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Abstract A blocked Hamiltonian Schur decomposition is herein proposed for the solution
process of the Scaled Boundary Finite Element Method (SBFEM), which is demonstrated to
comprise a robust simulation tool for Linear Elastic Fracture Mechanics (LEFM) problems.
By maintaining Hamiltonian symmetry increased accuracy is achieved, resulting in higher
rates of convergence and reduced computational toll, while the former need for adoption of
a stabilizing parameter and, inevitably user-supervision, is alleviated.

The method is further enhanced via adoption of superconvergent patch recovery theory
in the formulation of the stress intensity factors. It is shown that in doing so, supercon-
vergence, and in select cases ultraconvergence, is succeeded in the Stress Intensity Factors
(SIFs) calculation. Based on these findings, a novel error estimator for the stress intensity
factors within the context of SBFEM is proposed.

To investigate and assess the performance of SBFEM in the context of linear elastic
fracture mechanics, the method is contrasted against the Finite Element Method (FEM) and
the eXtended Finite Element Method (XFEM) variants. The comparison, carried out in terms
of computational toll and accuracy for a number of applications, reveals SBFEM as a highly
performant method.
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(SIFs) · Block Hamiltonian Schur Decomposition (HSchur) · Super Convergent Patch
Recovery Theory (SPR)

This research is supported by the Swiss National Science Foundation (SNSF) Research Grant, project #
200021 153379.

A. Egger · E.N. Chatzi
Chair of Structural Mechanics, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland
Tel.: +41 44 633 35 76
E-mail: egger@ibk.baug.ethz.ch

S.P. Triantafyllou
Faculty of Engineering, University Park, Nottingham, NG7 2RD, UK
Tel.: +01 15 951 41 08
E-mail: savvas.triantafyllou@nottingham.ac.uk

Page 1 of 45

AAM Editorial Office, University of Bremen, 28359 Bremen, Germany

Archive of Applied Mechanics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2 Adrian Egger et al.

1 Introduction

Since its inception, the finite element method (FEM) has been advanced to handle a mul-
titude of structural analysis problems ranging from linear to nonlinear, static to dynamic,
fracture and contact problems amongst others ([1], [2], [3]). Pertaining to the field of frac-
ture mechanics, it has been demonstrated that modeling of damage-related phenomena such
as crack initiation, crack propagation and delamination can successfully be accomplished by
means of the FEM [4]. Further, with the introduction of singular elements, stress singular-
ities about crack tips may be more accurately quantified [3]. Nonetheless, various undesir-
able characteristics persist, which render this method computationally prohibitive for more
involved analyses. Extensive mesh refinement and remeshing, as well as mesh-dependent
projection errors, result in decreased accuracy and increased implementational complexity.
As a result, alternative methods have been pursued such as the Boundary Element Method
(BEM) ([5], [6]), the Discrete Element Method (DEM) [7], meshless methods [8], cohesive
elements [9] and phase field models [10]. In general, these alternatives are not supported in
commercial structural analysis software packages and are more likely to be encountered in
special purpose applications.

In mitigating the aforementioned issues of the FEM, the eXtended Finite Element Method
(XFEM) [11] was introduced. A combination of the Level Set Method (LSM) [12] for track-
ing discontinuities, combined with jump and tip enrichment for the displacement solution,
is utilized to decouple both weak (material interfaces) and strong (cracks) discontinuities
from the mesh. The popularity of XFEM, currently available in numerous commercial soft-
ware packages, may largely be attributed to the fact that the core steps of FEM as well as
its robustness are left intact, which facilitates implementation and end-user understanding
alike. Although this method has aggregated significant academic interest and resolved most
shortcomings of FEM-based damage simulation, a number of issues still remain. The most
notable include the extension to 3D problems when using the LSM ([13],[14]), the larger
condition number of the stiffness matrix ([15],[16]) and the a priori assumption for the type
of tip enrichment [17]. Additionally, special integration schemes are required in order to
determine the stress intensity factors (SIFs).

An alternative approach, namely the Scaled Boundary Finite Element Method (SB-
FEM), attempts to fuse the advantageous characteristics of FEM and BEM into one method,
while simultaneously introducing features that facilitate the modeling of damage-related
phenomena. This method’s key feature, the introduction of a scaling center, has long been
exploited for the solution of electric field problems [18]. After refinement and application to
solid mechanics it was initially termed the “Cloning Algorithm” by Dasgupta [19], where
it was used to model wave propagation in unbounded soils and found applications in soil-
structure interaction and earthquake engineering. Subsequent work by Wolf resulted in a
similar formulation named the “infinitesimal finite element method” [20]. Wolf and Song,
first coined the term SBFEM, once the derivations for various types of problems were stan-
dardized using the minimum weighted residual method ([21],[22]). Deeks and Wolf em-
ployed a virtual work formulation, facilitating the practical implementation of the method
[23]. Though early work on SBFEM was intended for modeling unbounded domains, it soon
became apparent that it is at least equally effective for bounded domains [22].

By introducing a scaling center inside the domain, the Cartesian reference system is
cast into a polar-like formulation. This can be exploited for determining an analytical solu-
tion along the radial direction, thereby only necessitating discretization along the boundary.
The trade off is the solution of a Hamiltonian eigen-problem, which essentially doubles
the problem size. General purpose eigen and Schur decompositions do not respect this spe-
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cial structure and thus numerical issues arise. The eigen-problem for generating the stiff-
ness matrix in SBFEM may also be found in optimal control problems, as they both stem
from an algebraic Riccati equation. Until recently, the solution to this Hamiltonian eigen-
problem in Schur form has proven difficult to solve; developing a O(n3) backward-stable,
structure-preserving algorithm, as posed in [24], came to be known as Van Loan’s curse.
Chu et al. [25] proposed a new method, which seemed to resolve this issue, however it en-
countered numerical difficulties when dealing with tightly-packed clusters of eigenvalues,
which is generally the case in SBFEM. As a response Mehrmann et al. [26] augmented this
method and subsequently proposed a “new block method for computing the Hamiltonian
Schur form”, thus mitigating the aforementioned issues. Additionally, the blocked nature
of the algorithm favors computational efficiency as it can better exploit cache memory. If
further takes advantage of the solution symmetry, as all eigenvalues are symmetric about
the real and imaginary axis. The latter results in a reduction of the computational toll as
compared to a standard Schur decomposition. The main benefit to SBFEM however lies in
its robustness, when adopted for the solution process. Previously, due to machine precision,
a mesh dependant stabilizing parameter had to be added to the input of the eigen-problem
([21],[27]). Its optimal value is not known a priori. The method developed in [26], applied to
SBFEM and benchmarked herein, is shown to alleviate this SBFEM related issue, provide
improved convergence rates and cut down on computational cost.

A strength of SBFEM is that damage-related phenomena can be accounted for in an
elegant manner. Solution of the eigen-problem leads into straightforward identification of
two singular eigenvalues and corresponding eigenmodes, which are then used to compute
the Stress Intensity Factros (SIFs). Adoption of a Schur decomposition for solution of the
underlying eigen-problem ensures a better treatment of repeated eigenvalues than a stan-
dard eigen-decomposition ([28],[29]). Furthermore, the Schur decomposition allows to in-
corporate multiple types of crack tip singularities with enhanced accuracy [30], particularly
for cases where the crack resides on material interfaces. This in turn allows for an im-
proved quantification of the SIFs, which is particularly meaningful for crack propagation
([31],[32],[33]). However, in order to quantify the quality of each step and the associated
discretization level, an error estimator for the SIFs need be defined. In this paper, an efficient
and elegant, a posteriori error estimator for the SIFs is presented, based on previous work
by Deeks [34], where stress recovery was introduced to SBFEM utilizing Super-convergent
Patch Recovery theory (SPR) ([35],[36]). Although adaptivity schemes for SBFEM have
been introduced ([37],[38]), they focus on error estimators for the whole domain and not a
single, local quantity of interest such as the SIFs. This proposed error estimator sets itself
apart in that it does not require the solution of a dual problem ([39],[40]), which necessi-
tates a second analysis, thus increasing its computational toll. Additionally, it is applicable
to not only one [41], but all cracking modes. A further benefit of the application of SPR to
the calculation of the SIFs in SBFEM is that they are shown to be superconvergent, and in
select cases ultraconvergent.

To date, no comprehensive, direct comparison between SBFEM and XFEM exists, though
in [33] a polygon-based SBFEM is contrasted to XFEM, while [42] compares XFEM with
SBFEM tip enrichment to standard XFEM. In this paper, numerical examples are treated,
which elaborate on the previous findings and fill in the remaining voids. First, the conver-
gence behavior of SBFEM alone is treated extensively for displacements, stresses and SIFs,
which in itself has not been adequately reported in existing literature. Secondly, the con-
vergence behavior for the SBFEM-computed SIFs is compared against those computed via
XFEM in two separate numerical examples, providing novel insight into which method is
better suited for Linear Elastic Fracture Mechanics (LEFM) applications.
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Additional topics outside the scope of this paper also include the treatment of dynam-
ics. Solutions based on continued fractions [43], frobenius series expansion [44], as well
as the spectral element method [45] have been proposed. Nonlinearity in SBFEM has only
recently been introduced. Material nonlinearity, i.e., elastic-plastic behavior assuming asso-
ciative plasticity, has been demonstrated in [46], while material and geometric nonlinearity
has been incorporated in [47]. In [48], a nonlinear heat transfer problem was solved via the
homotopy analysis method (HAM). Further, SBFEM has been successfully coupled with
other numerical methods such as FEM [49], BEM [50] and meshless methods [51], in order
to exploit SBFEM’s unique abilities to reduce the problem dimension by one. In addition,
SBFEM has been used to enhance other numerical methods. This includes, but is not limited
to, an XFEM variation in which SBFEM was used for crack tip enrichment [42] as well as
the scaled boundary isogeometric analysis (SBIGA) [52], in which the scaled boundary con-
cepts are fused with non uniform rational b-splines (NURBS) from isogeometric analysis.
A novel take on SBFEM, which relies on concepts from spectral element methods, results
in decoupled coefficient matrices for each node [53]. The main benefit of this method is that
it bypasses the need for an eigen-decomposition in standard SBFEM, and has thus the po-
tential to be significantly more computationally efficient and parallizable, especially when
considering structures with more degrees of freedom (DOF) such as 3D problems.

This paper is organized as follows: Section 2 introduces the theoretical background of
this paper. In 2.1 an abridged formulation of SBFEM theory is treated. The standard pro-
cedure for calculating SIFs is reviewed in 2.2. The novel proposed enhancements to the
SIF calculation procedure, as well as the accompanying error estimator, is presented in 2.3.
The newly proposed Hamiltonian Schur decomposition (HSchur), advocated for adoption in
SBFEM, is treated in 2.4. Four applications are demonstrated in section 3. In the first numer-
ical example (3.1), the issues associated with the current solution procedure in SBFEM are
discussed, while demonstrating the ability of the proposed HSchur decomposition to over-
come these, based on the example of an edge cracked square plate subjected to bending. The
second numerical example (3.2), provides an exact solution for displacements, stresses and
SIFs, establishing a new benchmark. The convergence behavior of SBFEM in terms of dis-
placements, stresses and SIFs is discussed, offering a unique insight into the method. In the
third numerical example (3.3), SBFEM is contrasted to XFEM and the standard FEM, based
on floating point operation counts. This type of extensive contrasting to XFEM in terms of
performance and computational complexity has not so far been offered in literature. The
fourth numerical example (3.4), a slant crack in a finite body, investigates the performance
of SBFEM in the worst case scenario and evaluates how it performs compared to XFEM and
the standard FE-based approach. Section 4 summarizes the findings and provides direction
for future research.
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Legend:

P(x̂, ŷ)= point in domain

P(x, y)= point on boundary

(ū, t̄)= boundary conditions of domain

(ūe, t̄e)= boundary conditions of elements (i.e. discretized boundary)

= nodes of line element with coordinates (xn, yn)

O = scaling center and origin of normalized radial coordinate ξ

(ξ,η)= scaled boundary coordinates with 0≤ ξ≤ 1 and −1≤ η≤ 1

DOFi = degree of freedom of each node in global (x,y)-direction

(x, y)= global coordinate system

Fig. 1 Introduction of SBFEM specific discretization of the bounded domain.

2 Theory

This paper deals with 2D elastostatics (Fig. 1), which is governed by the following strong
form.

equilibrium: Lσ +b = 0 in Ω (1a)

constitutive: σ = Dε in Ω (1b)

compatability: ε = LT u in Ω (1c)

boundary conditions: u = û on Γu (1d)

σ ·n = t̂ on Γt (1e)

L is the linear differential operator, D the constitutive matrix, σ represents stress, ε strains,
u displacements and b body forces. û, t̂ are the prescribed displacements and tractions re-
spectively and n is the normal vector.

Firstly, the SBFEM equations for 2D elastostatics will be derived based on a virtual
work approach. Next, the solution procedure in SBFEM is described. Subsequently, the
calculation of SIFs is presented, augmented by the application of SPR theory. Finally, the
theory behind the new block method for computing the Hamiltonian Schur form is detailed.

2.1 Summary of SBFEM

The fundamental difference between SBFEM and other numerical methods is the intro-
duction of a scaling center O. In all but a few special cases, this scaling center must be
directly visible from any point on the domain boundary. By introducing the scaling center,
the Cartesian coordinate system is transformed into one similar to polar coordinates. It is in
this process that a radial coordinate ξ and a tangential coordinate η are introduced (Fig. 1).

Assuming that for SBFEM an analytical solution can be found in radial direction ξ ,
which is later shown to exist (section 2.1), only the tangential direction η need be discretized
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ξ ξξ
10 1 ∞ξ1 ξ2

scaling center

boundary node

system domain

ξ-axis

Fig. 2 Possible domain types using SBFEM.

in the finite element sense. Depending on the bounds for ξ unbounded domains (1≤ ξ ≤∞),
bounded domains (0≤ ξ ≤ 1) and bounded domains with similar boundaries (ξ1 ≤ ξ ≤ ξ2)
can be accounted for (Fig. 2).

By choosing to discretize in radial direction along the boundary, the dimension of the
problem is reduced by one. Consequently, the information contained within each element
on the boundary encompasses that of the triangular domain spanned by itself and the scaling
center (Fig. 1).

2.1.1 Derivation based on the virtual work approach

The scaled boundary transformation of geometry, wherein Cartesian coordinates (x,y) are
mapped to corresponding scaled boundary coordinates (ξ ,η) is provided below. It states
that any point in the domain can be equivalently expressed based on the position of the
scaling center x0, some scaling factor in radial direction ξ and an interpolation in tangential
direction x(η).

x(ξ ,η) = xO +ξ x(η) = xO +ξ [N(n)]{x} (2a)

y(ξ ,η) = yO +ξ y(η) = yO +ξ [N(n)]{y} (2b)

where [N(η)] corresponds to the finite element interpolation functions [N1(η),N2(η), ...,Nn(η)],
{x} represents the nodal coordinates [x1,x2, ...,xn]

T and n is the number of nodes per ele-
ment on the boundary. The Jacobian J, its inverse J−1 and determinant |J|, which link the
derivatives in Cartesian to scaled boundary coordinates on the boundary are given as:

{
∂

∂ξ

∂

∂η

}
=

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

{ ∂

∂x
∂

∂y

}
= [J]

{
∂

∂x
∂

∂y

}
(3a)

{
∂

∂x
∂

∂y

}
=

1
|J|

[
∂y
∂η
− ∂y

∂ξ

− ∂x
∂η

∂x
∂ξ

]{
∂

∂ξ

∂

∂η

}
= [J]−1

{
∂

∂ξ

∂

∂η

}
(3b)

As a result, the differential volume unit dV is expressed as follows in scaled boundary
coordinates:

dV = |J|ξ dξ dη (4)
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Subsequently, these derivatives are used to evaluate the linear differential operator L in
scaled boundary coordinates. Splitting L into Cartesian components facilitates the substitu-
tion of their scaled boundary equivalents. Factoring into scaled boundary components, this
results in:

[L] =

1 0
0 0
0 1

 ∂

∂x
+

0 0
0 1
1 0

 ∂

∂y
= [L1]

∂

∂x
+[L2]

∂

∂y
(5a)

=
1
|J|

[
[L1]

(
∂y
∂η

∂

∂ξ
− ∂y

∂ξ

∂

∂η

)
+[L2]

(
∂x
∂ξ

∂

∂ξ
− ∂x

∂η

∂

∂ξ

)]
(5b)

=[b1(η)]
∂

∂ξ
+

1
ξ
[b2(η)]

∂

∂η
(5c)

where [b1(η)] and [b2(η)] represent:

[b1(η)] =
1
|J|


∂y
∂η

0
0 − ∂x

∂η

− ∂x
∂η

∂y
∂η

 (6a)

[b2(η)] =
1
|J|

−
∂y
∂ξ

0
0 ∂x

∂ξ

∂x
∂ξ
− ∂y

∂ξ

 (6b)

The displacements {u(ξ ,η)} follow an isoparametric formulation. They too consist of
an analytical part in radial direction {u(ξ )} and an interpolatory part in tangential direction
based on shape functions [Nu(η)].

{u(ξ ,η)}= [Nu(η)]{u(ξ )} (7)

where [Nu(η)] represents the shape functions [N(η)], which are applied to each DOF of an
element separately by means of multiplication with the identity matrix [I]:

[Nu(η)] = [N1(η)In,N2(η)In, ...,Nn(η)In] (8)

As a result, an expression for the strains may be derived by substituting the formulation for
the displacements into Eqn. 1c.

{ε(ξ ,η)}= [B1(η)]{u(ξ )},ξ +
1
ξ
[B2(η)]{u(ξ )} (9)

where

[B1(η)] = [b1(η)][Nu(η)] (10a)

[B2(η)] = [b2(η)][Nu(η)],η (10b)

Substituting Eqn. 9 into the constitutive relation 1b results in the following expression for
the stress field.

{σ(ξ ,η)}= [D]

(
[B1(η)]{u(ξ )},ξ +

1
ξ
[B2(η)]{u(ξ )}

)
(11)
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In what follows, the virtual work method is implemented. To this end, the virtual displace-
ments {δu(ξ ,η)} and strains {δε(ξ ,η)} are expressed as follows:

{δu(ξ ,η)}= [N(η)]{δu(ξ )} (12a)

{δε(ξ ,η)}= [L]{δu(ξ ,η)} (12b)

Thus, by equating internal work to external work, the weak form of the scaled boundary
finite element method is derived in the following form:∫

V
{δε(ξ ,η)}T{σ(ξ ,η)}dV −

∫
∂Ω

{δu(η)}T{t(η)}= 0 (13)

The second term in Eqn. 13, gives rise to equivalent nodal loads {P}, due to applied tractions
t(η). The corresponding displacements calculated on the boundary are termed uh. Equating
the internal virtual work to the external virtual work statements we can thus formulate the
complete virtual work equation:

{δu}T{[E0]{uh},ξ +[E1]T{uh}−{P}}

−
∫

ξ=1

xi=0
{δu(ξ )}T

{
[E0]ξ{u(ξ )},ξ ξ

+[[E0]+ [E1]T − [E1]]{u(ξ )},ξ − [E2]
1
ξ
{u(ξ )}

}
dξ = {0} (14)

A detailed derivation can be found in the appendix, where the following coefficient matri-
ces, which bare striking similarity to stiffness matrices in FEM, are introduced. The chosen
approach follows [23] closely.

[E0] =
∫

∂Ω

[B1(η)]T [D][B1(η)]|J|dη (15a)

[E1] =
∫

∂Ω

[B1(η)]T [D][B2(η)]|J|dη (15b)

[E2] =
∫

∂Ω

[B2(η)]T [D][B2(η)]|J|dη (15c)

In order for this equation to hold for all ξ , which implies it should be continuously satisfied
in radial direction and only compliant in the finite element sense in the tangential direction,
the conditions specified by both Eqn. 16 on the boundary and Eqn. 17 in the domain, must
be satisfied:

{P}= [E0]{u},ξ +[E1]T{u} (16)

[E0]ξ 2{u(ξ )},ξ ξ +[[E0]+ [E1]T − [E1]]ξ{u(ξ )},ξ
− [E2]{u(ξ )}= {0} (17)

The above equation is termed the scaled boundary finite element equation in displacement.
Alternatively, one could also formulate the scaled boundary finite element equation in the
time or frequency domain by including inertial effects into the virtual work equation. Eqn.
17 is equivalent to earlier work from Wolf and Song, who first used a mechanically based
approach [21] and then a weighted residual method [22]. However, this derivation is more
consistent with standard engineering principles and understanding. Eqn. 17 is characterized
as a homogeneous set of Euler-Cauchy differential equations.
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λ = 0 λ = 0 λ = −0.5 λ = −0.5

λ = −1 λ = −1 λ = −1 λ = −1

Fig. 3 Modal interpretation of the general solution of SBFEM [54]. Dashed line: original domain; solid line:
displacement mode.

2.1.2 Solution procedure

The general solution to the scaled boundary finite element equation can be written in power
series form as:

{u(ξ )}= c1ξ
−λ1{φ1}+ c2ξ

−λ2{φ2}+ ...+ cnξ
−λn{φn}

= [φ ]ξ d−λc{c} (18)

where λi and {φi} are the corresponding eigenvalues and vectors respectively. The bound-
ary conditions determine the integration constants ci. As a result, the solution of SBFEM in
statics strongly resembles the mode superposition method of FEM. Hence, the eigenvectors
{φi} can be interpreted as modal displacement vectors on the boundary with a correspond-
ing scaling factor in the radial direction λi (Fig. 3). A quadratic eigenproblem results from
substituting the general solution into the scaled boundary finite element equation in dis-
placements:

[dλc2[E0]−dλc[[E1]T − [E1]]− [E2]]{φ}= {0} (19a)

{q}= [[E1]T −dλc[E0]]{φ} (19b)

In Eqn. 19b the boundary forces are expressed in an equivalent modal formulation. Con-
ceptually, they constitute the nodal force modes {q}, which balance the corresponding dis-
placement modes on the boundary, who are directly dependent on {φ} by definition of the
general solution. Linearizing the quadratic eigen-problem has been shown to be beneficial
in the context of fracture mechanics [28]. Unfortunately, this means doubling the size of the
eigen-problem. This is achieved by rearranging the equivalent nodal forces equation (Eqn.
19b) to obtain:

dλc{φ}= [E0]−1[[E1]T{φ}−{q}] (20)

which is in turn substituted into the scaled boundary finite element equation (Eqn. 19a):

dλc[E0][E0]−1[[E1]T{φ}−{q}]−dλc[E1]T{φ}
+[E1][E0]−1[[E1]T{φ}−{q}− [E2]{φ}] = {0}

which is equivalent to:

dλc{q}= [E1][E0]−1[[E1]T{φ}−{q}− [E2]{φ}] (21)
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ξλ

ξ
0 1 ∞

0

1

∞ bounded
domain modes

unbounded
domain modes

Fig. 4 Contributions of the domain modes to the bounded and unbounded domain solutions

The linearized, combined form of the quadratic eigen-problem can thus be expressed more
compactly in matrix notation as:

[Z]

{
φ

q

}
= dλc

{
φ

q

}
(22)

where

[Z] =

[
[E0]−1[E1]T −[E0]−1

[E1][E0]−1[E1]T − [E2] −[E1][E0]−1

]
(23)

where [Z] is a Hamiltonian matrix. This special matrix form mandates symmetry about the
real and the imaginary axis for all eigenvalues. As a result, the eigenvalues corresponding
to rigid body translational modes can pose significant numerical issues. Machine precision
can cause these eigenvalues to arbitrarily alternate in sign. Attempts by other authors to
compensate for this issue resulted in:

1. Minimizing the condition number by
– Preconditioning coefficient matrices [55]
– Normalizing domain properties [21]

2. Addition of a mesh and platform dependent stabilizing parameter ε to [E2]. The optimal
value of this parameter is unknown a priori ([21], [27]). This corresponds to physically
adding small springs to the boundary.

Since eigenvalues of opposite sign contribute to the response of the system in funda-
mentally different ways, which will be detailed in the following paragraph, they should be
sorted accordingly.

[Z]

{
φ

q

}
= dλc

{
φ

q

}
=

[
dλnegc

dλposc

][
[φ1] [φ2]

[Q1] [Q2]

]
(24)

The subscripts “pos” and “neg” refer to positive and negative eigenvalues respectively, which
bear the effect of separating the bounded from the unbounded response. For negative eigen-
values the contribution at ξ = 0 is bounded and at ξ = 1 has a finite value, which represents
a solution in agreement with that of the bounded domain, whereas for positive eigenvalues
the contribution at ξ = 1 is finite and at ξ = ∞ is bounded, resembling the solution of an
unbounded domain (Fig. 4).
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Having determined the eigenvalues and eigenvectors, these can be substituted into the gen-
eral solution (Eqn. 18) for determining the domain stiffness matrix.

{u(ξ )} = [φ1]ξ
d−λnegc{c1} + [φ2]ξ

d−λposc{c2} (25)

Considering that only the negative eigenvalues contribute to the response of the bounded
domain, the terms associated with the positive eigenvalues of Eqn. 25 are discarded. Next,
in order to evaluate the stiffness matrix, the displacement modes must be linked to the force
modes. This is achieved by comparing the displacements on the boundary {u(ξ = 1)} with
the acting nodal forces {P}. Enforcing the corresponding boundary conditions, by applying
the integration constants to the force modes, results in the following formulation:

{Pbounded}= [q1]{c1} (26)

The integration constants are obtained by evaluating Eqn. 25 at ξ = 1.

{c1}= [Φ1]
−1{u(ξ = 1)} (27)

In a subsequent step, the integration constants are substituted into Eqn. 19b:

{Pbounded}= [q1][Φ1]
−1{u(ξ = 1)} (28)

Therefore, the stiffness matrix of a bounded domain is found to be:

Kbounded =+[q1][Φ1]
−1 (29)

The stiffness matrix is symmetric, though fully populated. Hence, the use of higher order
elements is not penalized by higher bandwidth as in standard FEM approaches.

Similarly, the stiffness matrix for the unbounded domain may be determined by utilizing
the analogous expressions of the unbounded domain:

Kunbounded =−[q2][Φ2]
−1 (30)

In order to perform the back calculation of strains and stresses, first the integration constants
(Eqn. 27) must be determined, next the general solution (Eqn. 25) is sought, and only then
are the strains (Eqn. 9) and stresses (Eqn. 11) derived.

In order to to better understand the steps, computational complexity and effort required
for an SBFEM analysis the flowchart in Fig. 5 is offered. Restricting discretization along
the boundary when using SBFEM comes mainly at the price of the solution of an eigen-
problem. Therefore, domains with minimal surface to volume ratio are especially suited for
analysis using SBFEM.

Very similarly to standard FE-based approaches, first element-wise coefficient matrices
are evaluated and assembled using a standard numerical integration procedure. However, this
must be performed for three separate coefficient matrices. As opposed to XFEM though, no
additional enrichment terms must be included, and thus the need for integration of singu-
lar terms is eliminated. Since in SBFEM all elements can be treated equally, many issues
pertaining to the condition number of the stiffness matrix can be avoided. Additionally, no
further assumptions, for instance pertaining to what type of singularity to include in the
crack tip enrichment, are put in place.

In 2D, since the domain is represented by a linked series of bar-type elements, the as-
sembled coefficient matrices are highly sparse and their entries are clustered about the di-
agonals facilitating the inversion required for constructing the Hamiltonian matrix [Z]. The
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Fig. 5 Flowchart of a SBFEM analysis linked to corresponding equations from section 2.1.

eigen-decomposition is the central core of SBFEM analysis, as it not only is necessary for
determining the stiffness matrix, but also delivers the analytical solution for the displace-
ments in radial direction. Once the stiffness matrix is formed, the remaining steps coincide
with those of the standard FEM approach. Significant differences may be identified, in the
calculation of the SIFs, when compared against the XFEM approach. Not only are the SIF
easily identified, efficiently extracted in post-processing, smoothed for further accuracy and
used to determine an effective error-estimator in SBFEM (section 2.3), but they are addi-
tionally exempt from parameter-specific dependencies, such as the radius of integration and
enrichment in XFEM. To see how this contributes to reducing computational complexity,
approximate flop counts are listed in Table 6.

2.2 Calculation of stress intensity factors

What sets SBFEM apart from other numerical methods is how elegantly highly accurate
SIFs may be obtained. The standard solution procedure by default accommodates cracks.
Values for the SIFs can easily be extracted during post-processing of the stresses with only
negligible additional computational effort. This is a consequence of the analytical solution in
radial direction. If the scaling center is placed at the crack tip, an analytical solution for the
strains and therefore additionally the stresses in radial direction may be computed. The SIFs
can be determined by evaluating the limit of the stresses as ξ → 0. After substituting the
general solution for displacements into the definition of the stresses (Eqn. 11), the stresses
for any particular element can be obtained as a superposition of stress modes:
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Fig. 6 Cracked SBFEM domain with crack tip location coinciding with scaling center. Additionally, the
DOFs of the two element used to compute the SIFs are identified.

σ(ξ ,η) =
n

∑
i=1

ciξ
−λi−1

Γi (31)

with Γi representing the associated stress modes.

Γi =


Γxx
Γyy
Γxy


i

= D[−λiB1(η)+B2(η)]Φi (32)

The contribution of each mode to the stress response is illustrated in Fig. 7. Only the modes
corresponding to eigenvalues within the range −1 < λ < 0 contribute to the singular re-
sponse at the crack tip (ξ = 0). Consequently, for the purpose of determining the SIFs, all
other modes can be discarded. In 2D elastostatics, only two eigenvalues and thus modes
in the aforementioned range exist. As each element contains these singular modes, theo-
retically the SIFs could be extracted from any element in the domain. Here, the elements
lying directly along the crack path extension (Fig. 6 point A) are chosen. Once the singu-
lar modes have been identified, corresponding stresses can be theoretically computed using
values from anywhere within the bounded domain 0 < ξ < 1. Due to numerical concerns,
the singular stresses are evaluated at the boundary (ξ = 1) and consequently the power ex-
pression for ξ in Eqn. 31 is reduced to 1.

0 0.2 0.4 0.6 0.8 1 1.2

9

0

1

2

3

4

5

9
6

Contribution of eigenvalues to stresses

6 = 0.5

6 = 3

6 = 5

6 = 7

Fig. 7 Contribution of eigenvalues to the stress solution, reaffirming that −1 < λ < 0 leads to singularities
as ξ → 0.
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Since the singular components of the stresses can be derived analytically, these can be
matched directly to the definition of the SIFs. The integration constants ci correct for the
boundary conditions. L0 is then defined as the distance from the crack tip to the location of
the evaluated stresses. Thus, the mode I and mode II SIFs assume the following form:

{
KI
KII

}
=
√

2πL0

{
∑i=I,II ciΓyy(η = ηA)i

∑i=I,II ciΓxy(η = ηA)i

}
(33)

The stress modes Γi need only be evaluated at one specific point (−1 < η = ηA < 1) along
the element. In order to accomplish this, the correct submatrix φi must be identified. This
consists in finding the eigenvector linked to the singular eigenvalue, as well as identifying
the rows representing the DOFs of the corresponding element on the boundary. Their inter-
section (Fig. 8) marks the relevant data for the calculation of the SIF modes. Consequently,
the calculation of the SIFs requires only minimal computational effort.

φ1,1

φi,1

φi+5,1

φn,1

φ1,j

φi,j

φi+5,j

φn,j

φ1,n

φi,n

φi+5,n

φn,n

...

...

...

...

...

...

...

...

...
· · ·

· · ·

· · ·

· · ·
. . .

. . .

. . .
· · ·

· · ·

· · ·

· · ·
. . .

. . .

. . .

λ10.5
D
O
F
[i,i+

5
]

[φ] =

Fig. 8 Singular displacement modes as columns and associated DOFs in rows of a representative element on
the boundary. The dark gray intersection signifies the submatrix φi required in order to compute the SIFs.

2.3 Recovered stress intensity factors and error estimator

Since the SIFs are determined solely on the basis of calculated stresses, they can be easily
inferred. Should the crack extension fall directly between two elements, different stresses are
calculated for each element at the respective node A (Fig. 9). Trivial averaging of the stresses
is an option, but not necessarily the best one. Thus, in this work, a novel application of SPR
theory to SIFs is proposed, resulting in superconvergent and in select cases ultraconvergent
convergence rates for the SIFs. This extends previous work by Deeks [34].

Recovered stresses are gained by least squares fit of the raw stresses sampled at the
Gauss integration points over a patch of two elements. For the case of enhancing SIFs, the
two elements are proposed to coincide with those in the direction of crack extension. Based
on [34] and [22] the fitted recovered stresses are calculated as:

σ
rec(η) = {P}{a} (34)

where −1 < η < 3 (Fig. 9) and for this specific application η = 1, i.e., point A. {P} is a
vector of powers of η and {a} is a vector of undetermined coefficients ai. The vector of raw
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stresses computed at the Gauss integration points is denoted by σ raw.

{P}=



η0

η1

...
η i

...
ηn



T

,{a}=



a1
a2
...

ai
...

an


,σ raw =



σ raw
1

σ raw
2
...

σ raw
i
...

σ raw
n


(35)

where n denotes the amount of Gauss integration points present in the patch. The vector
of unknown coefficients {a} can be determined by evaluating vector {P} at each Gauss
integration point, and adding its contribution to matrix [P̄].

[P̄] =



η0
1 η2

1 . . . η i
1 . . . ηn

1
η0

2 η2
2 . . . η i

2 . . . ηn
2

...
...

. . .
...

. . .
...

η0
i η2

i . . . η i
i . . . ηn

i
...

...
. . .

...
. . .

...
η0

n η2
n . . . η i

n . . . ηn
n


(36)

The least squares problem can then be formulated as:

[P̄]({σ raw}− [P̄]{a}) = 0 (37)

Subsequently, the vector of unknown coefficients is determined as:

{a}= ([P̄]T [P̄])−1[P̄]T{σ raw} (38)

Thus, recovered stresses in the direction of crack extension are determined by substituting
η = ηA (Fig. 9, point A) into Eqn. 34. These stresses are indirectly recovered, by smoothing
the stress modes Γi (Eqn. 32), which in turn rely on the displacement modes [Φi]. Since
only two displacement modes contribute to the singular response, only a small subset of the
eigenmodes resulting from the SBFEM solution must be smoothed. This is the first means
used to reduce the computational effort for determining the SIFs. Further, since only one
patch in direction of crack extension is considered, recovery over only two elements, again
a small subset of the whole domain, is necessary. It is assumed that this trade off in potential
accuracy is offset by the gain in computational speed. This is later demonstrated to hold true
in section 3. Consequently, Eqn. 31 may be rewritten as:

σ
s(ξ ,η) =

2

∑
i=1

ciξ
−λi−1

Γ
s

p (39)

in which superscript s denotes the singular modes and subscript p corresponds to the stress
modes smoothed on the patch in direction of crack extension. Since the stresses are evalu-
ated at the boundary, ξ = 1 and Eqn. 39 simplifies to the extent that the SIFs can now be
formulated as: {

Krec
I

Krec
II

}
=
√

2πL0

{
∑

2
i=1 ciΓ

s
p,yy(η = ηA)

∑
2
i=1 ciΓ

s
p,xy(η = ηA)

}
(40)
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Finally, it stands by virtue of the SPR theory, that the so-recovered SIFs should be at
least superconvergent.

Based on the difference in raw and recovered stresses, a novel error estimator accompa-
nying the proposed recovery scheme for SIFs can be deduced.

{e∗σ (ξ ,η)}= {σ∗(ξ ,η)}−{σh(ξ ,η)} (41)

where superscript * denotes the recovered value and subscript h denotes the raw value of
the stress calculated in direction of crack extension. By consequence, obtaining the error
estimator is rendered computationally inexpensive.

η

Γi

Aelement 1 element 2
node
integration point

raw stresses
recovererd stresses

Fig. 9 Stress recovery based on SPR. A least square fit is constructed for the stresses in point A, based on
values computed at the Gaussian integration points.

2.4 Block Hamiltonian Schur Decomposition

The solution process in SBFEM benefits from the HSchur decomposition in multiple ways.

– It eliminates the need for an arbitrary stabilizing parameter ε .
– By respecting Hamiltonian symmetry of the eigenvalues, regular and steeper conver-

gence rates can be achieved.
– The doubling of the problem size when linearizing the quadratic eigenvalue problem is

reversed and thus computational complexity is significantly reduced.
– It still benefits from a Schur form, which allows to quantify general SIFs for bi-material

interfaces.

The following is an abridged treatment of the theory first presented in [26] with emphasis
placed on the parts integral to SBFEM.

A matrix H ∈ R2n×2n is Hamiltonian iff:

Hstart =

[
A G
C −AT

]
(42)

Additionally, GT = G and CT =C, which holds for the case of SBFEM (Eqn. 23).
Matrix H is said to be in Hamiltonian real Schur form if

H f inal =

[
T G
0 −T T

]
. (43)

where T is quasitriangular. Any eigenvalue +λ found in T has a corresponding eigenvalue
−λ in −T T . For most applications it makes sense to group eigenvalues with same sign into
T and −T T respectively.
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In order to arrive at H f inal from Hstart , a series of orthogonal symplectic similarity trans-
formations are performed:

Hi+1← Q̂T HiQ̂ (44)

Every step is accompanied by the corresponding update, for which the starting values of Q0
is chosen as I2n:

Qi+1← QiQ̂ (45)

In algorithmically formulating this process of arriving at the Hamiltonian real Schur form,
first a symplectic URV decomposition of H is performed. The SLICOT library [56] provides
the necessary backwards stable routines:

H =UR1V T with R1 =

[
S G
0 T T

]
(46)

T ∈ Rn×n is upper-triangular, S ∈ Rn×n is quasitriangular and G ∈ Rn×n. It is at this point
that the eigenvalues of H can be determined as they are equal to the square roots of the
eigenvalues of the quasitriangular matrix −ST .

Next, the eigenvalues of−ST , which correspond to the eigenvalues of H2 are partitioned
into blocks. Many clustering algorithms exist, however here we choose an open ball with
radius:

r = 10×||S||F ||T ||F ×κ× ε (47)

||•||F denotes the Frobenius norm, κ is the condition number of the eigenvalue, ε is machine
precision and the factor 10 is included to arrive at a conservative estimate as originally
proposed in [26]. Eigenvalues of overlapping balls are placed in the same block. Complex
conjugates are then added to the block if they exist as well. In a last operation for this
step, the eigenvalues of the URV decomposition are ordered to match their blocks. The new
structure of the matrix −ST is given as follows:

−ST = B =

B11 . . . B1s
. . .

...
0 Bss

 (48)

The spectrum of Bii is given by eigenvalues Λi of block 1 < i < s. At this point, the first
orthogonal symplectic update is performed using the sorted output of the URV decomposi-
tion:

H←UT HU (49)

Henceforth, each block will be considered separately. The general procedure will be illus-
trated based on the first block B11 with size k. First, a QR decomposition is performed on:

[Ek HEk] = QR (50)

Ek ∈ R2n×k is the submatrix of I2n constructed from the first k columns. Next, a Schur
decomposition is performed:

G = QT HQ Schur−−−→ Q̃T̃ Q̃T (51)

The eigenvalues of Q̃ are subsequently sorted into left- (Q̃1) and right (Q̃2) half plane re-
spectively:

Q̃ = [Q̃1, Q̃1] (52)
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In order to construct an orthonormal basis for the invariant subspace of H, a matrix X is
introduced as follows:

X = QQ̃1 (53)

The main task lies in transforming X into Ek and thus achieve a deflation. This is carried
out by means of finding an orthogonal symplectic S such that ST X = Ek, which will be
subsequently used to perform an update on H← ST HS. To this end, first X is partitioned to
conform to the block sizes:

X =



X1
...

Xs
Xs+1

...
X2s


(54)

S can be found as:

S =

[
Ŝ 0
0 Ŝ

]
with Ŝ = diag{Š, I} and Š = QF̃ (55)

F̃ is a flip vector obtained from reversing the column order of the identity matrix [I], Q
results from the QR decomposition of the submatrix of X corresponding to [Xs+1;Xs+2].
After carrying out the updates X← S̃T X and H← S̃T HS̃, the vector X assumes the following
form:

X =



X1
...

Xs
0

Xs+2
...

X2s


(56)

Subsequent iterations on the lower blocks of X , introduce further blocks of zeros eventually
resulting in:

X =



X1
...

Xs
0
...
0

X2s


(57)

For the last block a slightly modified procedure must be applied as there is no successive
block, which could be used to install a further block of zeros. For the last block the actions
are modified, by considering the submatrix [Xs;X2s]. Based on the QR decomposition of
the aforementioned submatrix, from which Q̌ results, the required updates X ← Q̃T X and
H← Q̃T HQ̃ are constructed: [

Xs
X2s

]
=

[
Q̌1
Q̌2

]
R (58)
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and

Q̃ =

[
Q̃1 −Q̃2

Q̃2 Q̃1

]
and Q̃1 = diag{I, Q̌1}; Q̃2 = diag{I, Q̌2} (59)

This results in the entire lower portion of X running from blocks s+1 < k < 2s to be filled
with zeros.

In a next step, an analogous procedure for the block 1 < k < s will be applied. S can be
found as:

S =

[
Ŝ 0
0 Ŝ

]
with Ŝ = diag{Š, I} and Š = Q (60)

Q results from the QR decomposition of the submatrix of X corresponding to [Xs−1;Xs].
Again a block of zeros is inserted into X :

X =



X1
...

Xs−10
0
...
0


(61)

This procedure is continued until only one block remains. After 2s−1 updates of X ← S̃T X
and H ← S̃T HS̃ the desired deflation is nearly achieved. At this point, the Hamiltonian
matrix H is of the form:

H =


A11 A12 G11 G12

0 A22 G21 G22
0 0 −AT

11 0
0 C22 −AT

11 −AT
22

 (62)

It is now admissible to deflate the problem. Subsequent operations are performed on the
following Hamiltonian submatrix:

H =

[
A22 G22
C22 −AT

22

]
(63)

This deflation is repeated for each block until the real Hamiltonian Schur form is reached:

H =

[
A G
0 −AT

]
(64)

Q contains the orthonormal basis for the stable invariant subspace. In a last step, a sorting of
the eigenvalues and vectors spanning the stable invariant subspace is performed, in order to
retain only negative eigenvalues. Such routines are also available in the Slicot library [56].

It therefore becomes evident that application of the HSchur decomposition in the solu-
tion process of SBFEM as proposed, will increase accuracy, while reducing complexity.
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3 Numerical Examples

The first numerical example illustrates the benefits to the overall robustness of the pro-
posed SBFEM solution, incorporating the HSchur decomposition, versus the established
eigen and standard Schur decomposition. This novel contribution alleviates the need for
an architecture-dependent stabilizing parameter ε . The second numerical example demon-
strates the consequently improved convergence behavior of the L2 displacement and stress
norms. Additionally, an efficient procedure is proposed to enhance the accuracy of the cal-
culated SIFs. According to the latter, only local stress recovery over select few elements is
performed on the boundary instead of over the whole domain, simultaneously resulting in
significantly reduced computational effort. Further, it is established that the SIFs calculated
by the proposed method are superconvergent for even-noded elements or even ultraconver-
gent for some odd-noded cases. This forms the basis for a novel error estimator for SIFs. As
part of the third numerical example, the computational effort for an SBFEM solution is con-
trasted to that of FEM, based on a flop count, which is demonstrated for the first time herein.
Additionally, the enhancement in accuracy for the proposed local recovery of the stresses
compared to adoption of trivial averaging of raw stresses at nodes is demonstrated. Next,
SBFEM is directly contrasted to XFEM and the FE-based commercial software Abaqus in
terms of SIF reconstruction and conditioning of the stiffness matrix. To the authors knowl-
edge, this is the first occurrence of a direct comparison between standard SBFEM and XFEM
in literature. As XFEM represents a major competing method to SBFEM within the context
of LEFM, the fourth numerical example primarily considers this comparison. Furthermore,
the computational time required for various parts of the SBFEM procedure are shown, il-
lustrating the computational gains achieved by the proposed HSchur decomposition and
smoothing processes.

Calculations were performed on an Intel Core i5 6600K and an Intel Xeon E3-1225 v3.
SBFEM and XFEM where implemented in Matlab 2015b. In Abaqus 6.14-1 the contour
integral method was used to determine the SIFs.

3.1 Edge-cracked square plate under bending

A square, homogeneous domain with an edge crack as depicted in Fig. 10 is considered,
with length L = 2 units and crack length a = L/2. The domain boundary is uniformly dis-
cretized. For this special case of pure bending, an analytical solution exists for the SIFs [57].
The application of point boundary restraints in SBFEM is similarly problematic as would
be in the standard FEM case, as these must be applied for eliminating rigid body motion.
Since in this numerical example restraints have to be positioned along the direction of crack
extension, they may induce restraining forces precisely at the position used to calculate the
SIFs. This complicates the accurate determination of the SIFs, though it may be mitigated
to an extent for this special test case by scaling the problem domain uniformly. This is ad-
missible since the SIF for an edge cracked square plate under bending only depends on the
ratio of side length to crack length [57].

Numerical difficulties arise in the solution process of SBFEM due to the occurrence
of rigid body modes. In 2D elastostatics, a 4x4 block of zero eigenvalues exists. Two are
associated with the response of the bounded domain, whereas the other two contribute to
the response of the unbounded domain (Fig. 4). Numerical issues may perturb eigenvalues,
resulting in signs, which may alternate arbitrarily. A subsequent reordering of eigenvalues
into left half plane and right half plane may thus result in an eigenvalue intended for the
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E = 200 [N/mm2]

ν = 0.3

σ = 1

L

L

a = L/2

Fig. 10 Edge-cracked square plate subject to bending. The problem statement for the first numerical example.

unbounded domain to falsely contribute to the bounded domain. Since the stiffness matrix
is constructed from the corresponding eigenvectors, this effect leads to erroneous results. As
an example, it is possible that the rigid body mode of horizontal displacement is considered
twice, whereas the rigid body mode of vertical displacement is not considered at all and vice
versa (Fig. 3).

Since one is not able to predict the outcome of the sorting a priori, a stabilizing parameter
ε is typically introduced in existing literature [21], with the intent of shifting the eigenvalues
of the rigid body modes off of the imaginary axis. This is achieved by modifying the input
to the Hamiltonian Matrix [Z] (Eqn. 23) as follows, which physically bears the effect of
introducing springs on the boundary:

[E2] = [E2]+ ε[I] (65)

Table 3.1 summarizes the solution quality of SBFEM for various values of epsilon. Ac-
cording to [21], the typical values for epsilon range from 10−6 < ε < 10−12. Below, the
eigen decomposition is considered, though similar effects may also be observed for the
standard Schur decomposition. It is evident, that values of ε exist, where incorrect solutions
are obtained. Further, there exist regions for which the choice of ε does not bear signif-
icant influence on the solution. Remarkable is the fact that on different CPUs, the values
for epsilon, which result in solution errors due to incorrect separation of eigenvalues, differ.
Consequently, the correct choice of epsilon cannot be determined prior to the analysis. In or-
der to ensure robust results, multiple runs with different values for epsilon are necessary and
usually require user intervention, which reduces the computational advantage of SBFEM.
This significantly complicates modeling of crack propagation and effectively bars SBFEM
from being used for problems, where successive function evaluations are required, such as
optimization problems using heuristic methods.

The main advantage of the HSchur decomposition stems from the fact that it accounts
for the special structure of the Hamiltonian Matrix [Z], which dictates symmetry about the
real and imaginary axis for all eigenvalues. Taking advantage of symmetry by only consid-
ering the left half plane associated with the negative eigenvalues, the eigenvalues are always
separated properly, and the need for a stabilizing parameter is removed. Thus, this novel
approach enables a robust, parameter independent solution process for SBFEM.

This symmetry may be observed in Fig. 11, where the eigenvalues for the square plate
are plotted. The HSchur decomposition better respects symmetry in comparison to the cor-
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Table 1 Correct solutions obtained as a function of the stabilizing parameter ε for various CPU architectures.
Discretized with 3-noded elements and 6 elements per side.

εεε = 10−() 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
Core i5 X X X X X X X X X X X X X X X X X X X
Xeon E3 X X X X X X X X X X X X X X X X X X X

-10 -5 5 10

real

-3

-2

-1

1

2

3 im
a
g

Hamiltonian eigenvalue symmetry error

Schur
Eigen
HSchur

Fig. 11 Symmetry of eigenvalues for eigen, Schur and HSchur decomposition. Discretized with 2-noded
elements and 4 elements per side.

HSchur 0 = 0 0 = 10!12

0 = 10!10 0 = 10!8 0 = 10!6

0.8

1

1.2

Fig. 12 Symmetry of stiffness matrix for various choices of ε compared to HSchur decomposition. Dis-
cretized with 2-noded elements and 4 elements per side.

responding eigen and Schur decompositions. For the Schur decomposition, the block diago-
nalization seems to weaken symmetry. The eigen-decomposition approach does not require
this step, resulting in improved symmetry. However, the issues pertaining to the sorting of
the rigid body modes remains. Slight variation of the stabilizing parameter induces variation
in the eigenvalues, resulting in modified eigenvectors. As a result, the stiffness matrix loses
its symmetry (Fig. 12), which results in solution errors.

A large value for the stabilizing parameter epsilon results in loss of solution accuracy, as
introducing springs on the boundary effectively results in a different structural system. On
the other hand, too small values for epsilon may result in incorrect solutions due to improper
separation of eigenvalues. Fig. 12 visualizes, that there is a region for ε , where the solution
is better behaved. For this purpose, the values in the stiffness matrix (Ki, j) are compared
to the averaged sum (Kave = (1/2)∗ (Ki, j +K j,i)). According to Brenner and Kressner [58]
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Fig. 13 Evolution of the condition number for eigen and HSchur decomposition. Discretized with 2-noded
elements.

this difficulty of computing the zero and negative eigenvalues of a Hamiltonian matrix is
well known for QR and Arnoldi based decompositions, leading to loss of symmetry due to
round-off errors. It is further well-known that accuracy is compromised, when computing
eigenvalues of a matrix whose elements differ by several orders of magnitude [59]. Since
this is the case for the entries of the Hamiltonian matrix [Z], due to the contribution of the
inverse of [E0], this further compounds numerical errors. Normalizing the contributions of
the coefficient matrices [21] or applying a preconditioner [55] mitigate this effect partially,
however the issues discussed in [58] still remain.

Further, the condition number of the stiffness matrix varies, depending on different
choices of stabilizing parameter. Fig. 13 depicts the evolution of the condition number for
the eigen-decomposition with ε = 10−12.5 compared to the HSchur decomposition. How-
ever, since the condition number additionally varies as a function of ε for the standard
eigen-decomposition case, box plots are further provided, indication variation for the range
of 10−6 < ε < 10−15. The observed spread in condition number may pose unpredictable, nu-
merical challenges. This spread is not present for the proposed HSchur decomposition. The
same is observed for matrix [Φ ] (Eqn. 29), whose inversion is required for the formation of
the stiffness matrix and the evaluation of the vector of coefficients [c] (Eqn. 27).

Since the HSchur decomposition results in a robust and predictable solution for SB-
FEM, the calculated SIFs result independently of the stabilizing parameter epsilon. Fig. 14
demonstrates the fluctuation in computed SIFs by eigen-decomposition, contrasted to the
estimates of the HSchur decomposition. It is observed that the error in calculated SIFs via
eigen-decomposition with a variable ε may outweigh the inherent accuracy of the method
itself. Additionally, as is later demonstrated in the next numerical example, the L2 displace-
ment error for lower order elements also fluctuates significantly with variation in ε (Fig. 20).
This is not the case when employing the HSchur decomposition (Fig. 21).

In [57] an exact value for K1 is provided for the edge cracked plate subjected to pure
bending. In Figs. 15 and 16 respectively, the SIF K1 computed using raw stress and recov-
ered stress is depicted. Stress recovery is performed only on the two element patch in the
direction of crack extension (Fig. 6), and not on the entire domain. Table 2 indicates that
for the proposed case of local recovery the computational effort is drastically reduced, while
achieving similar accuracy to full domain recovery. This is important, since stress recovery
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Fig. 14 Error in SIF K1 computed by eigen-decomposition as a function of ε , contrasted to the HSchur
decomposition. Discretized with 3-noded elements and 6 elements per side.

in SBFEM occupies a significant portion of the total execution time (Table 5). The formula-
tion of an error estimator for SIFs based on the difference of the raw and recovered stresses,
as proposed herein, may be exploited to greatly facilitate the SBFEM post-processing pro-
cedure. In Fig. 17 the computed error estimator is contrasted to the exact error for the SIF,
where good agreement is noted. The proposed procedure allows for inherent checking of the
accuracy of the computed SIFs, within a single analysis and with minimal computational
effort.

Table 2 Percent of total analysis time spent on calculating K1 based on full or local domain stress recovery.
Discretized with 3-noded elements and 3 elements per side, 4-noded elements and 4 elements per side and
5-noded elements and 5 elements per side respectively.

#DOF full domain local domain
% total time % error K1 % total time % error K1

98 36.03 0.128 0.24 0.131
198 30.63 0.019 0.10 0.020
322 26.11 0.001 0.02 0.001

3.2 Edge-cracked square plate with forced SIFs

The square, homogeneous domain with an edge crack, as depicted in Fig. 18 is considered,
with length L = 2 units and crack length a = L/2. The boundary is uniformly discretized.
An analytical solution for displacements, stresses and SIFs is given in [60]. The expressions
linking the displacements, stresses and SIFs are given in Table 3.

For this example, the mode I and mode II SIFs are chosen as K1 = 0 and K2 = 1. The
coinciding exact displacements on the boundary are then enforced as boundary conditions
at each node. The improvements in convergence properties when using the novel approach
based on the HSchur decomposition are investigated. To this end, first the L2 error in dis-
placements norm is considered, followed by the L2 error in stresses norm. Figs. 20 and 21
demonstrate the L2 error in displacements norm for the eigen and HSchur decomposition
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Fig. 15 Error in SIF K1 computed using raw averaged stress.
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Fig. 16 Error in SIF K1 computed using recovered stress.
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Fig. 17 Proposed error estimator for SIFs contrasted to exact error.
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KII = 1
E = 200 [N/mm2]
ν = 0.3

L

L

a = L/2

Fig. 18 Edge-cracked square plate problem domain subject to K2 = 1 as boundary conditions. The problem
statement for the second numerical example.

Table 3 Analytical solution for edge cracked plate under forced K2

u1: K2
2∗µ
√ r

2π
sin(θ/2)(κ +1+2cos2(θ/2))

u2: − K2
2∗µ
√ r

2π
cos(θ/2)(κ−1−2sin2(θ/2))

σ11: −K2/
√

2πr sin(θ/2)(2+2cos(θ/2)cos(3θ/2))

σ22: K2/
√

2πr sin(θ/2)cos(θ/2)cos(3θ/2)

σ12: K2/
√

2πr cos(θ/2)(1−2sin(θ/2)sin(3θ/2))

ξ
O

Fig. 19 Points at which the L2 norms are calculated, denoted by crosses. The upper left quarter of the domain
is depicted.

respectively. Since the boundary conditions are applied to all nodes, the error norm is calcu-
lated based on chosen displacements post-processed at 10 equally spaced points along ξ , as
denoted by crosses in Fig. 19. The same procedure was carried out in the case of the stresses.

A significant improvement in the regularity and rate of convergence is observed between
the proposed HSchur decomposition (Fig. 21) and the standard eigen-decomposition (Fig.
20), as optimal convergence is almost achieved. Since the proposed HSchur decomposition
is independent of a stabilizing parameter, its convergence properties do not exhibit oscil-
lations, as is observed for the standard eigen-decomposition. For the eigen-decomposition,
these oscillations may be amended, by appropriate variation of ε , a task, which however is
not straightforward. This further implies that an increase of the employed number of DOFs
does not guarantee higher accuracy in the eigen-decomposition case. Furthermore, the con-
vergence rates m of this newly proposed method, better approximate the values predicted
by established FEM theory. Optimal values mopt are equal to the order of the interpolation
function. For SBFEM, this is equal to the amount of nodes present in each element.
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Fig. 20 Convergence results of the L2 displacement error based on the eigen-decomposition.
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Fig. 21 Convergence results of the L2 displacement error based on the HSchur decomposition.

Next, the performance of i) the Schur decomposition as provided in Matlab, ii) the
Hamiltonian Schur decomposition of [25], and iii) the proposed new blocked Hamiltonian
Schur decomposition, HSchur, is further investigated via the following residual metric [25]:

ResidualSchur =
||UT HU− Ĥ||2
||Ĥ||2

(66)

where Ĥ represents the computed Hamiltonian Schur form and H denotes the original
Hamiltonian Matrix. The residual of the current Matlab implementation of the Schur decom-
position, does not vary significantly with changing values of ε . In Table 4 the residual for all
three methods is provided for different levels of discretization. The newly proposed HSchur
decomposition clearly outperforms the competing methods, which results in improved con-
vergence rates and elimination of the oscillations of the standard eigen-decomposition (Fig.
20). It should be noted that the Hamiltonian Schur method (CSchur) proposed by Chu et al.
[25], which is the precursor to the currently proposed method, has previously been shown to
exhibit increased residuals when clusters of tightly grouped eigenvalues are present.
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Fig. 22 Eigenvalue clustering for domains with higher levels of discretization. Discretized with 5-noded
elements and 10 elements per side.

Table 4 Residuals for each decomposition type. Discretized with 3-noded elements.

# DOF Schur CSchur HSchur
160 5.4∗10−1 8.1∗10−5 9.1∗10−11

226 6.3∗10−1 6.2∗10−5 7.5∗10−12

280 2.7∗10−1 9.0∗10−3 6.3∗10−9

360 3.5∗10−2 1.3∗10−2 5.2∗10−9

448 7.7∗10−2 2.6∗10−2 2.8∗10−12

Clustering of eigenvalues is generally the case for SBFEM, which is demonstrated in
Fig. 11 for few DOFs and Fig. 22 for a typical amount of DOFs necessary for such an
analysis. Naturally, as the amount of DOFs increases the clustering issues further propagate,
and the residual of CSchur tends to accordingly increase. The block of zero eigenvalues
[26] still poses a computational challenge for the proposed HSchur method. The presence
of purely imaginary eigenvalues results in failure to find an invariant, isotropic subspace to
working precision. By relaxing the isotropy checks, a near real Schur form is nonetheless
obtained, thereby forfeiting numerical accuracy. The is observed for residual values greater
than machine precision (eps = 2.22∗10−16).

Figs. 24 and 23 plot the L2 norm of the stress error vs DOFs. To this end, the stresses
are first computed, and then recovered using SPR theory. The von Mises stress is adopted
for this comparison. Again, the proposed HSchur decomposition outperforms the standard
eigen-decomposition scheme. However, certain features cannot be overcome. A change in
convergence rate is observed, when few element are used to model a side of the domain.
As stress recovery techniques require at least two elements to form a recovery patch, they
are not applicable when one element is used to discretize a side. The lack of stress recovery
options leads to a decreased rate of convergence. It is therefore proposed to discretize each
side by at least two elements, in order to harness the benefits of SPR theory. Furthermore, a
coarse discretization significantly limits the resolution of the mode shapes comprising part
of the SBFEM solution.

Since the stress variation in the tangential direction is not smooth around corners, special
consideration must be taken for these cases. In order to avoid errors, an automated procedure
is proposed, based on the orientation of adjacent elements. As long as the normal vectors of
two adjacent elements point along the same direction, i.e., the cosine of the angle spanned
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Fig. 23 Convergence results of the L2 stress error based on the eigen-decomposition.
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Fig. 24 Convergence results of the L2 stress error based on the HSchur decomposition.

between them approaches the value of 1, then the adjacent element is added to the patch.
Such a process may not be put in place for the case of corner points, an issue, which is
elaborated upon in the fourth numerical example.

Fig. 25 contrasts the von Mises stresses computed with only few DOF by SBFEM with
the exact stresses obtained from Table 3. The largest discrepancy on the domain results
around the four corners for the reason hinted at earlier. Hence, it it shown that optimal
superconvergence cannot be obtained due to this limitation. Apart from this exception, the
HSchur decomposition succeeds in improving the convergence behavior.

For the current numerical example, the stresses along the boundary in the direction of
crack extension are recoverable and thus the SIFs are accurately and efficiently calculated,
as observed in Fig. 26. The error is determined based on the exact values for the SIFs, im-
posed originally through the boundary conditions. The improvement over the case with only
trivial averaging of stresses at nodes (Fig. 27) is recognizable. The convergence rates m are
observed as superconvergent, i.e., the stresses converge at the same rate as the displacements.
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Fig. 25 Qualitative location of errors in von Mises stress, by comparing the SBFEM solution to the analytical
ones provided in Table 3. Discretized with 3-noded elements and 4 elements per side.
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Fig. 26 Percent error in K2 calculated using recovered stress.

Since one of the aims is to determine the potential of SBFEM for readily determining
the SIFs, the error in K2 is plotted against wall clock time for each analysis (Fig. 28). It
is apparent, that SBFEM can compute the SIFs with sub-percent accuracy in well under
a second on current generation computers. Further, it seems that the odd-noded elements
outperform their even-noded counter parts.

Table 5 summarizes the computational time required for completing the various tasks
in SBFEM. Striking is the fact that for the current implementation of SBFEM, recovery of
the stresses over the entire domain significantly extends the required computational time. In
contrast, calculation of SIFs by the proposed local stress recovery scheme does not add any
significant computational toll.

The associated error estimator for the SIFs is plotted in Fig. 29. Moreover, for this
example, the a posteriori error estimator is highly effective and may be easily determined.
In contrast to other SIF error estimators ([39],[40]), solving for a second right hand side is
not necessary. The absolute difference between estimated and exact error estimator is seen
to decrease for all elements and is generally in the order of percent fractions (Fig. 29).
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Fig. 27 Percent error in K2 calculated using averaged stress.
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Fig. 28 Percent error in K2 calculated using averaged stresses vs wall clock time. The calculations wer
performed on an Intel Xeon E3-1225 v3.

Table 5 Percentage of computational time spent on various tasks for the solution of SBFEM. Discretized with
3-noded elements and 3 elements perside, 4-nodd elements and 4 elements per side and 5-noded elements
and 5 elements per side respectively.

Task 98 DOF 198 DOF 322 DOF
invert [E0] 0.53 0.63 0.43

HSchur 52.26 64.03 70.18
form K 0.38 0.30 0.25
invert K 6.87 3.88 2.64
form C 3.69 0.43 0.37

stress recovery 36.03 30.63 26.11
SIF 0.24 0.10 0.02
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Fig. 29 Error estimator for K2 based on difference between raw and recovered stress.
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Fig. 30 Double edge cracked plate under tension. Problem statement for the third numerical example.

3.3 Double edge-cracked plate under tension

A double edge-cracked plate under tension as depicted in Fig. 30 is considered, with length
L= 1 units and crack length a= L/4. The boundary is uniformly discretized. For this numer-
ical example, SBFEM is compared to XFEM and the commercial FEM software Abaqus.
Three primary metrics for a solution, i.e., accuracy of calculated SIFs, floating point op-
erations (flops) and number of DOFs are considered. Since the motivation for employing
SBFEM to model fracture is accelerating simulations, analysis time is included as a sec-
ondary metric.

The flops required for the solution of each method are based on simplified assumptions.
Steps exist, such as the inversion of matrices and the solution of the eigen-problem, which
dominate the computational toll of an analysis. For XFEM and the standard FEM, this toll
is assumed to stem primarily from the inversion of the structures stiffness matrix. In SB-
FEM however, multiple computationally intensive steps exist, summarized in table 6. The
variables n and m denote the DOFs present in SBFEM and XFEM respectively, whereas b
represents the half-bandwidth of the matrix [E0] (Eqn. 15). The solution process in SBFEM
is constrained by the computational demands of the Schur decomposition. The newly pro-
posed HSchur decomposition reduces this burden by exploiting the symmetry conditions of
the Hamiltonian matrix [Z]. Considering flops alone, the HSchur decomposition is clearly
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Table 6 Rough flop counts for two SBFEM variants and (X)FEM

Eqn. # SBFEM (X)FEMSchur HSchur
23 bn2 bn2 0
22 25∗2n3 40n3 +205n2 0
24 3n3 3n3 0

diagonalize 2n3 2n3 0
29 2/3n3 2/3n3 0

U = K−1F 1/3n3 1/3n3 1/3m3

27 1/3n3 1/3n3 0
Total 619

3 n3 +bn2 139
3 n3 +(205+b)n2 (1/3)m3

more performant. Since the method is currently implemented as proof-of-concept code writ-
ten in Matlab, execution times are similar to the generic Schur decomposition. Once this
novel method is assimilated into high performance libraries, calculation times are expected
to improve considerably.

In Abaqus, quadratic elements are used with the mid-side nodes set at the quarter points
and the element sides are collapsed into a single node, in order to emulate singular elements
capable of representing a square root singularity. The SIFs are calculated by a contour inte-
gral with four contours. In XFEM, linear elements are employed. The radius of enrichment
is kept constant at re = 0.2 units, while the radius of integration is fixed at ri = 2.55 times
the element size. The SIFs are calculated by interaction integral. In SBFEM, the use of
higher order elements does not significantly alter the computational effort. Since the stiff-
ness matrix is fully populated, higher order elements do not affect the bandwidth other than
in the formulation of [E0]−1 (Eqn. 23). This operation constitutes a minor part of the over-
all computational complexity (Table 6). Subsequently, the worst case is assumed and the
half-bandwidth is chosen to be maximal. The computational burden due to fully populated
matrices is offset by symmetry and the fact that only the boundary need be discretized.

Fig. 31 depicts the theoretical flop count required for analysis as a function of DOFs.
A comparison focused simply on flop count favors the XFEM and FEM-based implemen-
tations. The proposed HSchur decomposition performs favorably, compared to the current
standard Schur, requiring roughly an order of magnitude less flops for the same solution.
However, in a direct comparison to XFEM, it still requires substantially higher computa-
tional effort at an equal level of discretization.

In order to offer a more meaningful comparison, Fig. 32 provides the corresponding
accuracy of the calculated SIFs plotted against the DOFs. To this end, a reference solution
obtained from a fine mesh in Abaqus of approximately half a million DOFs is used. SB-
FEM evidently outperforms the competing methods, as fewer DOFs are required in order
to approach the reference solution. Significantly higher rates of convergence are obtained
by SBFEM by employing higher order elements. Noteworthy are the linear, two noded el-
ements, which outperform XFEM and the standard FEM approach with a slope of m = 2,
calculated using recovered stresses.

Fig. 33 depicts the error in calculated SIF as a function of the flops required for analy-
sis. At lower flop counts, all methods perform comparably. A slight edge goes to the FEM
implementation. Since in Abaqus the integration domain is specified manually, the amount
of DOFs present in the system is not uniformly distributed at coarser discretizations. Conse-
quently, the FEM plot exhibits a plateau. Once this plateau is passed, the rate of convergence
stabilizes to mFEM = 0.88. The rate of convergence for XFEM is higher at mXFEM = 1.06.
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Fig. 31 Computational requirements for solution for (X)FEM, SBFEM using the conventional Schur decom-
position and the newly proposed HSchur decomposition.
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Fig. 32 Accuracy of K1 as a function of DOFs for SBFEM, XFEM and FEM for the double edge crack
problem. For SBFEM the proposed HSchur decomposition is utilized.

At higher flop counts, SBFEM begins to separate itself from the competing methods, due to
higher rates of convergence.

Fig. 34 indicates the error in computed SIFs as a function of wall clock time. For Abaqus,
analysis times are extracted from the log file. For XFEM and SBFEM, the stopwatch timer
in Matlab is employed. Results for this numerical example are obtained on an Intel i5-
6600K @ 3.9 GHz. As observed in Fig. 34, the current implementation of SBFEM, based
on the newly adopted HSchur, outperforms XFEM by approximately an order of magnitude.
This quantification must be treated with caution, since both the SBFEM and XFEM imple-
mentations have yet to undergo optimization. This discrepancy between analysis time and
computation complexity (Fig. 33) is attributed to operations specific to XFEM, not incorpo-
rated in the theoretical flop count, and language related performance limitations. Examples
for the former are operations associated with the integration of the enrichment terms and
the post-processing of the SIFs. Employing loops in scripting languages, such as Matlab, is
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Fig. 33 Accuracy of K1 as a function of the flops required to obtain the solution for the double edge crack
problem. For SBFEM the proposed HSchur decomposition is utilized.
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Fig. 34 Accuracy of K1 as a function of analysis wall clock time for the double edge crack problem. For
SBFEM the proposed HSchur decomposition is utilized.

known to significantly impact run time. The number of loops performed during analysis is
dependant on the amount of elements and integration points, which is significantly larger for
the case of XFEM than SBFEM. These considerations are equally applicable to the fourth
numerical example.

Compared to the optimized code of the commercial software Abaqus, which utilizes
highly optimized numerical routines, SBFEM compares favorably. Similar accuracy in the
calculated SIFs is observed at comparable analysis times. Further, for the higher noded ele-
ments, SBFEM with the adopted HSchur decomposition manages to outperform commercial
software.

Fig. 35 compares the accuracy of the calculated SIFs to the computational effort by
proxy of flop count. The computational advantage of the HSchur decomposition over the
generic Schur decomposition is demonstrated to approach an order of magnitude, with the
analysis time expected to decrease with further refinement of the code.
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Fig. 35 Accuracy of K1 comparing the proposed HSchur and standard Schur decomposition, based solely on
theoretical flop counts.
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Fig. 36 Evolution of the condition number of the stiffness matrix as a function of DOFs for the double edge
crack problem.

A last comparison between XFEM and SBFEM considers the evolution of the condition
number of the stiffness matrix for an increasing number of DOFs. Fig. 36 demonstrates
the numerical difficulties associated with standard XFEM. Typically, the condition number
of the stiffness matrix increases rapidly, mandating preconditioning, which constitutes a
computational burden. This is not the case in SBFEM since the method naturally extends to
encompass fracture related phenomena. Consequently, no terms are added, which affect the
condition number adversely. However, it is evident that higher order elements do increase
the condition number steadily.

3.4 Slant crack in square plate

A slant crack as depicted in Fig. 37 is considered, with length L = 1 unit, crack length a =
L/2 and crack inclination angle equal to π/4. The boundary is evenly discretized. A crack
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Fig. 37 Slant crack in square plate under tension. The problem statement for the fourth numerical example.

Fig. 38 Sample discretization scheme for modeling a slant crack with SBFEM. It can be seen, that in order
to accommodate different crack inclination angles, simply the scaling centers (circles) must be moved, which
may be done independently of the mesh (crosses).

inclination angle of π/4 is purposely chosen, since the largest errors in computed stresses
appear at corner points (Fig. 25). The aim of this numerical example is to ascertain, how
SBFEM performs in a worst case scenario, when compared against alternatives. XFEM and
the standard FE-based approach are considered in the following comparisons. For XFEM,
the enrichment radius is kept constant at re = 0.2 units, while the radius of integration is
fixed at ri = 2.55 times the element size. For Abaqus, the same quadratic elements where
chosen as in the previous example. Modeling the slant crack problem with SBFEM entails
separating the domain into two parts. Each is inscribed its own scaling center, placed at the
crack tip (Fig. 38). The results reported, correspond to the SIFs calculated at the upper right
sided crack tip.

Fig. 39 illustrates the accuracy of computed K2 as a function of DOFs. To this end, a
finely meshed reference solution in Abaqus was employed. The FEM-based calculation of
the SIFs by Abaqus, the XFEM implementation as well as the 2-noded elements of SBFEM
are observed to converge at a comparable rate, although XFEM has a slightly higher rate
of convergence. Admitting higher order elements, SBFEM outperforms the other numeri-
cal methods. The odd-noded elements outperform their even-noded counterparts. Since the
computational effort per DOF for SBFEM is greater than for the two contrasted numerical
methods, Fig. 40 plots the accuracy of K2 as a function of flops. SBFEM compares favorably
to the FE-based approach and the XFEM implementation, even in this worst-case scenario.
It would seem that the calculation of SIFs at a crack inclination angle of π/4 is also a chal-
lenging task for other FE-based numerical methods.

Fig. 41 provides the analysis times for calculating the SIFs based on all three compared
methods. Calculations were performed on an Intel Xeon E3-1225 v3. Oscillatory behavior
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Fig. 39 Accuracy of K2 as a function of DOFs for the slant crack problem. For SBFEM the proposed HSchur
decomposition is utilized.

for the first few points is attributed to the method of reporting in Abaqus. Values are reported
at discrete 0.1 second intervals. Since for systems with small amounts of DOFs the I/O
overhead dominates the overall computational time, oscillatory values of 0.2 and 0.3 seconds
were obtained. SBFEM is demonstrated to perform on par with current commercial software
in terms of efficiently and accurately calculating the SIFs. Further, for problems with simple
crack geometries, it outperforms a similarly implemented XFEM by approximately an order
of magnitude at equivalent accuracy. This is attributed to the ease with which higher order
elements may be employed. However, considering only linear elements, the advantage of
SBFEM over XFEM is marginal.

Fig. 42 plots K2 calculated based on raw stresses and the standard eigen-decomposition
as a function of analysis time. Especially the lower noded elements suffer from this transi-
tion. While the XFEM implementation outperforms the 2-noded elements, the commercial
software Abaqus performs similarly to the 3-noded elements. SBFEM is only observed to
maintain its competitive advantage, when employing elements with four or more nodes.

In Fig. 43 the condition number of an SBFEM solution is contrasted to that of XFEM
as a function of increasing DOFs. The condition numbers are not clearly separated. For
finer domain discretizations, the condition number of SBFEM approaches that of XFEM.
However, at that level of discretization, SBFEM is fully converged as opposed to XFEM.
This escalation in condition number is dependent on the angle spanned between an element
on the boundary and the scaling center. The smaller the angle, the more numerical difficulties
occur. With a higher boundary discretization, these angles tend to diminish. Should severe
numerical issues be encountered, a splitting of the domain perpendicular to the crack line
is advised, distributing the angles spanned by the boundary elements and the scaling center
more evenly.

One of the strengths of SBFEM is exploited to perform a study of variants. Modeling
of varying crack inclination angles becomes trivial, as only the scaling centers must be
repositioned. As a result, a procedure is proposed, which accommodates the application of
SPR theory to the SIFs.

1. The direction of crack extension is determined.
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Fig. 40 Accuracy of K2 as a function of flops required for solution of the slant crack problem. For SBFEM
the proposed HSchur decomposition is utilized.
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Fig. 41 Accuracy of K2 as a function of analysis wall clock time for the slant crack problem. For SBFEM
the proposed HSchur decomposition is utilized.

2. The intersection point between the boundary and the crack extension line is calculated.
The nearest node is calculated and the corresponding intersection element is found.

3. The stresses are recovered over a patch of two elements, as described in Sec. 2.3, with
the addition of a check, ensuring the chosen patch does not entail corners. This process
is automated by applying the orientation checking procedure as detailed in Sec. 3.2.

4. The SIFs are calculated based on the locally recovered stresses, which are rotated by the
crack inclination angle.

In Table 7 the SIF K1 is tabulated for various discretization levels and crack inclination
angles. A reference solution is obtained from a fine meshed Abaqus analysis. In order to
investigate the stability of SBFEM for various crack inclination angles, the values for K1
are normalized with respect to the reference solution. As observed in Table 7, K1 behaves
independently of the crack inclination angle. All three methods, SBFEM, XFEM and FEM
provide comparable results, with deviations lower than 1%.
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Fig. 42 Accuracy of K2 as a function of analysis wall clock time for the slant crack problem. For SBFEM
the eigen-decomposition combined with raw stresses for the calculation of K2 is utilized.
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Fig. 43 Evolution of the condition number of the stiffness matrix as a function of DOFs for the slant crack
problem.

Table 7 Values of computed K1 as a function of the crack inclination angle ranging from 10◦ to 80◦. For
SBFEM, 3-noded elements were chosen with 1 to 4 elements discretizing each side. For Abaqus and XFEM,
K1 was calculated using fine meshes. The normed values correspond to the ratio of SBFEM K1 solution to
the Abaqus reference solution.

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

36 DOFs 1.09394 1.03033 0.87814 0.69875 0.50031 0.31072 0.15275 0.05671
50 DOFs 1.09307 1.02125 0.87838 0.69869 0.50038 0.31028 0.15225 0.04827
74 DOFs 1.09390 1.01546 0.87856 0.69873 0.50042 0.31006 0.15200 0.04691
98 DOFs 1.09486 1.01544 0.87871 0.69865 0.50046 0.31001 0.15189 0.04682
Normed 1.00475 1.00444 1.00581 1.00735 1.00538 1.00515 0.99140 0.99272

Abaqus ref. 1.08968 1.01094 0.87364 0.69355 0.49778 0.30843 0.15321 0.04716
XFEM 1.09278 1.01336 0.87647 0.69119 0.50215 0.30976 0.15172 0.04707
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Table 8 Values of computed K2 as a function of the crack inclination angle ranging from 10◦ to 80◦ using
the same methodology as in Table 7.

Type 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦

36 DOFs 0.13061 0.29445 0.41963 0.49134 0.50066 0.44532 0.33312 0.17540
50 DOFs 0.13018 0.29185 0.41719 0.49132 0.50072 0.44541 0.33329 0.17823
74 DOFs 0.12990 0.29034 0.41713 0.49123 0.50073 0.44569 0.33344 0.17862
98 DOFs 0.12935 0.28989 0.41703 0.49126 0.50073 0.44572 0.33348 0.17862
Normed 0.99768 1.00279 1.00322 1.00338 1.00190 1.00051 0.99779 0.99700

Abaqus ref. 0.12965 0.28908 0.41569 0.48961 0.49978 0.44550 0.33422 0.17915
XFEM 0.12946 0.28948 0.41683 0.49037 0.49991 0.44586 0.33454 0.17923

Table 8 summarizes the results for the case of K2. It is verified that the SIFs computed
by SBFEM are independent of the crack inclination angle. However, as the crack inclination
angle is increased, numerical issues arise due to the introduction of small angles spanned by
the elements on the boundary and the scaling center. These angles approach the values of
zero as the crack inclination angle approaches 90◦ (Fig. 38).

4 Conclusion

In this work, the adoption of a blocked Hamiltonian Schur decomposition is proposed, which
proves highly beneficial when substituted into the solution process of SBFEM. By preserv-
ing Hamiltonian symmetry, i.e., the symmetry of the eigenvalues about the real and the
imaginary axis, enhanced accuracy is achieved leading in improved, near optimal, conver-
gence rates. Further, only half of the analysis domain need be considered, which alleviates
the additional computational toll incurred in linearizing the quadratic eigenvalue problem.
An additional benefit stems from the fact that the eigenvalues are automatically partitioned
based on sign. Thus, errors incurred due to improper sorting, resulting in an erroneous stiff-
ness matrix are eliminated along with the prior need for a stabilizing parameter ε . By con-
sequence, the adopted HSchur decomposition is demonstrated to significantly improve the
regularity of the method.

The convergence rates of SBFEM are investigated in a benchmark example, featuring an
analytical solution. The L2 error in displacements, stresses as well as the error in computed
stress intensity factors are recovered. Implementation of SPR theory allows for supercon-
vergent recovery of stresses, and in select cases ultracovergent behavior. This property is
exploited to significantly improve the accuracy and convergence behavior of the calculated
SIFs. It is further demonstrated that stress recovery need not be carried out for the entire
domain, since similar accuracy is achieved when only considering the patch in direction of
crack extension, at reduced computational cost. A local error estimator is proposed, which
arises as a natural extension of the stress recovery scheme, and is highly accurate as well as
computationally inexpensive.

Finally, SBFEM is explicitly contrasted against other numerical methods within the con-
text of LEFM in terms of rough flop count, and wall clock time (albeit for unoptimized Mat-
lab implementations for the SBFEM and XFEM variants). It is demonstrated that for simple
crack geometries, a higher order SBFEM consistently outperforms frequently adopted alter-
natives.
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Appendix A.1

Considering the term representing the internal virtual work first, it is rearranged after substituting Eqns. 9 and
11:∫

V
{δε(ξ ,η)}T {σ(ξ ,η)}dV

=
∫

V

[
[B1(η)]{δu(ξ )},ξ +

1
ξ
[B2(η)]{δu(ξ )}

]T

× [D]

(
[B1(η)]{u(ξ )},ξ +

1
ξ
[B2(η)]{u(ξ )}

)
dV

=
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T

,ξ [B
1(η)]T [D][B1(η)]ξ{u(ξ )},ξ |J|dξ dη

+
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T

,ξ [B
1(η)]T [D][B2(η)]{u(ξ )}|J|dξ dη

+
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T [B2(η)]T [D][B1(η)]{u(ξ )},ξ |J|dξ dη

+
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T [B2(η)]T [D][B2(η)]

1
ξ
{u(ξ )}|J|dξ dη (67)

Green’s theorem leads to the following formulation:∫
V
{δε(ξ ,η)}T {σ(ξ ,η)}dV

=
∫

∂Ω

{δu(ξ )}T [B1(η)]T [D][B1(η)]ξ{u(ξ )},ξ |J|dη

∣∣∣
ξ=1

−
∫

∂Ω

{δu(ξ )}T [B1(η)]T [D][B1(η)]

×{{u(ξ )}ξ +{u(ξ )}ξ ξ }|J|dξ dη

+
∫

∂Ω

{δu(ξ )}T [B1(η)]T [D][B2(η)]{u(ξ )}|J|dη

∣∣∣
ξ=1

−
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T [B1(η)]T [D][B2(η)]{u(ξ )},ξ |J|dξ dη

+
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T [B2(η)]T [D][B1(η)]{u(ξ )},ξ |J|dξ dη

+
∫

∂Ω

∫
ξ=1

ξ=0
{δu(ξ )}T [B2(η)]T [D][B2(η)]

1
ξ
{u(ξ )}|J|dξ dη (68)

In order to simplify the above equation, the following substitutions are introduced:

[E0] =
∫

∂Ω

[B1(η)]T [D][B1(η)]|J|dη (69a)

[E1] =
∫

∂Ω

[B1(η)]T [D][B2(η)]|J|dη (69b)

[E2] =
∫

∂Ω

[B2(η)]T [D][B2(η)]|J|dη (69c)
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These simplifications are named “coefficient matrices” and resemble in structure the stiffness matrix of stan-
dard FEM schemes. They are calculated element wise and then assembled in the standard FEM sense. Ap-
plying boundary conditions on the coefficient matrices is premature, as this will effectively delete parts of
the domain corresponding to the space spanned by the DOFs on the boundary and the scaling center. Using
the same notation to denote the fully assembled coefficient matrices, the previous equations are rewritten as
follows using an abbreviation on the boundary {u}=̂{u(ξ = 1)}:
∫

V
{δε(ξ ,η)}T {σ(ξ ,η)}dV

= {δu}T {[E0]{u},ξ +[E1]T {u}}

−
∫

ξ=1

xi=0
{δu(ξ )}T

{
[E0]ξ{u(ξ )},ξ ξ

+[[E0]+ [E1]T − [E1]]{u(ξ )},ξ − [E2]
1
ξ
{u(ξ )}

}
dξ (70)
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