategies of interest. Additionally, we also record the normalized
percentage distribution of low level search operators by each hyper-heuristic selection and acceptance
mechanism for each benchmark experiment undertaken.

4.1. Characterizing the Implemented Hyper-Heuristic Selection and Acceptance Mechanisms

To characterize the size and average time performances of the implemented hyper-heuristic selection and
acceptance mechanism, we have adopted an experiment from [45]. Table 3 highlights our results. In order to
depict the variation of the obtained results (i.e. patterns) from each implemented hyper-heuristic selection and
acceptance mechanism, we construct the box plots (see Figure 12) based on the results in Table 3. Meanwhile,
Figure 13 summarizes the percentage distribution of low level search operators by each hyper-heuristic strategy.

Table 3. Size and Average Time Performances for the Implemented Selection and Acceptance Mechanisms

CA

Exponential Monte Carlo with
Counter Choice Function Improvement

Selection Rules Fuzzy Selection

Size
Ave Time

(sec)

Size Ave
Time
(sec)

Size Ave
Time
(sec)

Size Ave
Time
(sec)

Best Ave Best Ave Best Ave Best Ave

CA1 (N; 2, 313) 18 19.05 29.71 18 19.45 20.37 18 18.90 30.12 17 18.65 30.28
CA2 (N; 2, 1010) 155 157.20 116.49 157 172.05 116.71 156 157.35 127.18 153 157.10 131.21
CA3 (N; 3, 36) 33 38.85 13.32 33 38.90 12.17 33 37.75 13.71 33 38.20 13.64
CA4 (N; 3, 66) 323 326.70 165.28 323 327.40 165.70 322 326.20 168.22 323 326.15 170.56

CA5 (N; 3, 106) 1485 1496.50 999.65 1483 1499.25 1000.10 1482 1486.80 1003.99 1481 1486.20 1005.23

CA6 (N; 3, 524232) 100 107.35 42.13 100 113.20 36.76 100 105.55 48.22 100 105.95 43.35

20

f) Box Plot for CA6 (N; 3, 524232)

b) Box Plot for CA2 (N; 2, 1010)a) Box Plot for CA1 (N; 2, 313) c) Box Plot for CA3 (N; 3, 36)

d) Box Plot for CA4 (N; 3, 66) e) Box Plot for CA5 (N; 3, 106)

15

17

19

21

Exponential Monte
Carlo with Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

152

156

160

164

168

172

176

180

Exponential
Monte Carlo with

Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

32

34

36

38

40

42

Exponential Monte
Carlo with Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

321

323

325

327

329

331

333

Exponential Monte
Carlo with Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

1480
1482
1484
1486
1488
1490
1492
1494
1496
1498
1500
1502
1504
1506

Exponential
Monte Carlo with

Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

98

100

102

104

106

108

110

112

114

116

Exponential Monte
Carlo with Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

Figure 12. Box Plots for Table 3

21

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 13. Search Operator Normalized Percentage Distribution for all CA1-CA6 in Table 3

4.2. Benchmarking against existing Meta-Heuristic based Strategies

To put our work into perspective, we also benchmark our work against existing meta-heuristic based strategies
as published in [4, 32, 45]. Tables 4–9 depict the results obtained for the comparative experiments. Figures 14–
19 summarize the percentage distribution of low level search operators by each hyper-heuristic strategy of
interest.

Table 4. Size Performance for CA (N; 2, 3k)

K

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential
Monte Carlo
with Counter

Choice
Function

Improvement
Selection Rules Fuzzy Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
3 9 9.55 NA NA 9 9.21 9 9.60 9 9.83 9 9.7 9 9.90 9 9.67
4 9 10.15 9 9.00 9 9.95 9 10.00 9 9.00 9 9.0 9 9.00 9 9.00
5 12 13.81 11 11.53 11 12.23 11 11.80 11 11.24 11 11.3 11 11.30 11 11.23
6 13 15.11 14 14.50 12 13.78 13 14.20 14 14.27 13 14.36 13 14.46 13 14.03
7 15 16.94 15 15.17 15 16.62 14 15.60 15 15.07 15 15.23 15 15.10 14 15.07
8 15 17.57 15 16.00 15 16.92 15 15.80 15 15.77 15 16.16 15 15.90 15 15.79
9 17 19.38 15 16.43 16 18.31 16 17.20 15 16.23 15 16.43 15 16.10 15 15.97

10 17 19.78 16 17.30 17 18.12 17 17.80 16 17.10 16 17.2 16 17.50 16 17.03
11 17 20.16 17 17.70 NA NA 18 18.60 17 18.90 18 18.50 17 18.30 16 17.45
12 18 21.34 16 17.93 NA NA 18 18.8 16 17.96 17 18.29 17 18.40 16 17.80

22

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 14. Search Operator Normalized Percentage Distribution for CA (N; 2, 3k) in Table 4

Table 5. Size Performance for CA (N; 3, 3k)

K

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential
Monte Carlo
with Counter

Choice
Function

Improvement
Selection Rules

Fuzzy
Inference
Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
4 27 29.30 NA NA 27 28.90 28 29.00 27 28.83 27 29.20 27 30.06 27 27.23
5 39 41.37 41 43.17 41 42.20 38 39.20 39 41.47 38 41.40 39 41.60 37 41.30
6 45 46.76 33 38.30 45 46.51 43 44.20 33 38.63 33 38.37 33 38.47 33 36.77
7 50 52.20 48 50.43 48 51.12 48 50.40 49 50.46 49 50.50 49 50.47 48 50.40
8 54 56.76 52 53.83 50 54.86 53 54.80 52 53.27 52 53.93 52 53.27 53 53.40
9 58 60.30 56 57.77 59 60.21 58 59.80 56 57.79 57 58.07 56 57.87 56 57.77

10 62 63.95 59 60.87 63 64.33 62 63.60 59 61.17 60 60.77 60 60.10 59 61.03
11 64 65.68 63 63.97 NA NA 66 68.20 63 63.87 64 65.27 63 63.67 63 63.53
12 67 68.23 65 66.83 NA NA 70 71.80 65 67.61 66 68.13 65 66.93 65 66.13

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 15. Search Operator Normalized Percentage Distribution for CA (N; 3, 3k) in Table 5

23

Table 6. Size Performance for CA (N; 4, 3k)

k

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential
Monte Carlo
with Counter

Choice
Function

Improvement
Selection Rules

Fuzzy Inference
Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
5 96 97.83 NA NA 94 96.33 94 95.80 81 84.23 81 89.07 81 88.27 81 87.27
6 133 135.31 131 134.37 129 133.98 132 134.20 130 133.33 129 133.83 129 134.17 129 134.10
7 155 158.12 150 155.23 154 157.42 154 156.80 149 154.27 151 155.17 147 153.53 147 153.90
8 175 176.94 171 175.60 178 179.70 173 174.80 172 174.96 173 175.47 171 174.83 171 174.47
9 195 198.72 187 192.27 190 194.13 195 197.80 160 187.87 142 190.53 171 190.33 159 189.47

10 210 212.71 206 219.07 214 212.21 211 212.20 206 209.00 205 208.83 206 208.77 206 208.67
11 222 226.59 221 224.27 NA NA 229 231.00 221 224.67 222 226.13 221 224.33 221 223.13
12 244 248.97 237 239.85 NA NA 253 255.80 237 238.51 237 239.21 236 238.11 235 237.43

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 16. Search Operator Normalized Percentage Distribution for CA (N; 4, 3k) in Table 6

Table 7.Size Performance for CA (N; 2, v7)

V

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential
Monte Carlo
with Counter

Choice
Function

Improvement
Selection Rules

Fuzzy Inference
Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
2 6 6.82 7 7.00 6 6.73 6 6.80 7 7.00 7 7.00 7 7.00 7 7.00
3 15 15.23 14 15.00 15 15.56 15 16.20 15 15.13 15 15.13 15 15.17 14 15.00
4 26 27.22 24 25.33 25 26.36 25 26.40 24 25.07 24 25.47 23 25.00 24 24.87
5 37 38.14 34 35.47 35 37.92 37 38.60 34 35.83 34 36.63 34 35.90 34 35.70
6 NA NA 47 49.23 NA NA NA NA 48 49.00 48 49.67 47 49.51 47 48.75
7 NA NA 64 66.37 NA NA NA NA 64 65.93 64 66.85 64 66.25 64 65.65

24

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 17. Search Operator Normalized Distribution for CA (N; 2, v7) in Table 7

Table 8. Size Performance for CA (N; 3, v7)

v

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential

Monte Carlo with
Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
2 13 13.61 15 15.06 15 15.80 12 13.80 14 15.17 15 15.17 15 15.20 12 15.00
3 50 51.75 49 50.60 48 51.12 49 51.60 49 50.6 48 50.53 48 50.57 48 50.47
4 116 118.13 112 115.27 118 120.41 117 118.40 113 115.7 114 115.07 113 115.37 112 114.90
5 225 227.21 216 219.20 239 243.29 223 225.40 217 220.37 215 219.00 216 218.65 216 218.60
6 NA NA 365 370.57 NA NA NA NA 365 373.91 369 374.43 365 373.51 366 370.20
7 NA NA 574 577.67 NA NA NA NA 575 579.00 575 580.91 575 579.75 575 577.80

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 18. Search Operator Normalized Percentage Distribution for CA (N; 3, v7) in Table 8

25

Table 9. Size Performance for CA (N; 4, v7)

V

Meta-Heuristic based Strategies Hyper-Heuristic based Strategies

PSTG [4] DPSO [45] APSO [32] CS [2]
Exponential

Monte Carlo with
Counter

Choice Function Improvement
Selection Rules

Fuzzy Inference
Selection

Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave Best Ave
2 29 31.49 34 34.00 30 31.34 27 29.60 31 32.23 31 31.80 31 32.27 26 31.67
3 155 157.77 150 154.73 153 155.2 155 156.80 151 155.30 151 155.27 151 154.53 150 154.40
4 487 489.91 472 481.53 472 478.9 487 490.20 479 484.83 479 485.17 479 484.00 480 484.00
5 1176 1180.63 1148 1155.63 1162 1169.94 1171 1175.20 1156 1161.47 1151 1160.03 1154 1162.43 1154 1161.03
6 NA NA 2341 2357.73 NA NA NA NA 2348 2364.23 2353 2369.91 2352 2367.11 2349 2363.11
7 NA NA 4290 4309.60 NA NA NA NA 4294 4311.10 4295 4312.70 4295 4311.90 4293 4310.54

b) Choice Function a) Exponential Monte Carlo with Counter

c) Improvement Selection Rules d) Fuzzy Inference Selection

Figure 19. Search Operator Normalized Percentage Distribution for CA (N; 4, v7) in Table 9

4.3. Statistical Analysis

We conduct our statistical analysis for all the obtained results (from Table 3 and Tables 4–9) based on the 1xN
pair comparisons with 95% confidence level (i.e. α=0.05) and 90% confidence level (i.e. α=0.1). The Wilcoxon
Rank-Sum is used to find whether the control strategy presents statistical difference with regards to the
remaining strategies in the comparison. The rationale for adopting the Wilcoxon Rank-Sum stemmed from the
fact that the obtained results are not normally distributed, thus, rendering the need for a non-parametric test.

The null hypothesis (H0) is that there is no significant difference as far as the test size is concerned for FIS and
each individual strategy (i.e. the two populations have the same medians). Our alternative hypothesis (H1) is that
test size for FIS is less than that of each individual strategy (i.e. FIS has a lower population median).

To control the Type I - family wise error rate (FWER) owing to multiple comparisons, we have adopted the
Bonferroni-Holm correction for adjusting α value (i.e. based on Holm’s sequentially rejective step down
procedure [26]). To be specific, the p-values are first sorted in ascending order such that p1< p2<p3...<pi…<pk.
Then, α is adjusted based on:

 𝛼𝛼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛼𝛼

𝑘𝑘 −𝑖𝑖+1
 (17)

where k is the total number of paired samples and i signifies the test number.

If p1 < αHolm, the corresponding hypothesis is rejected and we are allowed to make a similar comparison for p2.
If the second hypothesis is rejected, the test proceeds with the third and so on. As soon as a certain null

26

hypothesis cannot be rejected, all the remaining hypotheses are retained as well. The complete statistical
analyses are shown in Tables 10–16.

Table 10. Wilcoxon Rank-Sum Tests for Table 3
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs EMCQ 0.014 α Holm =0.016667, p-value < α Holm,
 Reject Ho

α Holm =0.033333, p-value < α Holm,
Reject Ho

FIS vs CF 0.014 α Holm =0.025, p-value < α Holm,
 Reject Ho

α Holm =0.05, p-value < α Holm,
Reject Ho

FIS vs ISR 0.376 α Holm =0.05, p-value > α Holm,
Cannot reject Ho

α Holm =0.10, p-value > α Holm,
Cannot reject Ho

Table 11. Wilcoxon Rank-Sum Tests for Table 4
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs PSTG 0.0035
α Holm =0.01, p-value < α Holm ,

Reject Ho
α Holm =0.02, p-value < α Holm ,

Reject Ho

FIS vs CF 0.004 α Holm =0.0125, p-value < α Holm ,

Reject Ho
α Holm =0.04, p-value < α Holm ,

Reject Ho

FIS vs ISR 0.004 α Holm =0.016667, p-value < α Holm ,
Reject Ho

α Holm =0.06, p-value < α Holm ,
Reject Ho

FIS vs CS 0.0045
α Holm =0.025, p-value < α Holm ,

Reject Ho
α Holm =0.08, p-value < α Holm ,

Reject Ho

FIS vs EMCQ 0.0125
α Holm =0.05, p-value < α Holm ,

Reject Ho
α Holm =0.10, p-value < α Holm ,

Reject Ho
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored

Table 12. Wilcoxon Rank-Sum Tests for Table 5
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs PSTG 0.004 α Holm =0.01, p-value < α Holm,
Reject Ho

α Holm =0.02, p-value < α Holm,
Reject Ho

FIS vs CF 0.006 α Holm =0.0125, p-value < α Holm,
Reject Ho

α Holm =0.04, p-value < α Holm,
Reject Ho

FIS vs EMCQ 0.0105
α Holm =0.016667, p-value < α Holm,

Reject Ho
α Holm =0.06, p-value < α Holm,

Reject Ho

FIS vs ISR 0.0105
α Holm =0.025, p-value < α Holm,

 Reject Ho
α Holm =0.08, p-value < α Holm,

Reject Ho

FIS vs CS 0.025 α Holm =0.05, p-value < α Holm,
Reject Ho

α Holm =0.1, p-value < α Holm,
Reject Ho

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored

Table 13. Wilcoxon Rank-Sum Tests for Table 6
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs PSTG 0.006
α Holm =0.01, p-value < α Holm,

Reject Ho
α Holm =0.02, p-value < α Holm,

Reject Ho

FIS vs CS 0.006
α Holm =0.0125, p-value < α Holm,

Reject Ho
α Holm =0.04, p-value < α Holm,

Reject Ho

FIS vs CF 0.0125
α Holm =0.016667, p-value < α Holm,

Reject Ho
α Holm =0.06, p-value < α Holm,

Reject Ho

FIS vs ISR 0.025
α Holm =0.0125, p-value > α Holm,

Cannot Reject Ho
α Holm =0.08, p-value < α Holm,

Reject Ho

FIS vs EMCQ 0.242 Cannot Reject Ho α Holm =0.1, p-value > α Holm,
Cannot Reject Ho

*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of DPSO and APSO are ignored

Table 14. Wilcoxon Rank-Sum Tests for Table 7
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs EMCQ 0.021
α Holm =0.0125, p-value > α Holm,

Cannot Reject Ho
α Holm =0.025, p-value < α Holm,

Reject Ho

FIS vs CF 0.0215 Cannot Reject Ho
α Holm =0.033333, p-value < α Holm,

Reject Ho

FIS vs ISR 0.0215 Cannot Reject Ho
α Holm =0.05, p-value < α Holm,

Reject Ho

FIS vs DPSO 0.072 Cannot Reject Ho
α Holm =0.1, p-value < α Holm,

Reject Ho
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored

27

Table 15. Wilcoxon Rank-Sum Tests for Table 8
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction α Holm with 95%

confidence level
Bonferroni-Holm Correction α Holm with 90%

confidence level

FIS vs CF 0.0135
α Holm =0.0125, p-value > α Holm,

Cannot Reject Ho
α Holm =0.025, p-value < α Holm,

Reject Ho

FIS vs EMCQ 0.014 Cannot Reject Ho
α Holm =0.033333, p-value < α Holm,

Reject Ho

FIS vs ISR 0.014 Cannot Reject Ho
α Holm =0.05, p-value < α Holm,

Reject Ho

FIS vs DPSO 0.046 Cannot Reject Ho
α Holm =0.1, p-value < α Holm,

Reject Ho
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored

Table 16. Wilcoxon Rank-Sum Tests for Table 9
Pair

Comparison
p-value in ascending

order
Bonferroni-Holm Correction:

α Holm with 95% confidence level
Bonferroni-Holm Correction: α Holm with 90%

confidence level

FIS vs EMCQ 0.0135

α Holm =0.0125, p-value > α Holm , Cannot
reject Ho

α Holm =0.025, p-value < α Holm,
Reject Ho

FIS vs ISR 0.0215 Cannot reject Ho
α Holm =0.033333, p-value < α Holm,

Reject Ho

FIS vs DPSO 0.058 Cannot reject Ho
α Holm =0.05, p-value < α Holm,

Reject Ho

FIS vs CF 0.0865 Cannot reject Ho
α Holm =0.1, p-value < α Holm,

Reject Ho
*Owing to incomplete sample (i.e. with one or more NA entries), the contributions of PSTG, APSO, and CS are ignored

5. Experimental Observation

Reflecting on the work undertaken, a number of observations can be elaborated based on the results obtained from
each experiment as well as the corresponding statistical analysis.

Concerning the first part of the experiments elaborated in Section 4.1, Table 3 depicts the comparative
performances of hyper-heuristics (and their selection and acceptance mechanism) amongst themselves. Here, we
can observe that FIS dominates as far as getting the best average test sizes with 60.67% (i.e. 4 out of 6 entries) as
compared to its other hyper-heuristics counterparts. ISR comes as the runner up with 33.33% (i.e. outperforming
FIS in 2 entries). As for the best test size, FIS also manages to get best results with a percentage of 83.33% (i.e. 5
out of 6 entries). In the case of CA3(N; 3, 36) and CA6(N; 3, 524232), it is interesting to note that although all
hyper-heuristics share the best test size, ISR gives the best overall average. Conversely, in the case of involving
CA4 (N; 3, 66), we can note that the strategy (i.e. ISR) that obtain the best test size will not necessarily produce
the best test size averages. Concerning the average execution time, we observe that EMCQ and CF outperform
other hyper-heuristic strategies with 50.00% (i.e. 3 out of 6 entries). ISR and FIS perform the poorest in all cases
observed.

The boxplot analysis of Table 3 in Figure 12 (a) to (f) reveals a number of salient characteristic and patterns of
EMCQ, CF, ISR and FIS searching process. Considering CA1 (N; 2, 313), the distribution of box plot results is
symmetric and the range of results is similar for all hyper-heuristics (i.e. similar bottom and top whiskers). CF
and FIS have smaller interquartile range as compared to EMCQ and ISR. In this case, FIS has lowest median.
As far as CA2 (N; 2, 1010) is concerned, the distribution of box plot results is symmetric for CF, ISR and FIS but
not for EMCQ. CF has large range of results (i.e. large top and bottom whiskers) and its median is far off the
other hyper-heuristics medians (i.e. with EMCQ having the lowest median). In CA3 (N; 3, 36), the distribution of
box plot results is asymmetric for all hyper-heuristics. Furthermore, all hyper-heuristics appear to have a large
range of results with EMCQ and CF reaching the extreme top. The interquartile range is similar for all hyper-
heuristics with ISR having the lowest median. Concerning CA4 (N; 3, 66), the distribution of box plot results is
asymmetric for all hyper-heuristics. CF and EMCQ have the largest range of results as compared to other hyper-
heuristics. CF has the highest interquartile range. Here, FIS and ISR share the same lowest median. Similar to
CA4 (N; 3, 66), the distribution of results is also asymmetric for CA5 (N; 3, 106). CF has the largest range of
results with EMCQ comes in as the runner up. The lowest median is shared between ISR and FIS. In CA6 (N; 3,
524232), the distribution of box plot results is again asymmetric for all hyper-heuristics. CF has the largest range
of results with EMCQ the runner up. ISR has the largest interquartile range yet with the smallest median.

28

Statistical analysis of Table 3 (given in Table 10) indicates that two null hypothesis are rejected for both 95%
and 90% confidence levels. FIS is statistically better than MC and CF. However, there is no difference as far as
the performance of FIS with ISR is concerned.

Referring to pie chart representations in Figure 13(a) to (d) for CA1–CA6 in Table 3, we note that CF has more
preference towards the Jaya search operators (with 37.99%). EMCQ and ISR appear to favor global pollination
search operator (with 25.35% and 25.2% respectively) whilst FIS favors both crossover and peer learning search
operators (with 25.05%).

In the final part of the experiments highlighted in Section 4.3, benchmarking results highlight the overall
comparative performances of our implemented hyper-heuristics. Unlike Table 3, the scope of comparison for the
rest of the Tables (i.e. Tables 4–9) is extended to include comparison with both meta-heuristic and hyper-heuristic
based strategies (although without average time comparison). Table 4 demonstrates that FIS outperforms all other
strategies as far as the best average test size with 90% (i.e. 9 out of 10 entries). The other 10% (1 out of 10) of the
best average test size has been produced by APSO. Concerning the best test size, hyper-heuristic strategies
generally outperform the meta-heuristic counterparts. Each hyper-heuristic has a nearly fair share of the best test
size entries (i.e. FIS with 90%, EMCQ with 70%, ISR with 60%, and CF with 50%). The closest rival from the
meta-heuristic strategy comes from DPSO (with 60%), APSO (with 50%) and CS (with 50%). PSTG gives the
poorest performance with 30%.

Statistical analysis of Table 4 (given in Table 11) favors the alternate hypothesis for both 95% and 90%
confidence levels indicating that FIS has better performance than PSTG, CF, ISR, CS and EMCQ (whilst
ignoring the contributions of DPSO and APSO).

Concerning pie chart representations in Figure 14(a) to (d) CA (N; 2, 3k) in Table 4, we again see that CF has
more preference towards the Jaya search operators (with 34.78%). As for other hyper-heuristics, EMCQ favors
the global pollination search operator (with 25.11%) whilst ISR favors the Jaya search operator (with 25.43%)
and FIS favors the peer learning search operator (with 26.83%).

In Table 5, we observe FIS gives the best average test size with 88.88% (i.e. 8 out of 9 entries). The other best
average test size entries are shared amongst CS with 11.11% (i.e. 1 out of 9 entries), EMCQ with 11.11% (i.e. 1
out of 9 entries) and DPSO with 11.11% (i.e. 1 out of 9 entries) respectively. As far as the best test size is
concerned, hyper-heuristics are outperforming the meta-heuristic ones. DPSO and APSO are two of the meta-
heuristic strategies that produce commendable results with the hyper-heuristics counterparts. It is interesting to
note that while APSO gives the best test size for CA (N; 3, 38), it is EMCQ and ISR that give the best average
test size.

Statistical analysis of Table 5 (given in Table 12) favors the alternate hypothesis for both 95% and 90%
confidence levels. FIS has statistically better performance than PSTG, CF, EMCQ, ISR and CS (i.e. ignoring the
contributions of DPSO and APSO).

 Pie chart representations in Figure 15(a) to (d) for CA (N; 3, 3k) in Table 5, we observe similar findings for CF
as in the two cases earlier (i.e. refer to Figure 13 and 14). We note that CF has more preference towards the Jaya
search operators (with 31.31%). EMCQ favors the peer learning search operator (with 25.07%) as do FIS (with
25.50%). ISR appears to favor the global pollination search operator (with 25.08%).

Concerning Table 6, FIS offers the best average test size with 50% (i.e. 4 out of 8 entries) followed by EMCQ
with 25% (i.e. 2 out of 8), CF with 12.50% (i.e. 1 out of 8 entries), and ISR with 12.50% (i.e. 1 out of 8 entries).
As for the best test size, FIS obtains 75% (i.e. 6 out of 8 entries). ISR comes in with 62.50% (i.e. 5 out of 8
entries), CF with 50% (i.e. 4 out of 8 entries), EMCQ and DPSO with 25% (i.e. 2 out of 8 entries), and APSO
with 12.50% (i.e. 1 out of 8 entries). In this case, PSO and CS perform the poorest for both average and best test
size. It is interesting to note that although not getting the best average (i.e. best average is obtained by FIS), CF
has produced the best test size for CA (N; 4, 310).

Statistical analysis of Table 6 (given in Table 13) gives mixed results at 95% and 90% confidence levels. At
95% confidence level, FIS has statistically better performance as compared to PSTG, CS, and CF (i.e. ignoring
the contributions of DPSO and APSO). However, the performance of FIS is not statistically better than ISR and
MC. At 90% confidence level, the statistical analyses are all in favor of the alternate hypothesis with the
exception of MC. Hence, with 90% confidence level, FIS is better than other strategies with the exception of
MC (i.e. ignoring the contributions of DPSO and APSO).

29

Referring to pie chart representations in Figure 16(a) to (d) for CA (N; 4, 3k) in Table 6 , we again observe
similar findings as in all earlier cases for CF. We also note that the preference towards the Jaya search operator
is 28.27% (i.e. slightly less than 30%). In the three earlier cases, the percentages are all above 30% (with
37.99%, 37.78%, and 31.31% respectively). EMCQ favors the crossover search operator (with 25.13%) whilst
ISR favors the global pollination search operator (with 25.04%) and FIS favors the Jaya search operator (with
25.41%).

In Table 7, the overall performance for average and best test size is scattered amongst meta-heuristic and hyper-
heuristic based strategies. FIS has the best performance as far as best average test size with 66.67% (i.e. 4 out of
6 entries). DPSO is the runner up with 33.33% (i.e. 2 out of 6 entries). APSO comes third with 16.67% (i.e. 1
out of 6 entries). CS, PSTG, EMCQ, CF and ISR perform the poorest. Concerning the best test size, DPSO, ISR
and FIS share the percentage of 66.67% (i.e. 4 out of 6 entries). EMCQ and CF also share the percentage of
33.33% (i.e. with 2 out of 6 entries). The rest of the strategies (PSTG, APSO, and CS) are at 16.67% (i.e. 1 out
of 6 entries).

Statistical analysis of Table 7 (given in Table 14) gives two different indications. At 95% confidence level, the
statistic is in favor of the null hypothesis indicating that FIS has similar performance with all other strategies
(i.e. ignoring the contribution of PSTG, APSO and CS). Nonetheless, at 90% confidence level, FIS has
statistically significant performance as compared to EMCQ, CF, ISR and DPSO (i.e. ignoring the contribution
of PSTG, APSO and CS).

Pie chart representations in Figure 17(a) to (d) for CA(N; 2, v7), CF again prefers Jaya search operators with
30.74%. EMCQ also favors the Jaya search operator (with 25.07%) whilst ISR and FIS favor the peer learning
search operator (with 25.07% and 25.91% respectively).

In Table 8, FIS outperforms all other strategies as far as the average test size is concerned with 66.67% (i.e. 4
out of 6 entries). The other best average test size entry is shared by CS and DPSO with 16.67% (i.e. 1 out of 6
entries). Concerning the best test size, FIS also outperforms all other strategies with 66.67% (i.e. 3 out of 6
entries). DPSO comes in as the runner up with 50% (i.e. 3 out of 6 entries) followed by CF and EMCQ with
33.33% (i.e. 2 out of 6 entries). Meanwhile, APSO, CS, and EMCQ have the same percentage of 16.67% (i.e. 1
out of 6 entries).

Statistical analysis of Table 8 (given in Table 15) favors the null hypothesis at 95% confidence level but not at
90% confidence level. Thus, the performance of FIS is only statistically better than CF, EMCQ, ISR, and DPSO
at 90% confidence level (i.e. ignoring the contribution of PSTG, APSO and CS).

Concerning pie chart representations in Figure 18(a) to (d) for CA (N; 3, v7) in Table 8, we also confirm that
Jaya is more preferred as far as CF is concerned with 27.62%. EMCQ favors crossover search operator (with
25.06%). ISR appears to favor both the Jaya and the peer learning search operators (with 24.99%). FIS favors
the peer learning search operator (with 25.65%).

In Table 9, DPSO dominates as far as the best average test size is concerned with 50% (i.e. 3 out of 6 entries).
FIS comes in as the runner up with 33.33% (i.e. 2 out of 6) followed by APSO comes with 16.67% (i.e. 1 out of
6 entries). Similar pattern can also be seen in the case of best test size. DPSO dominates with 75% (i.e. 5 out of
6 entries). FIS comes in as the runner up with 33.33% (i.e. 2 out of 6) whilst APSO comes third with 16.67%
(i.e. 1 out of 6 entries). Putting DPSO, FIS and APSO aside, no other strategies are able to register the best
average test size as well as the best test size.

Statistical analysis of Table 9 (given in Table 16) gives an indication that the null hypothesis can only be
rejected at 90% confidence level but not at 95% confidence level. Hence, the performance of FIS is statistically
better than EMCQ, ISR, DPSO and CF at 90% confidence level.

Referring to pie chart representations in Figure 19(a) to (d), our observations are still in support of our earlier
findings as far as CF is concerned. Jaya is again more preferred in the case of CF with 26.75%. EMCQ favors
the peer learning search operator (with 25.06%) whilst ISR favors the crossover search operator (with 25.06%)).
Finally, FIS favors the crossover search operator (with 26.07%).

30

6. Concluding Remark

In this paper, we have described an experimental study of hyper-heuristic selection and acceptance mechanism
for combinatorial t-way test suite generation. Additionally, we have proposed a new hyper-heuristic selection
acceptance mechanism, called FIS, based on the fuzzy inference system and compared with other hyper-
heuristic and meta-heuristic approaches.

In terms of overall performance, hyper-heuristic based strategies appear to be more superior as compared to the
meta-heuristic counterparts (as evidenced by the given results in Section 5). In fact, in terms of best test suite
size, hyper-heuristic based strategies often produce good results for most cases. As highlighted in the early
sections of this paper, a hyper-heuristic can be viewed as a form of hybridization in the sense that more than one
search operator can work together in synergy. Hyper-heuristics, when properly designed, can potentially
outperform meta-heuristics owing to three reasons. Firstly, unlike most meta-heuristics, hyper-heuristics are not
subjected to special tuning. In fact, in our case, we only have to deal with only population size and maximum
iteration. Secondly, hyper-heuristics allow adaptive decision (and learning) to decide on the best search operator
at hand. Finally, hyper-heuristics allow a flexible and “plug-and-play” approach of search operators from
different meta-heuristics allowing for more search diversity of solutions.

Concerning the individual performance, FIS, generally outperforms most other strategies as far as obtaining the
best average test sizes are concerned. As far as statistical analysis is concerned, FIS has statistically better
performance than other strategies at 90% confidence level. However, at 95% confidence level, there is no
sufficient statistical evidence that suggests the superiority of FIS as compared to other strategies. This finding is
an indication that most (meta-heuristic) strategies are already capable of reaching the known best results.

To the best of our knowledge, FIS is the first fuzzy based hyper-heuristic heuristic strategy that addresses the
problem of t-way test suite generation. The main feature of FIS is that it enhances the rules of its predecessor
ISR allowing multiple degrees of membership. Like ISR, FIS relies on three operators’ measures to decide on
whether to maintain or change a particular running search operator. Unlike ISR where the decision is strictly
based on the previous operator measures, the FIS decision is based on the weighted Fuzzy inference rules. The
net effect is that FIS allows smoother transition between search operators allowing consistent best test suite
generation (as evidenced by many of the best average test suite sizes).

On a negative note, in terms of average execution time, FIS and its predecessor ISR appears to be slower than
EMCQ and CF. Unlike EMCQ and CF, both FIS and ISR require extra overheads to undertake the Hamming
distance measure for the improvement, diversification and intensification operator.

As far as the percentage distribution of search operators is concerned, one glaring observation can be elaborated
further. With the exception of the CF, the search operator distributions are nearly fair for most hyper-heuristic
selection and acceptance mechanisms (indicating that the decision by each mechanism is adaptive and dynamic
in nature). At a glance, apart from CF, FIS appears to favor peer learning search operators. However, a closer
look reveals that the delta range is too small with the highest value of 26.83% (in Figure 14). Unlike FIS, CF
demonstrates a clear preference toward the Jaya operator with all cases (reaching 30% in three cases; 37.99% in
Figure 13, 34.78% in Figure 14 and 30.74% in Figure 17). Our observation indicates that such preferences arise
owing to the simplicity of the Jaya search operator. As the implementation of its operator is based on simple
arithmetic differences (as compared to complex arithmetic for crossover, peer learning, and global pollination),
the Jaya code tends to run faster. CF, unlike EMCQ, ISR, and FIS, gives more reward to the search operator
than runs faster. For this reason, the Jaya search operator will naturally have more opportunity for selection. For
other hyper-heuristic selection and acceptance mechanisms, execution time is not the parameter for making
decision on whether to maintain or change the current search operators. Furthermore, having given too many
opportunities for the Jaya search operator (even when it is not giving the good quality solution) causes a large
swing of values (from low to high) for CF in the box plot analysis given in Figure 12.

The time complexity analysis for EMCQ, CF, ISR and FIS can be analyzed by considering the combined
structures of all the hyper-heuristic algorithms and its four defined operators as described in Section 3. The
structures for EMCQ and CF as well as ISR and FIS are shown in Figure 20. Assuming all other operations can

31

While all interactions tuples are not covered

While iteration < max iteration

For i=1 to population size

Loop Structure for
EMCQ and CF

While all interactions tuples are not covered

While iteration < max iteration

For i=1 to population size

Loop Structure for ISR
and FIS

For j=1 to population size

Update new
population based on
the selected search
operator

Update new population
based on the selected
search operator

Perform Hamming distance
check for diversification and
intensification using
newly updated population

J i
te

ra
tio

ns

K
ite

ra
tio

ns

L i
te

ra
tio

ns

J i
te

ra
tio

ns

K
ite

ra
tio

ns

L i
te

ra
tio

ns
M

 it
er

at
io

ns

be performed in a constant time, the time complexity for EMCQ and CF is O(JxKxL) ≈ O(n3) when J, K, and L
are approaching large n. In a similar manner, the time complexity for ISR and FIS is O(JxKx(L+M)) ≈ O(n3)
when J, K, L+M are approaching large n.

Figure 20. General Structures for EMCQ, CF, ISR and FIS

As our findings have been encouraging, we are planning to benchmark our work further. In fact, we have
summarized the application of FIS for test redundancy reduction problem as the supplementary material for the
current paper (refer to [50]). Apart from its application for test redundancy reduction problem, another useful
avenue is to consider the benchmark of FIS within the HyFlex framework [1] (since the framework captures
most if not all the state-of-the-art on hyper-heuristic). Ideally, within the HyFlex framework, the performance of
FIS for general optimization problems can be objectively evaluated.

Currently, we are also interested in adopting FIS for testing cloud and service-oriented architecture (SOA)
solutions. Given the potentially large interaction of components within an overall integrated solution, a strategy
such as FIS can be useful to systematically minimize the test data for testing considerations (i.e., based on the
given interaction strength) and give indication of the developed solution’s quality.

Additionally, we are also looking into adopting Case based Reasoning (CBR) for search operator selection and
acceptance mechanism. The current fuzzy rules can be our initial starting point. The output of the search
operators can be clustered accordingly based on some dynamic centroid approach (i.e. using K-means or Fuzzy
C-Mean clustering algorithm). With this approach, we could also investigate the ensembles of new search
operators.

Finally, adaptation of FIS for dynamic multi-objective problems with multi-population models could be another
avenue for future work. In this respect, FIS needs to allow effective information sharing between populations
and proper adaptation to tackle changes in the functional landscapes.

Acknowledgement

The work reported in this paper is funded by the Science Fund Grant for the project titled: Constraints T-Way
Testing Strategy with Modified Condition/Decision Coverage from the Ministry of Science, Technology, and
Innovation (MOSTI), Malaysia.

References

1. HypeFlex Framework: Cross-Domain Heuristic Search Challenge, last accessed on 15 September, 2016.
Available from: http://www.asap.cs.nott.ac.uk/external/chesc2011.

http://www.asap.cs.nott.ac.uk/external/chesc2011

32

2. Ahmed, B.S., T.S. Abdulsamad, and M. Potrus, Achievement of Minimized Combinatorial Test Suite for
Configuration-Aware Software Functional Testing using the Cuckoo Search Algorithm. Information and Software
Technology, 2015. 66: p. 13-29.

3. Ahmed, B.S. and K.Z. Zamli, A Variable-Strength Interaction Test Suites Generation Strategy Using Particle
Swarm Optimization. Journal of Systems and Software, 2011. 84(12): p. 2171-2185.

4. Ahmed, B.S., K.Z. Zamli, and C.P. Lim, Application of Particle Swarm Optimization to Uniform and Variable
Strength Covering Array Construction. Applied Soft Computing, 2012. 12(4): p. 1330-1347.

5. Alazzam, A. and H. W. Lewis III, A New Optimization Algorithm For Combinatorial Problems. International
Journal of Advanced Research in Artificial Intelligence, 2013. 2(5): p. 63-68.

6. Alsewari, A.R.A. and K.Z. Zamli, Design and Implementation of a Harmony Search based Variable Strength t-
way Testing Strategy with Constraint Support. Information Software Technology, 2012. 54: p. 553-568.

7. Asmuni, H., E.K. Burke, and J.M. Garibaldi. Fuzzy Multiple Heuristic Ordering for Course Timetabling. in
Proceedings of the 5th United Kingdom workshop on computational intelligence (UKCI 2005). 2005. Citeseer.

8. Asta, S., et al., Combining Monte-Carlo and Hyper-Heuristic Methods for the Multi-Mode Resource-Constrained
Multi-Project Scheduling Problem. Information Sciences, 2016. 373: p. 476-498.

9. Ayob, M. and G. Kendall. A Monte Carlo Hyper-Heuristic to Optimise Component Placement Sequencing For
Multi Head Placement Machine. in Proceedings of the International Conference on Intelligent Technologies. 2003.

10. Burke, E.K., et al., Hyper Heuristics: A Survey of the State of the Art. Journal of the Operational Research Society,
2013. 64: p. 1695–1724

11. Burke, E.K., G. Kendall, and E. Soubeiga, A Tabu-Search Hyperheuristic for Timetabling and Rostering. Journal
of Heuristics, 2003. 9(6): p. 451-470.

12. Camastra, F., et al., A Fuzzy Decision System for Genetically Modified Plant Environmental Risk Assessment using
Mamdani Inference. Expert Systems with Applications, 2015. 42(3): p. 1710-1716.

13. Cano-Belmán, J., R.Z. Ríos-Mercado, and J. Bautista, A Scatter Search based Hyper-Heuristic for Sequencing a
Mixed-Model Assembly Line. Journal of Heuristics, 2010. 16(6): p. 749-770.

14. Chen, X., et al. Variable Strength Interaction Testing with an Ant Colony System Approach. in 2009 16th Asia-
Pacific Software Engineering Conference. 2009.

15. Cohen, D.M., et al., The AETG System: An Approach to Testing based on Combinatorial Design. IEEE
Transactions on Software Engineering, 1997. 23(7): p. 437–443.

16. Cohen, M.B., Designing Test Suites for Software Interaction Testing, in Department of Computer Science. 2004,
University of Auckland: New Zealand. p. 185.

17. Cohen, M.B., C.J. Colbourn, and A.C.H. Ling, Constructing Strength Three Covering Arrays with Augmented
Annealing. Discrete Mathematics, 2008. 308(13): p. 2709-2722.

18. Cohen, M.B., M.B. Dwyer, and J. Shi. Interaction Testing of Highly-Configurable Systems in the Presence of
Constraints. in Proceeding of International Symposium on Software Testing and Analysis. 2007. London, UK:
ACM.

19. Cordón, O., A Historical Review of Evolutionary Learning Methods for Mamdani-type Fuzzy Rule-based Systems:
Designing Interpretable Genetic Fuzzy Systems. International Journal of Approximate Reasoning, 2011. 52(6): p.
894-913.

20. Drake, J.H., E. Özcan, and E.K. Burke. A Modified Choice Function Hyper-Heuristic Controlling Unary and
Binary Operators. in Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC). 2015. IEEE.

21. Garvin, B.J., M.B. Cohen, and M.B. Dwyer, Evaluating Improvements to a Meta-Heuristic Search for Constrained
Interaction Testing. Empirical Software Engineering, 2011(16): p. 61-102.

22. Ghanem, T.F., W.S. Elkilani, and H. M.Abdul-Kader, A Hybrid Approach for Efficient Anomaly Detection Using
Meta-heuristic Methods. Journal of Advanced Research, 2015. 6(4): p. 609-619.

23. Gudino-Penaloza, F., et al. Fuzzy Hyperheuristic Framework for GA Parameters Tuning. in Artificial Intelligence
(MICAI), 2013 12th Mexican International Conference on. 2013. IEEE.

24. Harman, M. and B.F. Jones, Search-Based Software Engineering. Information and Software Technology, 2001.
43(14): p. 833-839.

25. Holland, J.H., Adaptation in Natural and Artificial Systems 1975: University of Michigan Press.
26. Holm, S., A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 1979. 6: p.

65-70.
27. Jia, Y., et al. Learning Combinatorial Interaction Test Generation Strategies Using Hyperheuristic Search. in

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering. 2015.
28. Kendall, G., P. Cowling, and E. Soubeiga. Choice Function and Random Hyperheuristics. in Proceedings of the

4th Asia-Pacific Conference on Simulated Evolution and Learning. 2002.
29. Kennedy, J. and R. Eberhart. Particle Swarm Optimization. in Proceedings of the IEEE International Conference

on Neural Networks. 1995.
30. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by Simulated Annealing. Science, 1983. 220(4598): p.

671-680.

33

31. Lei, Y. and K.C. Tai. In-Parameter-Order: A Test Generation Strategy for Pairwise Testing. in Proceedings of the
3rd IEEE International High-Assurance Systems Engineering Symposium (HASE '98). 1998. Washington, DC,
USA: IEEE Computer Society.

32. Mahmoud, T. and B.S. Ahmed, An Efficient Strategy for Covering Array Construction with Fuzzy Logic-based
Adaptive Swarm Optimization for Software Testing Use. Expert Systems with Applications, 2015. 42: p. 8753-
8765.

33. McCaffrey, J. An Empirical Study of Pairwise Test Set Generation Using a Genetic Algorithm. in Proceedings of
the 7th International Conference on Information Technology. 2010. IEEE Computer Society.

34. Mizumoto, M., Fuzzy Controls under Various Fuzzy Reasoning Methods. Information Sciences, 1988. 45(2): p.
129-151.

35. Nie, C. and H. Leung, A Survey of Combinatorial Testing. ACM Computing Surveys, 2011. 43(2).
36. Pedrycz, W. and X. Wang, Designing Fuzzy Sets With the Use of the Parametric Principle of Justifiable

Granularity. IEEE Transactions on Fuzzy Systems, 2016. 24(2): p. 489-496.
37. Press, W.H., et al., Numerical Recipes in C- The Art of Scientific Computing. 1992: Cambridge University Press.
38. Rao, R.V., Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained

Optimization Problems. International Journal of Industrial Engineering Computations, 2016. 7(1): p. 19-24.
39. Rao, R.V., V.J. Savsani, and D.P. Vakharia, Teaching-Learning-based Optimization: A Novel Method for

Constrained Mechanical Design Optimization Problems. Computer Aided Design, 2011. 43: p. 303-313.
40. Sabar, N.R. and G. Kendall, Population based Monte Carlo Tree Search Hyper-Heuristic for Combinatorial

Optimization Problems. Information Sciences, 2015. 314: p. 225-239.
41. Shiba, T., T. Tsuchiya, and T. Kikuno. Using Artificial Life Techniques to Generate Test Cases for Combinatorial

Testing. in Proceedings of the 28th Annual International Computer Software and Applications Conference
(COMPSAC’04). 2004. Hong Kong: IEEE Computer Society.

42. Stevens, B. and E. Mendelsohn. Efficient Software Testing Protocols. in Proceedings of the 8th IBM Centre for
Advanced Studies Conference (CASCON ’98). 1998. Toronto, Ontario, Canada: IBM Press.

43. Terashima-Marín, H., E. Flores-Alvarez, and P. Ross. Hyper-Heuristics and Classifier Systems for Solving 2D-
Regular Cutting Stock Problems. in Proceedings of the 7th annual conference on Genetic and evolutionary
computation. 2005. ACM.

44. Wolpert, D.H. and W.G. Macready, No Free Lunch Theorems for Optimization. IEEE Transactions on
Evolutionary Computation, 1997. 1(1): p. 67-82.

45. Wu, H., et al., A Discrete Particle Swarm Optimization for Covering Array Construction. IEEE Transactions on
Evolutionary Computation, 2015. 19(4): p. 575-591.

46. Yang, X.-S., Nature-Inspired Metaheursitic Algorithm. 2010: Luniver Press.
47. Yang, X.-S. and S. Deb. Cuckoo Search via Lévy Flight. in Proceedings of World Congress on Nature and

Biologically Inspired Computing. 2009. IEEE.
48. Yang, X.S., Flower Pollination Algorithm for Global Optimization, in Unconventional Computation and Natural

Computation, Lecture Notes in Computer Science. 2012, Springer. p. 240-249.
49. Zamli, K.Z., B.Y. Alkazemi, and G. Kendall, A Tabu Search Hyper-Heuristic Strategy for t-way Test Suite

Generation. Applied Soft Computing, 2016. 44: p. 57-74.
50. Zamli, K.Z., et al. Supplementary Material for the Information Sciences Paper: An Experimental Study of Hyper-

Heuristic Selection and Acceptance Mechanism for Combinatorial t-way Test Suite Generation, last accessed on
16 February, 2017.; Available from: http://arxiv.org/abs/1702.04501.

http://arxiv.org/abs/1702.04501

	1. Introduction
	2. Theoretical Framework
	2.1. The t-way Test Generation Problem
	2.2. The Covering Array Notation
	2.3. Meta-Heuristic based t-way Strategies
	2.4. Hyper-Heuristics and Related Work

	3. The Hyper-Heuristic Selection and Acceptance Mechanism
	3.1 Description of the Selection and Acceptance Mechanism
	3.2 Description of the Search Operators

	4. The Experiments
	4.1. Characterizing the Implemented Hyper-Heuristic Selection and Acceptance Mechanisms
	4.2. Benchmarking against existing Meta-Heuristic based Strategies
	4.3. Statistical Analysis

	5. Experimental Observation
	6. Concluding Remark
	Acknowledgement
	References

