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The accurate prediction of strength and deformability characteristics of rock mass is a challenging issue.
In practice, properties of a rock mass are often estimated from available empirical relationships based on
the uniaxial compressive strength (UCS). However, UCS does not always give a good indication of in situ
rock mass strength and deformability. The aim of this paper is to present a methodology to predict the
strength and deformability of a jointed rock mass using UDEC (universal distinct element code). In the
study, the rock mass is modelled as an assemblage of deformable blocks that can yield as an intact
material and/or slide along predefined joints within the rock mass. A range of numerical simulations of

Keywords: .. . . . .

Stryength uniaxial and triaxial tests was conducted on rock mass samples in order to predict the equivalent me-
Deformability chanical properties for the rock mass under different loading directions. Finally, results are compared
Rock mass with the deformability parameters obtained by analytical methods.

© 2017 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

Universal distinct element code (UDEC)

licenses/by-nc-nd/4.0/).

1. Introduction

Understanding of the strength and deformability characteristics
of a rock mass is critically important for the safe and economic
design of many engineering systems, including dams, foundations,
and excavations. Rock mass properties are essential inputs into
modern design methods which routinely adopt some form of nu-
merical modelling, for example, the finite element (FE) and finite
difference (FD) methods. A range of empirical approaches has been
developed to provide engineers ways of estimating the required rock
mass properties. These include the rock quality designation (RQD)
(Deere and Deere, 1989), the rock mass rating (RMR) (Bieniawski,
1973; Bieniawski and Orr, 1976), the tunnelling quality index (Q)
(Barton et al., 1974; Barton, 2002), the geological strength index (GSI)
(Hoek et al., 1995), and other equations which are based on uniaxial
compression tests on jointed rock samples (Ramamurthy and Arora,
1992; Ramamurthy et al., 1993; Zhang and Einstein, 2004). These
empirical methods are very useful; however, as with any empirical
method, they have limitations with respect to their applicability
outside the specific conditions on which they were based.
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The mechanical properties of intact rock and discontinuities can
be effectively determined in laboratory by triaxial and direct shear
methods. However, the in situ interaction between intact rock
blocks with discontinuities is very complex and it is generally not
adequate to use unmodified laboratory-based measurements of
rock properties within models to capture the global rock mass
behaviour. Attempts to characterise large-scale rock mass proper-
ties in the laboratory are rarely undertaken due to the high cost, the
difficulty in dealing with large samples, and the time required
(Hoek, 1983). A range of sizes of physical models has been tested in
the laboratory (e.g. 4 in x 8 in (1 in = 2.54 cm) (Brown, 1970),
60 cm x 60 cm x 130 cm (Reik and Zacas, 1978),
30 cm x 125 cm x 8.6 cm (Kulatilake et al, 2001),
15 cm x 15 cm x 8 cm (Singh and Singh, 2008a)), however, their
ability to represent the reality of large-scale rock masses is limited
since full-scale rock mass blocks cannot be effectively tested in the
laboratory and block sizes have an effect on measurements of rock
matrix stiffness and strength (Barton and Hansteen, 1979; Barton
and Bandis, 1980; Bhasin and Hgeg, 1998; Edelbro et al., 2007;
Barton and Quadros, 2015). Furthermore, the effects of test con-
figurations (e.g. platen-sample interactions) on measurements can
also be significant. For example, the Hoek cell (Hoek and Franklin,
1968) has been used to study jointed rock behaviour under vary-
ing confining pressures (Asef and Reddish, 2002), however, tests in
which slippage may occur along the joints should be avoided since
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the Hoek cell, which was designed to study intact rocks, can
restrain jointed samples in ways that do not reflect real loading
conditions (Alshkane, 2015).

Numerical modelling provides a means that can help to under-
stand how laboratory-based measurements of rock properties
relate to full-scale predictions of rock mass behaviour. The discrete
element method (DEM) is a particularly attractive technique for
numerically simulating the behaviour of large rock mass because of
its capacity to model the intact rock blocks as well as the in-
teractions that occur along joints. The universal distinct element
code (UDEC) (Cundall, 1980; Itasca, 2011) was used to numerically
model a rock mass in this work. There have been several studies
involving the use of UDEC to predict the equivalent strength and
deformability parameters of a jointed rock mass. The term ‘equiv-
alent’ refers to parameters which could be used in analytical or
continuum based models (e.g. FE or FD) to obtain results compa-
rable to those obtained using DEM. Several authors have used this
approach to study rock mass behaviour. Singh and Singh (2008b)
used physical models and UDEC to investigate the lateral strain
ratio in a regularly interlocked blocky rock mass under uniaxial
compressive loading. They concluded that lateral strains could be
attributed to the creation of voids and also permanent de-
formations due to slip starting along joints from the commence-
ment of loading. Their results confirmed that the study of rock mass
behaviour should be performed under appropriate levels of
confining stresses. Min and Jing (2003) used UDEC to evaluate the
equivalent deformability parameters of a fractured rock mass.
Baghbanan (2008) predicted the equivalent strength and deform-
ability parameters at the elastic limit because of strain-hardening
behaviour after the elastic limit and concluded that it was diffi-
cult to find the ultimate or peak axial stress.

Noorian Bidgoli et al. (2013) used UDEC to predict the equivalent
strength and deformability of the highly fractured rock mass model
that was used by Min and Jing (2003) and Baghbanan (2008). They
stated that their models did not show strain softening because they
needed to stop loading when the peak strength of the models was
reached so as to maintain a physical basis for an equivalent con-
tinuum assumption. However, most of their models appeared to
show strain hardening and never reached peak or ultimate strength
since the intact rock behaviour was assumed to be elastic.

Noorian Bidgoli and Jing (2014a) used the same fractured rock
mass model (presented in Noorian Bidgoli et al. (2013)) to study the
effect of loading direction on equivalent strength and deformability

parameters. Their results did not show any significant effect of
loading direction on the parameters but they did show that the
deformation modulus increased with an increase in confining
pressure. This may have been a result of the assumption of
nonlinear behaviour for joint normal stiffness in their model.

The aim of this paper is to present a methodology for predicting
the equivalent strength and deformability parameters of a rock mass
using UDEC. The approach involves the numerical testing of rock
mass samples under different confining stresses and loading di-
rections. The paper is organised into five main sections following this
Introduction. Section 2 presents a detailed description of the meth-
odology adopted in this study. Section 3 presents a validation of the
numerical model by comparing the deformation modulus for a
blocky rock mass predicted by UDEC with analytical predictions.
Section 4 presents the analysis of strength and deformability of a rock
mass using UDEC. Finally, the paper presents conclusions in Section 5.

2. Methodology

In a UDEC analysis, the domain of interest is represented as an
assemblage of rigid or deformable blocks and the contacts between
the blocks are identified and updated continuously during the
entire deformation process. Fig. 1 provides an illustration of the
relevant joint set orientation (61, f2) and spacing (S, S2) parameters.
A simple interlocked regular blocky rock mass was used in this
study, as illustrated in Fig. 1b.

Individual rocks were modelled as deformable blocks with
elastic-perfectly plastic constitutive behaviour using the Mohr—
Coulomb failure criterion. This ensured that the UDEC analysis was
able to capture any induced shear and tensile failures within the
rock blocks. For joints, the area contact Coulomb-slip model (also
elastic-perfectly plastic) was used.

2.1. Modelling of stress- and strain-controlled tests

Two practical ways for applying loads to intact rock or jointed
rock mass samples in the laboratory are the strain (displacement)
and stress (load) controlled methods (Fig. 2) (alternative methods
(e.g. Pan et al,, 2006; Shimizu et al., 2010) exist, however, the focus
of this paper is on the more conventional strain- and stress-
controlled methods). In order to determine failure load, it is
often better to use strain-controlled boundary conditions (Itasca,
2011). When simulating stress-controlled tests in UDEC, as the
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(a) Blocky rock mass

(b) Interlocked blocky rock mass

Fig. 1. Types of blocky rock masses.
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Note:

Lower and upper boundary represents lower and upper platen, respectively, in laboratory
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Fig. 2. Numerical simulation of laboratory compression tests on rock masses.

applied force approaches the collapse load, the system becomes
difficult to be controlled (Itasca, 2011). For simulation of
displacement-controlled tests in UDEC, displacements cannot be
applied directly and it is necessary to fix boundaries and prescribe
the velocity for a given number of steps. For instance, if the
required displacement is d, a velocity (v = d/t) is applied for a time
increment (t). Velocities should be kept small and/or increase
slowly to avoid inertial “shocks” to the model which can cause
problems. However, applying small velocities can be time-

consuming. To address this issue, Itasca has provided a “servo-
controlled” FISH (a programming language used by Itasca codes)
function based on the maximum unbalanced forces in the model
to reduce computational time. In this work, however, it was found
that this function overestimated the axial stress after yield
compared to a more rigorous (but time-consuming) methodology
in which the platen movement was stopped and the model step-
ped to equilibrium after every 50 steps, as illustrated in Fig. 3
(velocity-controlled branch).

Model steup
(Geometry, constitutive models, material
properties, boundary and initial conditions)

| Stress-controlled

v
Apply stress increment on top of
sample

v
| Step to equilibrium state I

equilibrim
Yes
Record reactions (R2) average

vertical stress and axial strains
using history files

Sufficient points
after maximum
axial stress

Strain-controlled |

|

Move upper boundary with a
velocity (v) downwards by 50 steps

|

| Step to equilibrium state

}

Record reactions (R1 and R2)
average vertical stress and axial
strain using history files

Sufficient points
after maximum
axial stress

Fig. 3. Flow chart for stress- and strain-controlled UDEC analyses as illustrated in Fig. 2.
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In this paper, results from UDEC simulations of stress- and strain-
controlled tests on confined samples of regularly jointed rock masses
are presented. A FISH function was implemented to impose the
boundary conditions illustrated in Fig. 2. For the strain-controlled
tests (Fig. 2a), the reactions R1 and R2 were calculated during the
downward movement of the upper platen. In the stress-controlled
tests (Fig. 2b), only the reaction force R2 on the lower boundary
could be measured. A flow chart indicating the process of the ana-
lysesis showninFig. 3. The average vertical stress (gy) within the rock
blocks was calculated for both methods in order to check that each
method reached a suitable state of equilibrium before any datapoint
was obtained from the model. The axial stress was computed by
dividing the average value of reaction force on the platens by the
sample cross-section width, and the axial strain was computed using
the displacement of the top platen. In the UDEC analyses, the platens
were treated as rigid boundaries because the stiffness of platens is
generally much greater than that of rock samples.

4 - Strain hardening

3.5 1 Yield stress

3 .
""" Sudden failure (Stress-Controlled)
= 2.5 -
2 2 - R1, Strain controlled servo
P 4
w
2 - 6, Strain controlled servo
215 A
£ ---R2, Strain controlled servo
2,
— Strain controlled proposed (R1=R2=0,)
0:5i — Stress controlled proposed (R2=0)
0 T T T T 1
0 0.0002 0.0004 0.0006 0.0008 0.001
Axial strain

Fig. 4. Axial stress—strain results from different methods of testing a rock mass under
a confining stress of 1 MPa. Note that oy is an average vertical stress in the block zones.

Slips on set 2 near upper boundary

Several authors have noted a difference in results when using
UDEC to replicate stress- and strain-controlled loading experiments
(Noorian Bidgoli et al., 2013; Noorian Bidgoli and Jing, 2014Db). It is
important to note that in typical axial stress (load) controlled ex-
periments with stiff platens, there is not a true stress-controlled
(flexible) boundary on the sample-side of the platens and that
the stress boundary condition is achieved by controlling the force
applied to one of the platens. Therefore, a true stress-controlled
boundary is not achieved on the sample-side of the stiff platen in
the experiments. For experiments on blocky rock mass samples,
even in stress-controlled tests, blocks adjacent to platens are
restricted from rotating freely and strain hardening behaviour may
be resulted in. This contrasts to a true flexible stress-controlled
boundary where the blocks adjacent to the boundary are free to
rotate and move, thereby allowing sliding and sudden failure. It will
be shown later that numerical replication of laboratory conditions
in stress- and strain-controlled loading experiments with UDEC
gives similar results.

The tested rock mass consisted of two smooth joint sets, as
illustrated in Figs. 1b and 2b. The first joint is continuous and the
second is staggered and perpendicular to joint set 1. The samples
were square in shape, similar to those presented in Noorian Bidgoli
and Jing (2014a). Fig. 4 shows the axial stress—strain data for nu-
merical samples tested under a confining stress of 1 MPa. Three
methods were tested: (i) strain-control using the methodology
proposed in this study (labelled ‘proposed’), (ii) strain-control using
the servo-controlled FISH function provided by Itasca (2011), and
(iii) the stress-controlled methodology. All of the methods gave
identical results of yield stress and deformation modulus (yield
stress defined here as the axial stress required to fully develop slip
along joint set 1). The post-yield behaviour, however, differed for
the tests. The strain-controlled methods display strain-hardening
behaviour after yield stress. This behaviour is a consequence of
the fact that most of the joints in set 1 intersect the lower boundary
of the sample, which is fixed in the vertical direction, causing the
blocks to rotate after yield (illustrated in Fig. 5a and b). The axial
stress using the servo-controlled method was higher than that in

Magnified block deformation
Magnification=80
(a2)
(a) Strain-controlled (proposed).

Magnified block deformation
Magnification=80
(b2) (c2)

(b) Strain-controlled (servo-controlled).

/
‘Magnified block deformation
Magnification=8

(c) Stress-controlled.

Fig. 5. Block deformations and slip along joints for different testing methods.
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the proposed methodology. This is because, after yield stress, the
servo-controlled system became numerically unstable. This can be
illustrated by examining the unbalanced force history, as shown in
Fig. 6b and c. The proposed method, which stops movement after
every 50 steps and allows the model to reach equilibrium, ensures
that the model is numerically stable for every datapoint obtained
after yield stress. This can be seen from the history of the unbal-
anced force in Fig. 6¢. It should be noted that the simulation time in
the servo-controlled method is less than that of the proposed
method. This can be overcome in the proposed method by
increasing the upper platen displacement velocity, which for these
tests had a minor effect on the results. Fig. 7 illustrates that the
upper platen velocities between 10 mm/s and 160 mmy/s produced
very similar axial stress—strain results. However, the velocity
should be less than 40 mm/s so as to capture the yield stress
accurately.

Unlike the strain-controlled tests, the stress-controlled test did
not show any strain-hardening behaviour. After yield, the stress-
controlled models did not converge to a state of equilibrium, as
shown in Fig. 6a. This failure mode is possible in UDEC for the
stress-controlled test because the loading is applied through a
flexible boundary allowing continual sliding along joint set 1, as
shown in Fig. 5c.

The stress-controlled upper and lower boundary conditions
illustrated in Fig. 2b are actually not representative of typical rock
mass tests (e.g. the biaxial tests described in Noorian Bidgoli et al.
(2013)). In these tests, the load/stress is controlled on the outer
side of a stiff platen, as illustrated in Fig. 8. Some studies have
indicated that when using UDEC to replicate this stress-controlled
condition, results can be obtained which differ from an equiva-
lent strain-controlled simulation (Noorian Bidgoli et al., 2013;
Noorian Bidgoli and Jing, 2014b). Using the models shown in
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Figs. 2a and 8, results from this study indicate that the strain- and
stress-controlled methods give identical results. The properties of
the steel platen were taken as follows: density = 7800 kg/m?, shear
modulus = 110 GPa, and bulk modulus = 185 GPa. Fig. 9 compares
the results measured by the stress-controlled tests using the setup
shown in Fig. 8 with those obtained using the strain-controlled
tests (note that the proposed methodology for strain-controlled
test simulation was used). It can be seen that both methods give
identical results under these boundary conditions.

3. Comparison with analytical results

Numerical studies should, where possible, be compared with
other available predictive methods in order to develop confidence
in their results. In this study, the blocky rock mass described by
Barla et al. (2004) (Fig. 1a) was used to compare UDEC results with
those obtained using the analytical approach of Yoshinaka and
Yamabe (1986). They proposed the following equation for deter-
mination of the equivalent deformation modulus (E;) of a rock
mass that consists of two continuous joint sets (as shown in Fig. 1a):

1 cos26; /sinf; cos26,

B = L 5 Ol o)
_cos%f, sin?6, cos26,\1~ 1)
‘ 52 1(52 an

where ks and k;, are the shear and normal stiffnesses of the joint set,
respectively; S is the joint spacing; # is the dip angle; E; is the
Young’s modulus of the intact rock; and subscripts 1 and 2 denote
the joint set number (see Fig. 1a). In this analytical method, the
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Fig. 6. Unbalanced force histories: (a) stress-controlled, (b) strain-controlled (servo-controlled), and (c) strain-controlled (proposed).
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amount of deformation of the rock mass is related to the elastic
deformation of the intact rock and joints, as well as the orientation
and spacing of the joints.

The proposed strain-controlled methodology in UDEC was used
to study the same blocky rock mass. The loading configuration and
numerical sample are shown in Fig. 10. A rectangular sample was
used with a length to width ratio of 2 in order to be consistent with
typical laboratory test methods. The size of the individual blocks in
the jointed rock was 2 m x 4 m. The material properties for the
blocky rock mass and joint, obtained from Barla et al. (2004), are
provided in Tables 1 and 2.

The rock mass was analysed numerically using UDEC by con-
ducting large-scale uniaxial compression tests (30 m x 60 m) under
a range of different directions of loading on the rock mass. The
variation of loading direction was achieved by rotating two sets of
joints together in anti-clockwise steps of 15°. For each step, the
deformation modulus was calculated according to ISRM (1981)
methods.

Fig. 11 illustrates that results from the UDEC and the analytical
method agree well. The data illustrate that the deformation
modulus is highly dependent on the loading direction of the jointed
rock mass, with deformation modulus ranging between 2.2 GPa

Loading by axial velocity

Upper boundary

Roller

Confining stress
Confining stress

Roller
Lower boundary

Lower reaction

Fig. 10. Numerical sample and loading configuration for validation model.

Table 1
Material properties for blocky rock mass (Barla et al., 2004).
Material Density, Young's Poisson’s Cohesion, Friction Tensile
p (kg/m*®) modulus, ratio, » c(MPa) angle, ¢ (°) strength,
E (GPa) oy (MPa)
Intact rock 2650 20 0.3 7.5 58 33
Table 2
Joint properties for blocky rock mass (Barla et al., 2004).

Joints Normal Shear Cohesion,  Friction Tensile
stiffness, stiffness, ¢ (MPa) angle, ¢ (°)  strength,
kn (GPa/m) ks (GPa/m) a¢ (MPa)

Rock/rock 50 0.5 0 30 0

contact
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-e Analytical (Eq. (1))

HUDEC
12 4

10 4

Deformation modulus (GPa)

o N DA O
!

0 20 40 60 80 100
Degree of rotation (°)

Fig. 11. Deformation modulus versus degree of rotation of blocky rock mass (validation
model).

and 18.1 GPa. Note that Barla et al. (2004) adopted an equivalent
deformation modulus of 10 GPa for this rock mass for the analysis of
a gravity dam.

These results give confidence that the UDEC model performs as
expected for this joint set condition. The advantage of the UDEC
model over the analytical approach is that it can be varied to
consider different joint set conditions as well as to study post-yield
rock mass behaviour, as illustrated in the previous section.

4. Results and analysis

This section presents further results from a series of UDEC
compression test simulations on intact rock and interlocked blocky
rock mass samples in order to better understand the variation of
equivalent properties with rock mass characteristics. The ‘pro-
posed’ test method in Section 2 was used in all UDEC analyses. Two
test cases are considered: an unconfined compression test and a
confined compression test. The UDEC analyses were performed
under plane strain conditions, where the out-of-plane strain is
required to be zero. An objective of the work is to provide equiv-
alent Mohr—Coulomb strength and deformability parameters, such
that the results can be used within analytical and continuum-based
approaches. For this reason, plane strain results were modified
using the following equations (Potyondy and Cundall, 2004) in
order to obtain conventional elastic parameter values:

V= 117 @
E- E(l —V2> (3)

where » is the Poisson’s ratio, 7 is the lateral strain ratio (the plane
strain equivalent Poisson’s ratio), E is the Young’s modulus, and E is
the plane strain modulus of deformation.

The understanding of rock mass behaviour is particularly rele-
vant to the analysis of gravity dams. For this reason, the rock mass
beneath the Pedr6gdo dam, as described by Farinha et al. (2012),
was used in this analysis. The blocky rock mass in Fig. 1b is appli-
cable to these analyses. Rock properties provided by Farinha et al.
(2012) were used in this study, except for the intact rock which
required additional Mohr—Coulomb parameters (not provided)
because at specific joint orientations, failure may occur through
intact rock blocks (Table 3 shows the properties used in this

analysis). Also, for the joints, the shear stiffness was assumed to be
half the normal stiffness. Table 4 shows the joint properties used in
the UDEC analyses. Note that a dilation angle of zero was also used
to represent smooth joints (Barton et al., 1985; Kulatilake et al.,
2001).

To simulate loading conditions which may occur within a rock
mass (for example, beneath a dam), the rock mass was tested using
UDEC under unconfined and confined conditions at 10° intervals of
joint set rotation (anti-clockwise from 0° to 90°). The ten UDEC
models were named according to the dip angle of joint set 1 as
follows: ]0, J10, J20, ..., J90. Joint set 2 was always perpendicular to
joint set 1 (as shown in Fig. 1b). Tests were performed on samples
sized 30 m x 60 m of both intact rock and the blocky rock mass
(5 m x 5 m blocks). For the confined tests, the UDEC model was
tested under a range of confining stresses from 0 to 8 MPa. The
upper platen in the tests was moved downward with a velocity of
10 mm/s. The equivalent Mohr—Coulomb strength and deform-
ability (using ISRM (1981) method) parameters were determined
based on the obtained results. It should be noted that the scale
effect of jointed rock mass samples on the mechanical properties of
the same rock mass was studied by Alshkane (2015). It was
concluded that, for a systematic jointed rock mass with fixed block
size, the sample size does not have a significant effect on the axial
stress—strain relationship.

4.1. Unconfined and confined compression tests

The evaluation of strength parameters using unconfined tests on
rock mass samples may not provide representative values, espe-
cially when cohesionless joints are encountered in the rock mass. In
some cases, the unconfined rock mass will fail under its own
deadweight, as mentioned by Kulatilake et al. (2001). Fig. 12 pre-
sents the unconfined compression test results of the rock mass
samples. The test produced zero unconfined compressive strength
at specific joint set orientations. Also, three modes of failure are
noted under low confining stress: shear mode, slip with block
rotation, and sliding. The unconfined compressive strength of the
rock mass is effectively zero when the dip angle of joint set 1 (61) is
between 30° and 80°. In these cases, the weight of the blocks is
sufficient to overcome the frictional resistance to sliding along the
continuous joint set 1 (c = 0, ¢ = 30°).

The failure mode of sample J30 changed when it was tested
under a confining stress of 1 MPa, as illustrated in Fig. 13. The
failure mode changed from slip with block rotation to slip with
shear and tensile failure of the intact rock blocks. Fig. 13 shows the
stages of failure for model ]30. At point A, the slope of the stress—
strain response changes, and most of the staggered joints (set 2)

Table 3
Material properties for UDEC analysis.
Material Density, Young’s Poisson’s Cohesion, Friction Tensile
p (kg/m®) modulus, ratio, v ¢ (MPa) angle, ¢ (°) strength,
E (GPa) a¢ (MPa)
Intact 2650 10 0.2 2 45 1
rock
Table 4
Joint properties for UDEC analysis.

Joint Normal Shear Cohesion,  Friction Tensile
stiffness, stiffness, c (MPa) angle, ¢ (°)  strength,
kn (GPa/m) ks (GPa/m) a¢ (MPa)

Rock/rock 10 0.5 ky 0 30 0

contact
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Fig. 13. Failure process for model J30 under a confining stress of 1 MPa.

have slipped. However, no slipping along joint set 1 has occurred.
The curve changes from linear to nonlinear at point B where
sliding along joint set 1 is more prominent. At this point, the
discrete slippage along set 1 has still not caused a global sliding
failure along the joints. The sample ultimately fails in shear at
point C which is characterised by tensile failure within the rock
blocks.

Fig. 14 shows the deformation modulus calculated for different
orientations of joint set 1 for model J30 at a confining stress of
1 MPa. It was not possible to obtain the results of unconfined
deformation modulus for the J30 to J80 models. Brown and Trollope
(1970) had similar problems in testing physically jointed rock
samples and they used small amounts of adhesive tape and a weak
glue to overcome this difficulty. Numerically, a marginal confining
stress (in plane strain) of 0.05 MPa was applied in order to obtain an

estimate of an unconfined deformation modulus for these joint set
configurations. The UDEC results are compared with empirical
predictions of deformation modulus for a single set of joints
orientated perpendicular to the direction of loading using the
following equation (Goodman, 1989):

1 1 1
Em  E ' Ske )

where E; is the modulus of elasticity of intact rock. The UDEC results
agree well with the empirical prediction for the relevant case of JO
and ]90, however, the data illustrate that deformation modulus can
vary considerably with joint dip angle, as illustrated in Fig. 12. The
intact rock deformation modulus (from Table 3) is also illustrated in
Fig. 14.
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According to the unconfined test results, models J0, ]30 and J60
were selected to study the effect of confining pressure on test re-
sults since these models include all the failure modes described in
Fig. 12. Fig. 15 plots deviatoric stress versus axial strain for model JO
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under different confining stresses. The rock mass behaviour is
observed to be elastic-perfectly plastic, which indicates that the
intact rock controls the behaviour of this type of rock mass. Based
on the maximum axial stress values, a Mohr—Coulomb strength
relationship of 1 = 2+o,tan45° is obtained.

Fig. 16a shows analysis results for model J30 and illustrates a bi-
linear relationship of stress versus strain. For a confining stress of
4 MPa, the deformation modulus changes from 8.3 GPa to 7.4 GPa
before the yield point, as illustrated by dashed lines in Fig. 16a. The
initial modulus is due to the elastic deformation of the intact rock
blocks and joints. When the joints dipping at 120° begin to slip, the
deformation modulus is reduced to 7.4 GPa. Ultimately, failure oc-
curs in the intact rock blocks and, at the same time, slipping on the
joints becomes continuous. Fig. 16b shows the strength envelopes
for sample J30 as well as associated Mohr—Coulomb strength re-
lationships. The data show a bi-linear increase in strength with
confining stress. The reason for this non-linearity is due to the
change in failure mode that occurs as confining stress is increased;
the mode changes from rotation and slip at low confining stress to
shear and tensile failures of the intact rock blocks at high confining
stresses. The shape of the failure envelope is similar to the bi-linear
failure envelopes of saw-blade joints proposed by Patton (1966)
(reported by Ladanyi and Archambault (1969)) in which sliding

Shear stress ( MPa)

Normal stress (MPa)
(b) Mohr-Coulomb strength envelopes.

Fig. 15. Effect of confining stress for model JO.
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Fig. 16. Effect of confining stress for model J30.
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occurs when there is low normal stress and failure of intact rock
blocks occurs under high normal stress. Although smooth joints
were used in this study, the overall behaviour is similar to Patton’s
model (Patton, 1966) because partial slip along the two joint sets
creates a saw-blade like pattern and under high confining stress,
shear failure occurs in the intact blocks. This resulting saw-blade is
illustrated in the image corresponding to point B in Fig. 13.

Fig. 17a presents the confined compression test results for model
]60, which, without confining stress, failed due to sliding along joint
set 1. In this case, the joint strength controls the behaviour of the
whole rock mass. The unique linear Mohr—Coulomb strength
relationship t = 0.05 + oxtan31.4° can be obtained from the data in
Fig. 17b.

The variation of calculated deformation modulus with confining
stress is presented in Fig. 18. The model J30 had the lowest stiffness
under low confining stress. However, when the confining stress
was more than 2 MPa, all the samples showed similar values of
deformation modulus and were also in general agreement with the
empirical relationship (Eq. (4)).

4.2. Effect of stiffness ratio on deformability parameters
Stiffness ratio can be defined as the ratio of shear stiffness (ks) to

the normal stiffness (k) of the joints. Model J60 is used to
demonstrate the effect of stiffness ratio on deformation modulus

=JO
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§_ ©lntact rock Young’s modulus (E)
£ 9000 + -+Empirical (Eq. (4))
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Fig. 18. Deformation modulus of selected models versus confining stress.

(E) and lateral strain ratio (7). The effect of stiffness ratio was
studied in two cases with a confining stress of 1 MPa. In the first
case, the stiffness ratio was increased from 0.1 to 1 while holding
the normal stiffness constant at 10 GPa/m, whereas in the second
case, the stiffness ratio was increased from 0.1 to 1 while keeping
the shear stiffness constant at 5 GPa/m.

Fig. 19a shows that for case 1, increasing stiffness ratio results in
an increase of deformation modulus and decrease of lateral strain
ratio, whereas for case 2 in Fig. 19b, both deformability parameters
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=0+ kn=10 GPa/m Deformation modulus
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Fig. 19. Effect of stiffness ratio on deformability parameters for model J60: (a) normal
stiffness constant and (b) shear stiffness constant.
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decrease with an increase in stiffness ratio. These data illustrate the
sensitivity of results to the selection of joint shear and normal
stiffnesses and emphasise the importance of appropriate selection
during a modelling exercise.

4.3. Equivalent strength and deformability parameters

The determined equivalent Mohr—Coulomb strength parame-
ters of friction angle and cohesion intercept are summarised in
Fig. 20. The deformation modulus can be obtained from Fig. 14. The
lateral strain ratio was calculated for the models at 50% of the
maximum compressive stress for the unconfined tests (see Fig. 21),
and the Poisson’s ratio can be calculated from Fig. 21 using Eq. (3).
As expected, the model J30 has the maximum lateral strain ratio
because it has the minimum deformation modulus under low
confining stress. From these data, one can conclude that these pa-
rameters depend greatly on the loading direction on the rock
masses. As can be seen from Fig. 14, the minimum deformation
modulus is 5.73 GPa and the maximum one is 8.7 GPa. From Fig. 21,
the range of lateral strain ratio is 0.2—0.85. These parameters
should be calibrated according to Egs. (3) and (4) because the study
was achieved under plane strain condition.

5. Conclusions

In this study, methodology to predict the strength and
deformability of blocky rock masses was presented. The validity of

the outputs from UDEC prediction was checked against analytical
solutions for a blocky rock mass. Uniaxial and triaxial tests were
simulated using UDEC under plane strain conditions in order to find
equivalent Mohr—Coulomb strength and deformability parameters
of the rock mass. The following conclusions can be drawn:

(1) The strain- and stress-controlled test methods give identical
results when simulating laboratory test boundary conditions.

(2) Strain-controlled tests using the proposed method per-
formed better than the strain-controlled method using the
servo-controlled function, especially after yield axial stress.

(3) Interlocked blocky rock masses show anisotropic behaviour.

(4) The failure mode of an interlocked blocky rock mass under
low confining stress was observed to be either shear, slip and
block rotation, or sliding. Under high confining stress, the slip
and block rotation changed to slip with shear and tensile
failure in the rock blocks.

(5) Model J30 showed a significant increase in deformation
modulus with an increase in confining stress. Only this
model showed a bi-linear failure envelope.

(6) Stiffness ratio (ks/kp) has a significant effect on the defor-
mation modulus and the lateral strain ratio.

(7) The equivalent strength and deformability parameters
significantly depend on the loading direction on the jointed
rock masses.
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