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Purpose: Advanced diffusion magnetic resonance imaging

benefits from collecting as much data as is feasible but is

highly sensitive to subject motion and the risk of data loss

increases with longer acquisition times. Our purpose was to

create a maximally time-efficient and flexible diffusion acquisi-

tion capability with built-in robustness to partially acquired or

interrupted scans. Our framework has been developed for the

developing Human Connectome Project, but different applica-

tion domains are equally possible.
Methods: Complete flexibility in the sampling of diffusion space

combined with free choice of phase-encode-direction and the

temporal ordering of the sampling scheme was developed tak-

ing into account motion robustness, internal consistency, and

hardware limits. A split-diffusion-gradient preparation, multi-

band acceleration, and a restart capacity were added.

Results: The framework was used to explore different parame-

ters choices for the desired high angular resolution diffusion

imaging diffusion sampling. For the developing Human Connec-

tome Project, a high-angular resolution, maximally time-efficient

(20 min) multishell protocol with 300 diffusion-weighted volumes

was acquired in >400 neonates. An optimal design of a high-

resolution (1.2 � 1.2 mm2) two-shell acquisition with 54 diffusion

weighted volumes was obtained using a split-gradient design.

Conclusion: The presented framework provides flexibility to

generate time-efficient and motion-robust diffusion magnetic

resonance imaging acquisitions taking into account hardware

constraints that might otherwise result in sub-optimal choices.
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INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is able to
provide insight into the complex neural fibre tract architec-
ture of the human brain in vivo (1). It has clinical applica-
tions in the study, diagnosis and treatment of neurological
disorders (2), as well as many scientifically focused appli-
cations, with an important emerging focus on building
comprehensive models of human brain connectivity (3,4).
The acquired dMRI data, using specific gradients with
varying magnitude and direction that introduce sensitivity
to water diffusive processes of molecules in the brain, pro-
vide the input to the chosen analysis pipeline and thus
determine and limit its capacity to probe structural com-
plexity of the human brain. The potential of dMRI in this
context continues to grow with advanced techniques such
as biophysical modelling (5–8), which allow more precise
mapping of micro-structure. However, these advanced
analyses require ever more data, with current trends requir-
ing not only the sampling of a large number of diffusion
sensitization directions, such as in high angular resolution
diffusion imaging (HARDI) (9), but also the collection of
multiple b-value shells (6–8). Furthermore, strategies such
as diffusion spectrum imaging (10) focus on the whole dif-
fusion sensitization space, constructed by diffusion direc-
tions and sensitization levels beyond the single spherical
shell concept. It is clear that the growing range of diverse
analysis models motivates a drive toward both increased
time efficiency and flexibility regarding the choice and
ordering of diffusion sensitization in the dMRI acquisition.

An ideal dMRI acquisition would provide whole brain
coverage volumes with a high spatial resolution, combined
with a completely flexible sampling of the diffusion sensi-
tization space while producing data with high signal-to-
noise ratio (SNR) at a maximum rate of data acquisition to

1Centre for the Developing Brain, King’s College London, London, UK.
2Biomedical Engineering Department, King’s College London, London, UK.
3FMRIB Centre, Oxford University, Oxford, UK.
4School of Medicine, University of Notthingham, Notthingham, UK.

Grant sponsor: European Research Council; Grant number: 319456; Grant
sponsor: Medical Research Council (MRC); Grant number: MR/K006355/1;
Grant sponsor: Department of Health via the National Institute for Health
Research (NIHR) comprehensive Biomedical Research Centre Award (to
Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s Col-
lege London and King’s College Hospital NHS Foundation Trust).

*Correspondence to: Jana Hutter, Centre for the Developing Brain, King’s
College London, 1st Floor, South Wing Street, Thomas Hospital, London
SE1 7EH, UK. E-mail: jana.hutter@kcl.ac.uk

The copyright line for this article was changed on 18 July 2017 after
original online publication.

Received 10 October 2016; revised 2 May 2017; accepted 3 May 2017

DOI 10.1002/mrm.26765
Published online 30 May 2017 in Wiley Online Library (wileyonlinelibrary.
com).
VC 2017 The Authors Magnetic Resonance in Medicine published by Wiley
Periodicals, Inc. on behalf of International Society for Magnetic Resonance
in Medicine. This is an open access article under the terms of the Creative
Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

Magnetic Resonance in Medicine 79:1276–1292 (2018)

1276

http://orcid.org/0000-0003-3476-3500
http://orcid.org/0000-0001-5591-7383
http://orcid.org/0000-0003-1477-304X
http://orcid.org/0000-0001-8925-9032
http://orcid.org/0000-0002-3366-0932
http://orcid.org/0000-0002-2690-5495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


allow as many independent samples as possible in a feasi-

ble examination time. However, both physiological and

hardware constraints impose limits. Diffusion scans with

the desired high sensitization (b-value) push the bound-

aries of the capacities of modern gradient coil systems,

with maximum gradient amplitude, slew rate and duty

cycle (fraction of time for which demand can be placed on

gradient system) all imposing limits on the acquisition. In

addition to hardware constraints, there are also challenges

associated with in vivo studies, such as limited scan time,

subject motion, scan interruptions, and even early scan

aborts (11,12). To maximize utility, the acquisition needs

to be carefully designed to be as time-efficient and self-

consistent as possible and ideally to be robust to non-ideal

examination subjects and conditions. These requirements

hold for any clinical cohort, but are particularly important

for studies of neonates. The analysis of 52 dMRI scans

from non-sedated neonatal term subjects (gestational age

37.28–46.57 weeks, median 41.07 weeks) imaged in our

institution in 2013 reveals that the acquisition was stopped

before completion 17 times (33%) and required parts to be

repeated in another 14 instances (27%) due to awakening

or motion. Measures to accommodate this are thus benefi-

cial for any study. The stimulus for this work is the devel-

oping Human Connectome Project (dHCP), aspiring to

collect data from over 1000 newborns to gain insight into

the development of the human brain. For the dHCP, the

dMRI acquisition needs to be completed in approximately

20 min. The data will be shared with the scientific commu-

nity and should thus be suitable for a wide range of proc-

essing algorithms and neuro-developmental studies.
With an acquisition time (TA) per slice shorter than 100

ms and tolerance to background phase variation caused by

bulk motion (13), single-shot spin-echo echo-planar imag-

ing is still the most commonly used imaging method for

dMRI. However, echo-planar imaging (EPI) is sensitive to

both T2 and T�2 decay. These constrain the echo time (TE)

that can become long to achieve the chosen combination

of b-value and readout duration (Fig. 1a,b), and the dura-

tion of the readout which sets the vulnerability to signal

dropout and susceptibility induced distortion in the phase

encoding direction (PED). Numerous post-processing

techniques to correct for geometric distortions have been

presented, such as the acquisition of additional B0 maps

(14), correction using point-spread-functions (15) and the

reversed gradient method (16). This last method generally

employs a repeated acquisition of every diffusion sensi-

tized slice stack with reversed PED to balance spatial col-

lapse vs stretching, and uses an appropriate post-

processing technique to estimate and correct the underly-

ing static magnetic field (B0). The approach guarantees

recovery of the resolution through a least-squares recon-

struction at the cost of doubling TA. A technique combin-

ing all four PEDs was shown in (17) using retrospectively

combined PEDs in combination with spatial and angular

smoothness constraints.
Diffusion weighting of EPI sequences is commonly

achieved by the Stejskal-Tanner (ST) preparation of

monopolar gradient lobes on either side of a single refo-

cusing radiofrequency (RF) pulse (18) (Fig. 1a). There are

variants including bipolar gradients (19) and the twice-

refocused diffusion preparation (20) that provide good

eddy current properties at the expense of decreasing the

efficiency of the preparation (i.e., prolonging it, tending

to increase TE). A split diffusion gradient (SDG)

approach (Fig. 1b), which splits the second diffusion gra-

dient in two parts placed before and after the refocusing

RF pulse to increase efficiency for a given b value and

also to decrease the effect of eddy currents was proposed

in simulations and in a small study by (21,22). Recently,

multiband (MB) imaging (23,24) was used to accelerate

the dMRI acquisition by acquiring multiple slices simul-

taneously (25), leading for example in the Human Con-

nectome Project (26,27) to a threefold acceleration. With

acceleration comes an increased risk of spin history

effects that can cause signal variation, particularly if

there is subject motion, and consequently other sequence

properties such as slice acquisition order can have

increased importance (28).
These improvements and novel developments have all

been realized individually for specific purposes. Achiev-

ing effective and efficient diffusion acquisitions that take

advantage of the available approaches requires a number

of disparate factors to be balanced, resulting in a

FIG. 1. Two different diffusion preparations, the standard Stejskal-Tanner (a) and the split diffusion gradient (SDG) preparation (b) are shown

with the relevant diffusion parameters in green and the hardware-set limits in black. The composition of the acquisition time of a dMRI scan
with Nd volumes using spin-echo echo-planar imaging is illustrated in (c) and (d). The number of volumes Nd, each specifying a different given

diffusion sensitization, influences the total number of TRs (c), (d) the TR itself depends on the length of the diffusion preparation shown in
green, the length of the EPI read-out shown in blue and the TS extension TSext as resulting for example from the duty cycle.

*http://www.developingconnectome.org/.
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complicated design problem. This work presents a com-
prehensive robust framework that combines key techni-
cal capabilities with an optimization process that
addresses both gradient hardware constraints and vulner-
ability to interrupted or incomplete examinations. It is
designed to acquire dMRI data with maximal time effi-
ciency combined with flexibility to operate in different
regimes where there are differing balances between con-
flicting goals and/or constraints and has the following
key features:

� A MB capability combined with an optimized slice
interleave pattern to accelerate and limit spin his-
tory effects.

� An optimized order and completely flexible sam-
pling of diffusion encoding (b-value shell and direc-
tion of sensitization within a shell) and PED, with
option to freely mix all three in one single scan pro-
moting consistency and usability of data acquired
even in cases where sporadic movement and/or
early scan termination may lead to data loss.

� A flexible diffusion preparation scheme that
includes both ST and SDG patterns to allow TE
minimization.

� A restart facility, allowing continuation of an inter-
rupted scan to completion rather than requiring rep-
etition from the start or a fixed break point.

� A thermal model that can be used to optimize the
acquisition by adjusting all the above factors to min-
imize the impact of gradient duty cycle limits.

For thermal modelling, optimized order and slice
acquisition order, scripts are provided in the additional
material. The used symbols are found in Supporting
Tables S2–S4.

In general, the inputs into these various optimization
techniques depend on the study goals (these may fix the
shells and ratios between shells), the population (which
may define T1, T2, acceptable scan time and expected
motion patterns), and the available hardware (described
by Gmax, slew rate and thermal heating models). The
framework was carefully validated and applied under
different conditions, and then used to design two quite
different protocols: a multishell HARDI protocol for use
in the dHCP project and a higher spatial resolution
shorter duration protocol for neurite orientation disper-
sion and density imaging (NODDI) (5) analysis. The
approach and its ability to deliver input to different
advanced analysis tools are demonstrated in the follow-
ing sections.

METHODS

The structure of the spin-echo echo-planar imaging diffu-
sion weighted sequence is shown in Figure 1c as a com-
bination of Nd blocks (shown in red), each acquiring one
complete slice stack (volume) for a specifically sensitized
sample d in diffusion space. The acquisition of each vol-
ume, composed of Ns slices, consists of acquiring Ne

(Ne � Ns) shots of the base EPI sequence which takes a
time TSbase per shot (in gray). In single-shot acquisitions
without the use of MB acceleration, the number of exci-
tations equals the number of slices Ne¼Ns. Figure 1d

illustrates the spin echo timings for one TSbase, the time
required for the read-out illustrated in blue and the time
available for diffusion preparation gradients in green. An
additional time delay labelled TSext is shown, called TS
extension, which may be required due to thermal heating
of the gradient system (gradient coils or possibly the gra-
dient amplifiers). The total slice time thus equals
TS ¼ TSbase þ TSext. The actual repetition time TR is cal-
culated as TR ¼ Ne � ðTSÞ. Several mechanisms to reduce
the total TA ¼ Nd �Ne � TS for a fixed number of diffu-
sion samples Nd were implemented and are presented in
the following sections. These include the reduction of
the number of shots using MB acceleration, reduction of
the TSext by reordering to manage gradient demand and
optimizations in the diffusion preparation.

MB Acceleration

MB acceleration samples multiple slices at the same
time and thus reduces the number of EPI shots per vol-
ume. With a MB factor of Nm, Ne ¼ Ns=Nm excitations
are required to achieve Ns slices. MB excitation improves
scan efficiency, but for constant bandwidth, the RF
pulses amplitude increases at least as the square root of
the number of simultaneous slices (26,29,30). To keep
within the peak RF amplitude limit, it is necessary to
stretch the pulses or even to time shift them (31) in order
to keep the same bandwidth as a conventional pulse.
Thus use of MB tends to increase the duration of the RF
pulses, which increases TE.

A flexible MB scheme was implemented (32) allowing
the number of slices and the field of view shift patterns
used to distribute aliases according to the properties of
the RF receiver coil array and the required field of view.
MB excitation and refocusing pulses were carefully cho-
sen to maximize slice excitation bandwidth and mini-
mize necessary increase in TE; this was achieved using a
combination of an asymmetric excitation pulse and a
Gaussian refocusing pulse. Due to the use of Gaussian
refocusing, time shifting of pulses was not beneficial
(33). The optimal choice of the field of view (FOV) shift
pattern depends on the properties of the coil and the
coil geometry.

To allow for SNR enhancement, the slice thickness was
chosen to be larger than the final target resolution. If the
slice centers are located according to the desired target
slice separation, resulting in overlapping slices, the target
resolution can be partially recovered from the data using
super-resolution algorithms (34,35) in a post-acquisition
reconstruction stage. To account for the option of overlap-
ping slices and the expected sporadic subject motion, the
slice interleave pattern is important. The scanner software
was modified to provide maximal and constant temporal
spacing between excitations in geometrically close slices,
as well as across the boundaries between subsequent MB
slice packs. One MB slice pack thereby specifies the slices
between locations simultaneously excited from the same
MB pulse (28) (Fig. 2).

This boundary condition depends on the number of
excitations Ne ¼ Ns=Nm, the interleave step I, defining the
spatial distance between slices excited sequentially in
time and the interleave shift IS, the spatial distance
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applied between the slices at the start of subsequent inter-

leaves. The distance from the first slice in each interleave

i to the slice pack start is given as si ¼ mod ðði � 1ÞIS; IÞ.
For each interleave i, the geometrical distance between

the last excitation of this interleave and the first of the fol-

lowing must be equal to the interleave step distance I� 1.

Thereby, the following constraint must hold true:

mod ðNe � ðsi þ 1Þ; IÞ
Distance last slice to slice pack end

þ ðsiþ1Þ
Distance 1st slice to slice pack start

¼ I � 1 8 i 2 ½1; ::; I �:
[1]

This optimality condition is included into Supporting

Script S1.
Single-band volumes are acquired as a geometric refer-

ence and used together with a SENSE reference scan in

the reconstruction pipeline for the MB images. The recon-

struction is formulated as a linear inverse problem consid-

ering the coil sensitivities, the MB encoding pattern and

EPI ghost correction terms. Reconstructed image and

ghosting parameters are estimated from measured data in

an alternating fashion (36) by using, respectively, the con-

jugate gradient algorithm and Newton’s method (37).

Flexible Sampling, Reordering, and Restart

To accommodate the needs of current and future multi-

shell analysis techniques, it is necessary to allow com-

plete flexibility in the distribution of the diffusion

gradients (27). Even if such flexibility is supported by

some vendors at least up to a certain extent, this does

not reflect the general case. The sequence on our clinical

3T Philips Achieva scanner was therefore modified to

allow arbitrary combinations and re-ordering of diffusion

gradient direction and magnitude for each acquired stack

of EPI images. The complete freedom of choosing the dif-

fusion weighting for every diffusion direction allows

each shell to be optimized independently and all shells

to be optimized together. An additional benefit comes

from optimization of the temporal ordering, which can

be used to (1) increase the motion tolerance of the com-

plete dataset by ensuring that imaging volumes with sim-

ilar diffusion sensitizations are widely separated in time

of acquisition. This minimizes the risk that transient

motion will cause data corruption over large contiguous

regions of the diffusion sampling domain. (2) The option

to interleave samples from different b-shells and to select

the order in which particular directions of sensitization

are played out within a shell can be used to manage gra-

dient demand (see below). (3) The temporal order can be

chosen so that the angular density of coverage of each

shell increases uniformly as data acquisition proceeds so

that early termination leaves data that is most likely to

be useful. To take advantage of situations where is it

possible to continue after an interruption (e.g., after suc-

cessfully resettling an infant), a restart facility has been

implemented, which automatically records the last

acquired diffusion sample and re-starts the scan with a

user specified number of volumes to be reacquired to

compensate for motion just before the interruption.

PED

The low bandwidth of EPI in the PED results in large

spatial distortions. The choice of PED determines the

direction of the distortions and whether this will be by

stretching, which preserves pixel level information and

so can be recovered by distortion correction algorithms,

FIG. 2. Illustration of the slice spacing and multiband acquisition order. The slice direction is shown vertically, the excitation order horizon-
tally. The colors illustrate the spatial distance since the last excitation. Different combinations of interleave I and interleave shift IS are illus-

trated in (a), (b), and (c). The spatial distance (three slices) since last excitation is constant for (a) as it fulfills the requirements, whereas (b)
and (c) show substantial deviations (ranging from gaps of one to five in different parts of the excitation pattern—see color code.
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or spatial collapse, which can lead to irreversible infor-
mation loss. Figure 3a, upper row, shows a transverse slice
in a neonatal subject acquired in each of the four possible
PEDs that can be selected for this slice plane. Examples of
information loss by collapse are indicated by red ellipses
in the anterior-posterior (AP) and the right-left (RL)-PED
slices, and complementary stretching can be observed in
the PA and LR-PED images (white ellipses). As the precise
location and nature of distortions are highly subject and
read-out dependent, comprehensive protection against
information loss due to voxel collapse requires comple-
mentary information. Advantages of acquiring images
with all four PEDs over two PEDs have been recently
shown (17) and the proposed acquisition has the potential
to make use of this as well as any future method consider-
ing multiple PEDs.

In the following, two techniques will be discussed
regardless of the number of PEDs used, the “separate”
acquisition, which repeats all diffusion samples with
reversed (or possibly all 4) PEDs, resulting in volumes
jointly used for correction and the proposed “interleaved”
technique, acquiring all PEDs in the same acquisition dis-
tributed over diffusion weightings without repetitions.

“Separate” comes with two drawbacks: limited self-
consistency (resulting from incomplete data due to early ter-
mination of scans or motion artefacts, and changes in subject
position between repeats) and limited time-efficiency, since
the number of distinct angular samples is Nd=2 everywhere
in the brain even though there are large regions that are not
sufficiently impacted by susceptibility induced distortions
to warrant this. An example is shown in Figure 3a, lower
row, where in this more superior slice there is no significant
collapse of information for any PED. In the “interleaved”
case many voxels have up to Nd samples and the voxels
where resolution is lost due to distortion in certain PEDs
still contain information from 1

2 Nd or 3
4 Nd.

To provide maximum flexibility, the sequence was mod-
ified to allow independent selection of any PED for each
diffusion sample, while enforcing consistent sequence tim-
ings and including safety checks for peripheral nerve stim-
ulation, calculating the correct gradient duty cycle and
including EPI ghosting correction data for all four PEDs. To
explore the impact of this approach, a direct comparison
was performed for the specific example of acquiring all
four PEDs, but the general direction of improvements
remains valid for the case of two PEDs. Figure 3b,c shows

the distribution for a fixed number of Nd¼ 24 diffusion
directions acquired by repeating the same six unique direc-
tions in all four PEDs (b) and with interleaved PEDs (c).
The nearest neighbor angle, used as a measure to assess the
spherical density of diffusion samples, is reduced from
67.9	 to 31.9	. To assess the strategy in practice, test data
sets composed of Nd¼ 28 diffusion directions (4b¼ 0,
24b¼2600) were acquired using (i) the full “interleaved”
scheme and (ii) in four “separate” acquisitions using the
same six non-collinear directions in each PED. Acquisition
(i) was repeated after (ii) to check the reproducibility of the
results. Protocol dHCP was used for these experiments, the
acquisition parameters can be found in Table 1.

Thermal Modelling

The heat generated in the gradient system (gradient coils
and amplifiers) depends on the currents demanded to
achieve the gradient waveforms (G) used by the sequen-
ces. Scans that impose high demands on the gradient
system such as dMRI may require cooling periods to be
inserted between successive repeats of the core sequence
to avoid overheating that could cause damage. Thus, TR
consists of the minimal required TSbase for individual
EPI slice excitations, which is independent of thermal
heating and these cooling periods, referred to as TS
extensions (TSext). The maximum temperature may occur
at any time during the acquisition and may reach critical
levels only for brief periods. However, to ensure uniform
contrast properties, the TR must be the same for all slice
stacks, so the most extreme TSext required to avoid over-
heating sets the minimum TR for the whole acquisition.
The worst case thus determines the total time of the
scan. For dMRI, the heating is dominated by the diffu-
sion gradient lobes, although long EPI readouts can also
impose significant demands. Optimization of the acquisi-
tion order within a given diffusion sampling scheme,
can be used to control and mitigate the duration of TSext

required to keep within hardware operation limits. The
readout demand differs with the PED, so that flexible
combination of diffusion sensitization and PED can add
a small additional gain.

Heat Dissipation per Diffusion Direction

The acquisition consists of Nd diffusion samples, where
every dj is characterized by b-value and b-vector, which are

FIG. 3. (a) Representation of two axial slices of a b0 volume in different PEDs. Complete double coverage of the sphere with all four
PEDs and six directions in (b), (c) illustrates the joint interleaved PED acquisition using the same number of 24 diffusion directions.
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translated into different waveforms: G
j
i (axis i 2 fx; y; zg),

depending on the chosen diffusion preparation (see
“Diffusion Preparation” section). These are combined with
the imaging gradients (EPI read-out gradients, slice re wind-
ers and auxiliary preparation gradients), which remain
unchanged for all diffusion samples but vary with chosen
PED. To achieve optimized sampling it can be helpful to
match choices of PED to the pattern of diffusion gradients,
and so in the following each dj with its associated waveform
G

j
i will include b-value, b-vector and PED information.
As all Ne shots of every diffusion sampling are acquired

consecutively in the time TR ¼ ðTSbase þ TSextÞ �Ne, the ther-
mal development will be evaluated for each of these complete
volumes only. In practice, multiple thermal factors, time con-
stants s and positions within the gradient coil are considered
(38) which are hardware and thus vendor specific.

Cumulative Heat Effects

The temperature evolution is cumulative and evaluated
over discretized time segments indexed by m ¼ 0; 1; . . .
with length tm (
10 ms). We consider the dissipated
power Pm

i (axis i 2 fx; y; zg) in [Watts¼VA] generated in
time segment m, calculated from the square of the gradient
strength Gm

i in (T/m) and an axis specific hardware factor,
Hi, which is the product of the square of the inverse of the
gradient coil sensitivity in [T/m/A] and the coil resistance
in [Ohms]¼ [V/A], and thus has units [VAm2=T2]:

Pm
i ¼ ðGm

i Þ
2Hi: [2]

The combined thermal load Lm
i [W] at time index m is

calculated as the sum from the decaying previous ther-
mal load (time point m� 1) and the generated thermal
load in the current segment:

Lm
i ¼ Lm�1

i exp ð�tm

t
Þ

Previous decaying thermal load

þ Pm
i ð1� exp ð�tm

t
ÞÞ

Dissipated power ðgenerated�decayedÞ

:

[3]

Considering a specific set D ¼ fdj j8j ¼ 1; ::Ndg of diffu-
sion samplings, where every d specifies a concrete set of
diffusion parameters for a bval/bvec combination, the com-
bined thermal load after sample dj equals L

j
i. It equals to Lm

i

obtained cumulatively with Equation [3], where m corre-

sponds to the time index j�TR
tm

. In the final step, the worst

case over time (parametrized by diffusion sample dj) and

gradient axes (i) is calculated L ¼ max j;iðLj
iÞ. This value

must never exceed a manufacturer specified hardware load

limit, LHmax. Should L get too large, the length of TSext, dur-

ing which there is no gradient activity so that Pm
i in Equa-

tion [3] is zero, can be increased to allow the thermal load

to decay further in each TR. The whole calculation process

can simply be repeated until a value of TSext is found for

which L is always just less than LHmax for all dj.

Optimization Algorithm

Permutations of set D, specifying the order of its elements,

are from now on referred to as PðDÞ and element j in the

permutation is referred to by dj. A constructive algorithm

was implemented (and is detailed in Algorithm 1 below)

to select the optimal order in terms of minimal thermal

heating for a given set of Nd samples of diffusion sensitiv-

ity space. There is no specific constraint for the set of Nd

samples, every sample can be chosen individually as

given by the needs of the selected diffusion analysis

model. The algorithm chooses in each iteration y a maxi-

mal target load L
y
max and constructs a permutation Pj for

every step j (j ¼ 1; ::;Nd) as long as a valid solution for the

next time step exists. The next diffusion sampling is cho-

sen among the remaining subset of as yet unused diffusion

samples Dj ¼ fdn8n 2 f1; ::;Ndgg;dn=2Pjg. The thermal

load at the end of the current considered TRext (as obtained

from the current Ljþ1) is calculated exhaustively per axis

for all remaining diffusion weightings individually using

Equation [3] with initial thermal load set to Lj, the value

from the previously chosen diffusion weighting. The max-

imum over all gradient directions i is chosen as L
jþ1
n

¼ max iL
jþ1
i;n and this must not exceed the hardware load

limit, LHmax. The next sample (djþ1) is thus chosen as

djþ1 ¼ arg max
D

ðLjþ1
n Þ such that max ððLjþ1

d ÞÞ � Ly
max: [4]

This process is repeated with maximal allowed load

L
y
max. Supporting Script S2 provides implementation

details.

Table 1
Acquired Experiments: (Left) dHCP Protocol, (Right) HighRes Protocol. Relevant Changes are Highlighted in Blue.

dHCP protocol HighRes protocol

Diffusion b¼0 s/mm2 (20), b¼400 s/mm2 (64) b¼0 s/mm2 (6), b¼750 s/mm2 (16), b¼2600 s/mm2 (32)
b¼1000 s/mm2 (88), b¼2600 s/mm2 (128)
Stejskal-Tanner D 42.5 ms, d 14 ms (a) Stejskal-Tanner D 54.8 ms, d 10.5 ms

(b) Split diffusion d1 19.1 ms, d2 17.2 ms, d3 1.0 ms
Timing TR 3800 ms TE 90 ms TA 19:20 min (a) TR 3284 ms, TE 115 ms, TA 3:02 min

(b) TR 7850ms TE 98, TA 7:13
Echo spacing 0.81 ms, EPI factor 83 Echo spacing 0.911 ms, EPI factor 125

Geometry FOV 150 � 150 � 102 mm3 FOV 150 � 150 � 102 mm3

64 slices, slice overlap 1.5 mm 64 slices, slice overlap 1.5 mm
Resolution 1.5 � 1.5 � 3 mm3 Resolution 1.2 � 1.2 � 3 mm3

Acceleration Multiband 4, shift FOV/3 Multiband 4, shift FOV/3
Interleave 3, interleave shift 2 Interleave 3, interleave shift 2
SENSE 1.2, Partial Fourier 0.855 SENSE 1.2, Partial Fourier 0.855

Hardware Gmax 70 mT/m Gmax 80 mT/m
Acquired on 400 neonates 10 neonates
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Note that we deploy this model to determine the ther-

mal load of the diffusion sequence in isolation without
consideration of any prior gradient activity. This is

actually a practically reasonable approach as sequence

preparation and idle time is likely to allow heating from
previously run sequences to be dissipated.

Algorithm 1 Thermal optimization algorithm.

The input for the algorithm is, as stated above, a

spherically optimized set of diffusion directions D. This

set is generated for a multishell HARDI acquisition over

all shells, following specification of each shell’s b-value

and number of distinct directions, using electrostatic

repulsion (39). The full set of sampling points is then

split into four subsets (one per PED) with maximal intra-

subset electrostatic repulsion (11,12,40). The sequentially

used optimization steps are specified in the paragraph

“Ordering” in the Results section.

Diffusion Preparation

The minimal achievable TE for a diffusion EPI sequence

is determined by maximum b-value required, hardware

properties and physiological limits. The hardware set-

tings may be specified by maximal gradient strength

Gmax, maximal gradient slew rate, which together fix the

minimal slope duration r. On our scanner, a slew rate of

100 T/m/s was used, r is obtained as s ¼ Gmax

slew. Together

with times tex and tre required for the excitation and refo-

cusing pulses respectively, these may be summarized by

a vector ~h ¼ ðtex; tre;Gmax;sÞ. The temporal efficiency of

the diffusion weighted EPI is then critically dependent

on the duration of the EPI readout required to achieve

the desired image resolution. Specifically the length of

the readout section that precedes the TE, tR1, as

illustrated in Figure 1d determines the available time for
the diffusion gradients to be played out after the refocus-
ing RF pulse. Because the time structure of the diffusion
gradients must be the same on all axes, it is sufficient to
analyze the diffusion sensitization along the read-out
axis m only. Figure 1a illustrates a typical EPI sequence
diagram with a ST diffusion preparation. The diffusion
properties are characterized by the duration of the diffu-
sion gradients d and the time between gradient pulses D:
~dST ¼ ðd;DÞ. The b-value for the ST preparation is calcu-
lated (21) as

bð~h;~dSTÞ ¼ g2G2ðd2ðD� d=3Þ � s2d=6þ s3=30Þ: [5]

Keeping the same readout and diffusion weighting, the
TE can be reduced by moving part of the second gradient
lobe before the refocusing RF pulse, since the available
time between excitation and refocusing pulses tpre is lon-
ger than the time between the refocusing pulse and the
beginning of the read-out (tpost) as shown in Figure 1a,d.
Assuming a symmetric excitation pulse, the relation TE
¼ 0:5 � tex þ tpre þ tre þ tpost þ tR1 holds.

This SDG configuration (21,22) is illustrated in Figure
1b. The diffusion gradient lobes are conveniently param-
etrized by d2 as the length of the second diffusion gradi-
ent and r ¼ d2

d3
describing the ratio between second and

third lobe durations, with d1 ¼ d2 þ d3. Thereby, using
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the conventions in (21), d1 includes 2 ramp times r
whereas d2; d3 include 1 ramp time r, the full length of

the gradient objects is thus given by d1; d2 þ s; d3 þ s.

Assuming complete use of the available time tpre, the

preparation is uniquely described by ~dSDG ¼ ðd2; rÞ and

the b-value for this SDG preparation calculated as (21)

bð~h;~dSDGÞ ¼g2G2ððd2ð1þ rÞÞ2ðtpre � d2 � ðd2ð1þ rÞÞ=3Þ
þ ðrd2Þ2ðtre þ sÞ � ð1=6Þðd2ð1þ rÞÞs2 þ ð1=20Þs3Þ:

[6]

The practical implementation of the diffusion sequence

calculation within the scanner software occurs in two

steps and is depicted in Algorithm 2.
Step 1: Different TE settings using different combina-

tions of imaging gradient timings and pulses, as speci-

fied by the vendor are proposed, each leading to

available times tpre and tpost.
Step 2: For each of these settings, the diffusion gra-

dients are included and the required Gmax calculated,

resulting either in a valid or invalid solution. For the

SDG preparation, the maximum achievable b-value ~b for

the current settings, is calculated using Equation [6] with

the following settings:

d3 ¼ tpost � s; d2 ¼ d3; d1 ¼ tpre � d2 � s: [7]

If ~b < b, no valid solution is possible and G is set to

G ¼ Gover, with Gover > Gmax . Otherwise, if ~b � b, a valid

solution can be reached and the corresponding required

G is calculated by minimizing TE within the given frame

taking hardware limitations and the minimal crushing

area A for sufficient FID dephasing after the refocusing

pulse into account:

d2; r ¼ arg min
d2 ;r
ðf1; f2Þ

such that

d2=r þ s < tpost; d2 þ d2=r þ s < tpre ðc1Þ;

d2=r þ s > A=G ðc2Þ and

d2 > s ðc3Þ:

8>>><
>>>:

[8]

Thereby, the functions f1, f2 are defined as follows:

f1ðd2; rÞ ¼ jbð~h; d2; rÞ � b̂j|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Residual between desired and achieved b-value

[9]

f2ðd2; rÞ
¼ tpre|{z}

Available time between pulses

�ðd2ð1þ rÞ þ 2sÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st diffusion lobe

� ðd2 þ sÞ|fflfflfflfflffl{zfflfflfflfflffl}
2nd diffusion lobe

:

[10]

Constraint (c1) ensures that the diffusion gradients fit

into the calculated sequence structure in step 1 and (c2)

ensures that sufficient crushing after the refocusing pulse

is achieved by forcing the area of the third lope to be

greater than A/G. Constraint (c3) forces the second diffu-

sion lobe to be bigger than r. If is was smaller, the use of

the SDG technique would not reduce the TE compared

to the standard ST preparation and thus not be benefi-

cial. The function (f1) minimizes the residual between

desired and achieved b-value, effectively assuring that

the sequence produces the diffusion contrast the user

asked for. Function (f2) assures efficiency, by using the

additional degree of freedom given with SDG (ratio r) to

minimize the empty time between the excitation and

refocusing pulse and thus assuring that minimal TE is

achieved. These functions are added with equal weight

for the objective function of the optimization.

Algorithm 2 Diffusion timing calculation including the SDG case.

7
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Final Optimization

The elements described are combined together to opti-

mize the dMRI acquisition given the population, study

and hardware specific settings. The final step constitutes

the choice of the diffusion preparation and the maximal

gradient strength, chosen to achieve high signal. The

signal-to-noise-ratio SNR for the acquisition depends on

the echo time TE, the TA, T1, T2 and the number of dif-

fusion directions Nd and is derived in the following:
Starting from the SNR equation for fixed slice thick-

ness (neglecting details of the slice profile etc.), with N
being the noise standard deviation,

SNR ¼ rexp �
TE
T2ð1� exp�

TR
T1Þ

N
; [11]

the SNR for a dMRI acquisition with fixed TA, leading

to the relation TR ¼ TA=Nd, and assuming dense sam-

pling (41), is given as

SNR=TA ¼ r

TA �N
ffiffiffiffiffiffiffi
Nd

p
exp�

TE
T2ð1� exp �

ðTA=Nd Þ
T1 Þ: [12]

And, given fixed TA and noise level N, the derived

SNR/TA equation is proportional to

S :¼ SNR=TA /
ffiffiffiffiffiffiffi
Nd

p
exp �

TE
T2ð1� exp �

ðTA=Nd Þ
T1 Þ: [13]

Given a limited TA and known T1 and T2 (42), the opti-

mization of the signal depends on TE and Nd. TE can be

decreased by increasing the maximum gradient strength

Gmax and choosing the diffusion preparation, parame-

trized by ~d (described in section Diffusion preparation

for both ST and SDG preparation), whereas Nd depends

on thermal loading via the TSext which in turn depends

on the gradient waveform details and may be highly sen-

sitive to increasing Gmax . Thereby, for this case of fixed

TA, both TE and Nd depend uniquely on the diffusion

variables and the maximum gradient strength Gmax :

ðGmax ;~dÞ ¼ arg max
Gmax ;~d

SðTEðGmax ;~dÞ;NdðGmax ;~dÞ : TA;T1;T2Þ:

[14]

The optimality algorithm thus takes the individual study

requirements into account.

RESULTS

The created modified dMRI acquisition is highly flexible

and can be used to design quite different acquisitions

depending on priorities and hardware constraints. It has

been used to create an optimized acquisition for the

dHCP project and this can serve to illustrate some key

trade-offs that the approach allows and can exploit. Key

design requirements for dHCP are: total TA of 20 min,

minimal imaged volume for the target population set at

145 � 120 � 96 mm3 which is sufficient for up to the

95th percentile for head size at 44 weeks gestational age,

and a HARDI prescription having four shells (b0, b400,

b1000, b2600) with a distribution of 5:16:22:32 volumes

per shell that was optimized for the neonatal brain

(43,44). The second experiment was designed to opti-

mally depict the cortical surface and thickness especially

in pre-term neonates. Therefore, a NODDI type protocol

(5) with two shells, b750 (16 directions) and b2600 (32

directions) was designed with a focus on high spatial

resolution and high SNR but without the limitation of a

fixed TA as in the case of the dHCP experiment.
It makes furthermore use of the flexible PED capaci-

ties, as its 6 b-zero volumes are distributed throughout

the scan in pairs with reversed PED to allow for top-up

distortion correction. The optimized sequence has been

implemented on a clinical 3T Philips Achieva system

operating at up to 80 mT/m on each axis and was tested

using phantoms, adults scanned in a standard Philips

32-channel head coil and neonates imaged during natu-

ral sleep using a dedicated 32-channel neonatal head

coil (RAPID Biomedical, Rimpar, Germany) and patient

handling system (45). Written, informed consent was

obtained for all participants prior to scanning. Neonatal

informed consent was provided by someone with paren-

tal responsibility. All study procedures were reviewed

and approved by the Riverside Research Ethics Commit-

tee (14/LO/1169). The final optimized protocol parame-

ters are summarized in Table 1. All images were

reconstructed using the MB reconstruction described

above and distortion corrected using FSL5’s top-up (16)

and eddy (46).

Exploring Diffusion Gradient Patterns to Minimize TE

A key parameter that impacts on SNR is TE and this can

potentially be reduced for a given spatial resolution and

diffusion weighting by adopting the SDG waveform. The

limiting condition is always the maximum diffusion

weighting, so we limit the following discussion to con-

sidering the maximum b value only, which in this case

is 2600 s/mm2. The key sequence parameters to be con-

sidered are the duration of readout before the time of the

spin echo and the ratio r between gradient lobe durations

d2 and d3. Figure 4a shows the TE reduction

(TESDG � TEST) achieved using the SDG preparation with

the maximum available gradient strength of 80 mT/m, a

matrix size of 124 � 125 and different choices of SENSE

(1.0–2.0), partial Fourier (1–0.8) and ratio r between d2

and d3. It shows that a beneficial setting is achievable for

all read-out lengths and there is an optimal r. Certain set-

tings of r, corresponding to an extension in the spacing

between excitation and refocusing, lead to an increased

TE using SDG preparation, as indicated in the upper

right corner of Figure 4a (shaded red). Thus, although

there is always an optimal r, for a short readout the SDG

pattern can result in longer TE than the ST preparation

because of the constraints on the minimum duration of

the second diffusion lobe. For these parameters, SDG is

not beneficial.
For the given b-value and gradient strength, the

achievable reduction in TE reaches its peak for read-out

length of approximately 49 ms with a reduction of 19

ms, after which the crushing constraint limits further

gains by inhibiting any further reduction in d3. The spa-

tial resolution that can actually be achieved then
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depends on choices of parallel imaging (SENSE/
GRAPPA) and partial Fourier factors.

Although the benefit of using the SDG preparation
increases with the duration of readout, so does the abso-
lute TE. To explore key trade-offs in the optimization,
we set the readout duration to 90 ms which achieves an
TE reduction from 115 to 98 ms when Gmax ¼ 80 mT=m.
For fixed readout duration, the TE decreases with grow-
ing Gmax. The duty cycle induced extension in TS, and
thus the total imaging time TA, depends critically on the

number of samples on the high b shell (Fig. 5a). For 32
directions, as in a conventional HARDI acquisition, TSext

increases rapidly for the SDG preparation for gradient
strength above Gmax ¼ 45 mT=m due to excessive thermal
demand (Fig. 5b). Since in this case the design did not
include a total TA constraint, the curves in (Fig. 5c)
(light blue for SDG and blue for ST) show the obtained
SNR for the most efficient operating point given hard-
ware constraints. There is a clear benefit for the SDG
preparation despite the increase in TR compared to the

FIG. 4. Results for the HighRes experiment. (a) The difference in TE between SDG and ST preparation for different read-out length (as
resulting from choices of SENSE factors of 1.0–2.0 and partial Fourier factors of 1–0.8) and ratios r. The chosen parameter setting for

the high spatial resolution protocol is marked with a cross. Diffusion weighted b¼2600 for ST (b1) and SDG (b2) and mean b¼2600
diffusion weighted (DW) signal for ST (c1) and SDG (c2) from 30 volumes of the same subject.

FIG. 5. Results for the high resolution (HighRes) experiment with the chosen configuration marked with a gray line (here corresponding to
Gradient strength¼80 mT/m). (a, b) The TE reduction and the TA is shown for different Gmax. (c) The SNR per unit time for ST, SDG and TR
matched ST is illustrated. The red line (TR matched) corresponds to a setting using the ST preparation with the TR matched to the SDG

preparation. This version differs from the hardware optimized ST preparation (blue curve) only by its increased TR, which increases SNR by
dint of making the scan take longer, although the result still remains inferior to the presented SDG preparation (light blue curve).
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ST preparation. The red line shows the SNR for the ST
preparation with TR increased to match the SDG prepa-
ration to eliminate effects due to the longer TR. This
demonstrates that although increasing the total TA for
the ST preparation does increase its SNR, it is still less
efficient then the SDG preparation in this case.

Predictions for a two-shell protocol described above
using a MB factor of 4, no SENSE and partial Fourier of
0.85 were verified with the ST preparation HighRes-a:
(TE/TR¼ 115/3284, TA 3:02) and the SDG preparation
HighRes-b: (TE/TR ¼98/7850 ms, TA¼ 7:13). The
increase in TR for HighRes-b compared to HighRes-a is a
result of the increased TS extension due to thermal heat-
ing. The cross in Figure 4a marks these imaging parame-
ters. Figure 4b shows b¼2600 s/mm2 data acquired from
the same exemplary subject using the ST preparation
(b1) vs. the SDG preparation (b2). The mean diffusion
signal calculated for both are shown in Figure 4 (c1) and
(c2).

Additional results for protocol HighRes are shown in
Supporting Figures S1 and S2. The image results for all
shells for a preterm neonate (29þ 0 weeks gestational
age) both before and after pre-processing are illustrated
in Supporting Figure S1. Finally, Supporting Figure S2
depicts the results after NODDI (5) analysis for three
exemplary subjects. The high resolution allows visualiza-
tion of the high mean DW signal from the b¼ 2600 shell
in the cortex and early-developing white matter tracts, a
pattern that is strikingly different from the adult case.
This is of high relevance for the preterm subjects, as the
cortical thickness and surface properties have been asso-
ciated with neurodevelopmental delays (47).

Acceleration Strategy

The choice of the acceleration parameters was driven by
unfolding capacity, SNR, robustness to motion, the EPI
bandwidth, and effect on TE of increased RF duration
for higher MB factors. The use of all four PEDs forces an
EPI echo train length sufficient to encode the longest
head dimension, which is AP for transverse slices. Since
this is more than required for LR PED, an in plane
SENSE factor of 1.2 was used. The choice of this factor
was influenced by FOV considerations: The chosen
interleaving PED strategy forces a square FOV (145 �
145 mm2), which adds about 20% to the required neona-
tal brain FOV (145 � 120 mm2). Therefore, a SENSE fac-
tor of 1.2 fits this additionally encoded area well. The
choice of the MB factor was driven by g-factor calcula-
tions. These were generated from data acquired on a typ-
ical neonate and performing reconstructions for a choice
of MB factor and FOV shift, the results for the SENSE
factor of 1.2 for both AP-PA and RL-LR PEDs. These
show, that a relatively low g-factor can be achieved for
MB4, with an optimum for all PEDs if combined with a
FOV shift of FOV/3. This result is in accordance with
previous studies (48). The obtained numbers are shown
in Supporting Table S1.

From here, the design of a slice interleave order fulfill-
ing the required periodic MB slice condition (Eq. [1])
was chosen as I¼ 3 interleaves with a shift of IS¼ 2.The
resulting interleave order for the 16 shot acquisition

(Ne¼ 16) is shown in Figure 2a, with the time of excita-
tion from left to right and the slice dimension from top
to bottom, including dotted lines to indicate MB slice
pack boundaries. The interleave step I is shown in red,
the interleave shift IS in black and the distance between
respective first and last slices in gray. This is illustrated
quantitatively by the slice color in Figure 2 marking the
spatial distance between the current and the closest slice
excited by the previous RF pulse. Thereby the spatial
distance in the optimal pattern (Fig. 2a) equals 3 for any
slice, (Fig. 2b) illustrates a suboptimal case with I¼ 3,
IS¼ 1, where the distance varies between 2 (orange) and
5 (green) and (Fig. 2c) a case with I ¼ 4; IS ¼ 1 where the
distance varies between 1 (red) and 6 (green) contribut-
ing to increased saturation in neighboring slices and vul-
nerability to motion.

Diffusion Preparation

The proportions of diffusion volumes per shell, the max-
imum b-value 2600, the g-factor driven choice of the
acceleration strategy as well as the limited TA of 20 min
set the frame for further optimization to maximize the
achievable SNR as stated in Equation [14]. Thereby,

1. Step 1: A gradient strength Gmax between 40 and 80
was selected,

2. Step 2: the corresponding TE and—for the fixed
TA—Nd determined and finally

3. Step 3: the SNR for this acquisition was calculated
(Eq. [14]) for each of these settings.

The results for different combinations of the resulting
parameter combinations (Gmax, TE, Nd, SNR) are illus-
trated in Figure 6a–d.

Figure 6a shows the trade-off between TE vs. Gmax for
both ST and SDG and illustrates the decrease in TE
achievable using the SDG preparation for all gradient
strengths as compared to ST. For example, for
Gmax ¼ 80 mT=m, TE was lowered from 87 to 80 ms.
However, the enhanced load on the gradients with the
more demanding SDG preparation leads to a significant
decrease in the number of volumes Nd that can be
acquired in 20 min. This is evident from Figure 6b
where the curve for ST is always to the right of the curve
for SDG, so that at any given TE, Nd is larger for the ST
case. Contrary to what might be expected, the possible
number of directions achieved within 20 min increases
as TE increases in both cases. This is because when TE
increases, the maximum b-value can be achieved with a
lower peak gradient, which decreases the thermal load
and so reduces the TSext. The resulting SNR for a 20 min
examination calculated using Equation [13], is shown for
different gradient strengths in Figure 6c and for different
numbers of diffusion directions in Figure 6d, illustrates
that under the given parameters, the SDG preparation is
not favorable as the benefits achieved by lower TE are
counteracted by a significantly reduced number of vol-
umes. An optimal operating point is observed for the ST
preparation for a gradient strength of 65–70 mT/m. For
the dHCP project 70 mT/m was chosen and led to
Nd¼ 300 (b0:20, b400:64, b1000:88 b2600:128). For this
optimization step, an optimal ordering using the strategy
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described above was assumed. Combining the selected

SENSE factor of 1.2 with a half Fourier factor of 0.85

allowed an in-plane resolution of 1.5 mm2 without any

penalty in TE or TSext.

Ordering

Finally, the ordering and PED interleave strategy needs

to be determined. The ordering and distribution of the

diffusion samples was determined taking uniformity for

interrupted scans and thermal simulations into account.

Both of these yield optimal temporal orderings, which

are of course generally not the same. However, experi-

mentation showed that acquisition orders that are robust

against early termination generally interleave all shells,

which is favorable for reducing thermal heating of the

gradients. Nevertheless, small changes in ordering can

substantially impact on the thermal load by avoiding

thermal peaks and this reduces duty cycle extensions.

Combining these considerations resulted in the follow-

ing: The four sequential optimization steps which are

stated below with the resulting parameter in bold for

every step:

1. Generate diffusion sample set consisting of samples

(bval, bvec).
2. Optimality condition: maximal electrostatic repul-

sion, no ordering.
3. Generate optimal subsets for all required PED’s

(bval, bvec, ped).
4. Optimality condition: maximal electrostatic repul-

sion within each PED, no ordering.
5. Generate optimal ordering (bval, bvec, ped, index).
6. Optimality condition: optimal order of exploration

of diffusion encoding space to minimize data loss

in the event of curtailed examinations.

7. Generate optimal ordering (bval, bvec, ped, index)
following Algorithm 2, operating sequentially on
chunks of the sample set.

8. Optimality condition: minimal thermal heating).

The bash script given in Supporting Script S3 does
steps 1–3. Supporting matlab script S2 serves for step 4.
Steps 3 and 4 both modify the index order.

Figure 6e illustrates the evolution of a specific thermal
model over time for the sequential and the optimized
interleaved ordering. This approach avoids worst case
scenarios created by consecutive high b-value directions,
which then influence the TR of all 300 volumes. The use
of MB allows further optimization, as the number of con-
secutive excitations with the same gradient load is
reduced by the MB factor.

With a MB factor of 4, the influence of thermal reor-
dering of the diffusion samples from a sequential
approach with each b-value shell fully acquired before
starting on the next, to a fully interleaved approach
allowed the acquisition of 300 directions compared to
225. Without MB, reordering allowed the acquisition of
67 directions compared to 54 for the sequential case
featuring interleaved PEDs. Assuming the worst-case
scenario – repetition of the same directions in two PEDs,
only 27 volumes would be achievable in the given time
frame. These improvements are illustrated in Figure 6f.

As shown in Figure 3b,c, obtained using the acquisi-
tion parameters in protocol dHCP, the approach of using
all four PEDs rather than repetition of reverse PEDs
allows denser angular coverage. The fractional anisot-
ropy maps in Figure 7 depict the results from the illus-
trative example of the scans of Nd¼ 28 diffusion samples
acquired in one single scan with four interleaved PEDs
and 24 collinear directions (left and right columns) and
the result obtained from combining for consecutive scans

FIG. 6. Different optimization steps for the dHCP acquisition are shown with the chosen configuration marked with a gray line: (a) TE vs.

the maximal gradient strength Gmax, (b) TE vs. number of volumes Nd, (c) SNR vs. Gmax and (d) SNR vs. Nd. The TS extension TSext for
(e) sequential ordering with ascending b-values and using the interleaved and optimized ordering. The y-axis indicated the TS extension
factors. (f) Improvements in achievable distinct diffusion directions in 20 min.
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with four PEDs using the same six collinear directions.

Regarding distortion correction, the data was processed

with a tool originally developed for maximum perfor-

mance with repeated PEDs (16), but the data is prepared

to be processed with future developments using four

PEDs. The increased visualization of the anisotropic con-

tent is illustrated in the orange circles. When applied to

the Nd¼ 300 directions scheme, the mean nearest neigh-

bor angle decreased from 27.63	 (b400), 23.14	 (b1000),

and 19.11	 (b2600) to 19.16	, 16.38	, and 13.5	 for the

non-collinear Nd¼ 300 directions compared to a repeti-

tion of 150 directions in two PEDs.

Comparison to Previously Used dMRI Neonatal Sequence

The achieved protocol was compared to a previously

used HARDI protocol on our clinical 3T Philips Achieva

on neonates. This protocol needed previously to be

acquired in separate scans for different b-values to allow

for different diffusion directions tables per b-value. Fur-

thermore, the acquisition of the higher b-value was split

in four parts to allow re-acquisition of subsets if there

was data loss due to head motion. The new approach

presented here overcomes these limitations and has the

advantage of one continuous acquisition, which signifi-

cantly reduced preparation times, stabilizes the acoustic

environment for the infant, and produced more consis-

tent data. In addition, with matched geometry, the con-

ventional protocol takes about 30 min for 96 directions

compared to 20 min for 300 directions.

Motion Robustness

The full dHCP protocol was tested by scanning 400 sub-

jects. Complete dMRI data were obtained on 334 of

these: 44 subjects woke up and could not be resettled

before the start of the dMRI; 73 woke during the dMRI
and of these, 51 were successfully resettled and the scan
continued using the restart capacity. A representative
case is shown in Figure 8a together with volumes
acquired before and after resettling of the baby with an
overlap of five volumes. Only 22 scans were aborted, but
the uniformly spread diffusion scheme allowed the use
of even partially acquired data.

Figure 8b illustrates the increasing bipolar electrostatic
repulsion energy for each shell as the acquisition pro-
ceeds. Figure 8c illustrates the resulting increasing den-
sity as 50, 200, and finally 300 volumes are acquired.
The constrained spherical deconvolution (CSD) results
from the brain stem in (d), calculated from the outer
shell illustrate the growing accuracy in the depiction of
crossing fibers (green ellipse) and a general reduction in
the background noise (orange ellipse).

Longer Duration Multishell HARDI (dHCP) Acquisition

Reconstructed diffusion weighted images (DWI) and proc-
essing results from one exemplary neonate (GA 40þ 2
weeks) for the 19:20 min, 300 volume protocol summa-
rized in Table 1 are shown in Figure 9. An example of sli-
ces acquired in all four PEDs at different levels in highly
distorted regions is depicted in Figure 9a. These show,
that the combined use of all PEDs distributes the regions
of collapse and stretching throughout the data so that a
more diverse distribution of affected voxels is produced
while still allowing effective distortion correction with
the given tools (even if the used tools do not reach maxi-
mum performance with an interleaved PED scheme).
Analyses were performed using constrained spherical
deconvolution (MRtrix3) (49), NODDI (5) and model-
based fiber orientation estimation using BEDPOSTX (FSL)
(50,51). The orientation dispersion index maps using
NODDI are shown in Figure 9b with a detail view in 9b1.
The mean diffusion signal shown in Figure 9c illustrates
the inherent low signal in the white matter of the neonatal
brain. Higher signal can be observed in areas where myeli-
nation is already underway, such as the corticospinal
tracts, thus enabling developmental changes to be clearly
observed. Two regional detail views (c1-c2) of the con-
strained spherical deconvolution results obtained using
only the outer shell are discussed in the following. (c1)
illustrates the coronal centrum semiovale and shows clear
evidence of lateral projections of corpus callosum (red)
through corona radiata (blue) and superior longitudinal
fasciculus (green, see yellow arrow in figure), as well as
the radial orientation of fibers within the cortical ribbon
(orange arrow). The coronal detail view of the brainstem
in Figure 9c2 clearly demonstrates the crossing fibers in
the pons between the cortico-spinal tracts (blue) and the
transverse pontine fibers (red) feeding into middle cere-
bellar peduncles (green) illustrated by the yellow arrow as
well as the crossing pattern of the decussations of the
superior cerebellar peduncles near the midline (orange
arrow). Figure 9d shows that up to three compartments
can be reliably estimated in each voxel using FSL’s BED-
POSTX. Crossings in the centrum semiovale, as well as
axonal insertions to the cortex are shown in the axial view
(right panel). Finally, Figure 9e, showing probabilistic

FIG. 7. Fractional Anisotropy (FA) maps generated from the inter-
leaved (left column), separate (middle), and repeated interleaved
(right) acquisition.
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tractography results using FSL’s PROBTRACKX (51) for
three subcortical projections: the optic radiation, acoustic
radiation, and anterior thalamic radiation, indicates that
the data quality allows such thin subcortical projections
to be tracked. The maximum intensity projections along
the axial plane are superimposed on T2 images. The color-
bar indicates the path probability. Reconstructed images
and additional post-processing results are given in Sup-
porting Figure S3.

DISCUSSION

Time-efficiency and flexibility are key requirements for any
dMRI acquisition, especially as the complexity and diver-
sity of analysis techniques continue to rise. This article
presents a framework combining different developments
and modifications to current state-of-the art dMRI sequen-
ces that together can achieve a highly efficient and opti-
mized acquisition. The approach is able to reveal how
different factors can be traded to balance scanner hardware
constraints and sequence requirements. It includes com-
plete flexibility in ordering and combining diffusion gra-
dients and EPI phase encode directions (PED), combined
with factors to promote efficiency, such as gradient thermal
modelling and optimization of b-vector sampling order so
that from sequence start there is continued near-uniformity
but growing density in the diffusion domain. A restart
capacity was also implemented to accommodate scan inter-
ruptions, which allows continuation from the point of

interruption with a user defined overlap rather than restart-

ing the entire scan.
The motivation for developing the combined capability

was to address the challenge of maximizing the data that

can be acquired in the limited TA available during a

neonatal examination and at the same time to address

the need to be robust to the disruptive effects of motion,

scan interruptions, and aborts in neonatal magnetic reso-

nance imaging acquisitions. These were pressing needs

for the dHCP, but the same issues arise for many, if not

all, clinical studies. Further work might include the

automatic identification of motion corrupted volumes

and the subsequent automatic choice of overlap or even

partial re-acquisition of corrupted volumes.
The SDG preparation is an interesting alternative to

the Stejskal Tanner preparation, yielding significant

decreases in TE with associated enhancement in signal

(Fig. 4). Initially, this seemed like a gain with no disad-

vantage except in relation to possible specific require-

ments on the temporal structure of gradient sensitization

that may be needed for some models (5,6). A further

advantage is decreased eddy currents (21,22) although

use of non-balanced gradients can result in signal loss

due to concomitant gradients (52). However, the

increased efficiency of SDG is also accompanied by

increased demands on the gradient system, so that duty

cycle limitations can impose increases in TR to allow

cooling. This constraint is increasingly stringent as the

FIG. 8. (a) Image volumes from the dHCP protocol for a subject for whom a restart was required illustrating the overlap and the
improved quality of the volumes acquired after resettling and restarting. The use of partially acquired data sets is illustrated in (b–d):

with the mean bipolar electrostatic repulsion energy shown in (b), the increasing angular coverage after 50, 200, and 300 volumes in (c)
and corresponding showing detailed views of the brainstem following a constrained spherical deconvolution analysis of the outer shell
generated for the same numbers of sampled directions.
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number of required diffusion sensitized volumes, and
hence total acquisition duration, increases. Further mod-

ification of the timings, such as a gap between the first
and second diffusion lobe, might allow balancing TE
reduction and TR extension better. For the planned 20
min duration of the dHCP diffusion scan, TS extension
dominated over reduction in TE leading to a lower over-

all SNR and scan efficiency with the SGD approach.
Optimizing dMRI involves balancing many parameters,
such as gradient strength, direction ordering, b-value
ratios, thermal extension, and acceleration strategies
such as MB, SENSE, and partial Fourier factor. This is a

complex multifactorial problem, which we addressed by
seeking to optimize SNR for a scan with fixed scan time
using models that seek to capture key factors, but inevi-
tably also made simplifications, for example, not includ-
ing details of slice profiles. The approach has been

found to be effective for finding effective choices of
sequence parameters, but the SNR prediction should be
taken as a guide only. For detailed performance predic-
tion, more sophisticated simulation is required, such as
full Bloch simulation taking account of RF pulse

choices.
The flexible framework we have presented allows

these aspects to be freely combined and provides tools
for assessing the effects of different choices. In the case
of the dHCP acquisition, an increase in the achievable

number of distinct directions from 54 (or even 27 in a

theoretical worst-case scenario) to 300 for a 20 min
acquisition was achieved. This allowed for dense angular
sampling and also builds in redundancy that allows use-
ful diffusion analysis to proceed when the data is dam-

aged by sporadic motion that may nonetheless have been
so intermittent as not to trigger a decision to stop the
examination.

The fourfold interleaving of PEDs throughout the scan

provides maximal diffusion sampling density compared
to repetitions with reversed PED. It provides data suit-
able for distortion correction methods [such as proposed
by (17)] that can make use of the available complemen-

tary information, acquired in a single scan. Another
potential advantage of using all four PEDs is that arte-
facts, such as from residual fat signals, get dispersed to

the maximum number of different locations. As a result,
only a quarter of samples for a given voxel are ever likely
to be contaminated by a given artefact. The increased
information content, diversity and efficiency of the

acquisition using interleaved PEDs has been shown here.
However, the full benefits for distortion correction will
be evident only when combined with an approach which

exploits the full range of information. This is the subject
of ongoing research.

In view of the tendency of babies to make sporadic
movements, it is common in neonatal data for individual

FIG. 9. Results from the dHCP protocol showing native and distortion corrected images in four exemplary slices (a). Analysis results
after processing with different algorithms: (b) Orientation dispersion index maps obtained using NODDI with a zoom to the white matter

(b1) (c) Average DWI map obtained with constrained spherical deconvolution (MRTrix3) with two detailed views (c1–c2) and (d) using
BEDPOSTX. (e) Probabilistic tractography results for three subcortical projections.
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slice stacks to be fractured by changes of position, so

that realignment is likely to be best addressed at the

excited slice pack level rather than at the whole volume

level, The use of MB excitation is helpful in this regard

as it ensures that multiple slices are acquired from differ-

ent parts of the brain at the same time. A consequence of

realigning individual slices or MB groups of slices is that

there is likely to be non-uniform data within each real-

igned volume. To decrease the risk of gaps appearing in

the data, the slice thickness was chosen to be larger than

the target resolution. If the slice centers are located

according to the desired target slice separation, resulting

in overlapping slices, the target resolution can be par-

tially recovered from the data using super-resolution

algorithms (32,34) in a post-acquisition reconstruction

stage. The employed parameters for the presented experi-

ments can be found in Table 1.
A future direction of research for the proposed thermal

modelling algorithm is the extension from inter-volume

to intra-volume interleaving of diffusion samples. This

could further distribute gradient demand by reducing the

number of successive applications of any single gradient

waveform below what is needed for a whole volume.

CONCLUSION

In summary, a design framework for dMRI acquisitions

has been presented, together with a strategy to optimize

diffusion space sampling accounting for hardware con-

straints in order to produce dMRI data in a highly effi-

cient and flexible manner. Its development was

motivated by the requirements of the dHCP project, and

it has enabled a highly efficient acquisition in which a

300 sample multishell diffusion data set can be obtained

in 20 min. To illustrate the flexibility of the approach a

completely different optimal solution, employing a mod-

ified diffusion preparation and a maximal gradient

strength for optimized SNR/minimal TE but accepting

the resulting prolonged TA due to thermal heating was

designed. This is, for the hardware deployed, only feasi-

ble for a limited number of high b volumes.
Demonstration and use of the combined capability

involves a specific implementation on a specific clinical

scanner, but all the ingredients, including the choice of

interleave pattern, the thermal and motion robustness

optimization, and the diffusion preparation develop-

ments can have wide applicability, so that the framework

can help design dMRI studies more generally.
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tial and pitfalls. Front Hum Neurosci 2015;8:1066.

48. Xu J, Moeller S, Auerbach EJ, Strupp J, Smith SM, Feinberg D,

Yacoub E, Uurbil K. Evaluation of slice accelerations using multiband

echo planar imaging at 3T. NeuroImage 2013;83:991–1001.

49. Tournier JD, Calamante F, Connelly A. MRtrix: diffusion tractography

in crossing fiber regions. Int J Imaging Syst Technol 2012;22:53–66.

50. Sotiropoulos SN, Hern�andez-Fern�andez M, Vu AT, Andersson JL,

Moeller S, Yacoub E, Lenglet C, Ugurbil K, Behrens TE, Jbabdi S.

Fusion in diffusion MRI for improved fibre orientation estimation: an

application to the 3T and 7T data of the human connectome project.

NeuroImage 2016;134:396–409.

51. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW.

Probabilistic diffusion tractography with multiple fibre orientations:

what can we gain? NeuroImage 2007;34:144–155.

52. Baron CA, Lebel RM, Wilman AH, Beaulieu C. The effect of concomi-

tant gradient fields on diffusion tensor imaging. Magn Reson Med

2012;68:1190–1201.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.

Fig. S1. Image results in the coronal, sagittal, and tranverse plane from one
subject (GA 29 1 0 weeks) scanned using the HighRes protocol. The first
row (a–c) shows the images after Multiband reconstruction, (d–f) after pre-
processing including distortion and motion correction. Thereby, the col-
umns show from left to right data acquired with b 5 0, b 5 2600 and
b 5 750. The left column shows a b 5 0 volume, the middle column a
b 5 2600 volume and the right column a b 5 750 volume.
Fig. S2. NODDI analysis results from three subjects, scanned with the
HighRes protocol. First row (a–c): preterm neonate GA 29 1 0 weeks, sec-
ond row (d–f): term neonate GA 43 1 2 weeks and third row (g–i): term neo-
nate GA 36 1 2 weeks. The orientation dispersion index (OD) is shown in
the left, the intra-cellular volume fraction (Vicf) in the middle and the isotro-
pic volume fraction (Viso) on the right side. The yellow arrow in (b) points
toward the cortical surface and the blue arrow in (e) shows the cortical
folding depicted in high resolution.
Fig. S3. Results from the dHCP protocol showing 12 consecutive native
images in a mid-brain slice (a). Analysis results after processing with differ-
ent algorithms: (c) Fractional Anisotropy maps, (d) ODI maps obtained
using NODDI with a zoom to the white matter (d1) (e) Average DWI map
obtained with CSD (MRTrix3) with two detailed views (e1–e2) and (f) using
BEDPOSTX. (g) Probabilistic tractography results for three subcortical
projections.
Table S1. g-Factor Calculations for Different Combinations of Multiband
Factor, Shift Factor and Phase Encoding Direction.
Table S2. Symbols Used in the Slice Order Optimization Section.
Table S3. Symbols Used in the Thermal Heating Section.
Table S4. Symbols Used in the Diffusion Optimization Section.
Script S1. Slice order optimization.
Script S2. Thermal modelling optimization.
Script S3. Generation of evenly distributed multi-shell 4-PED diffusion
samples.

1292 Hutter et al.

http://www-personal.umich.edu/amatakos/_files/matakos,dissertation.pdf
http://www-personal.umich.edu/amatakos/_files/matakos,dissertation.pdf

	l
	l
	l
	l
	l

