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Abstract23

Brewing lager beers from unmalted sorghum traditionally requires the use of high24

temperature mashing and exogenous enzymes to ensure adequate starch conversion.25

Here, a novel low-temperature mashing system is compared to a more traditional26

mash in terms of the wort quality produced (laboratory scale) from five unmalted27

sorghums (2 brewing and 3 non-brewing varieties). The low temperature mash28

generated worts of comparable quality to those resulting from a traditional energy29

intensive mash protocol. Furthermore, its performance was less dependant on30

sorghum raw material quality, such that it may facilitate the use of what were31

previously considered non-brewing varieties. Whilst brewing sorghums were of lower32

protein content, protein per se did not correlate with mashing performance. Rather, it33

was the way in which protein was structured (particularly the strength of protein-34

starch interactions) which most influenced brewing performance. RVA profile was35

the easiest way of identifying this characteristic as potentially problematic.36
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1. Introduction43

Brewing lager style beers using predominantly unmalted sorghum requires the use of44

exogenous mash enymes and specific mashing schedules tailored to the conversion of45

sorghum starch. This is in part due to the high gelatinisation temperatures of sorghum46

starch (Espinosa-Ramírez, Pérez-Carillo & Serna-Salvídar, 2014) which typically47

require that mash is first heated to a high temperature (e.g. 95 °C) in order to fully48

gelatinise the starch, followed by cooling and addition of exogenous mash enzymes to49

assure breakdown of starch to sugars. Production of Western-style beers with50

sorghum is currently limited to the use of light-skinned, low polyphenol sorghum51

cultivars. Traditional sorghum beers are usually produced using brown or red skinned52

sorghum cultivars (Lyumugabe, Gros, Nzungize, Bajyana, & Thonart, 2012). Use of53

darker skinned, high tannin cultivars in brewing is thought to result in inhibition of54

mash enzymes and an objectionable increase in product bitterness (Kobue-Lekalake,55

Taylor, & de Kock, 2007; Novellie, 1981). However, some workers have suggested56

that the use of high-tannin sorghum cultivars is responsible for only a minor increase57

in bitterness, not detectable by all panellists (Daiber, 1975). In addition, the impact of58

polyphenols on saccharification has also been disputed in mashing using sorghum59

malts (Dufour, Melotte, & Srebrnik, 1992). It has been suggested that the reduced60

saccharification of some sorghum malts is due not to polyphenols, but to starch61

characteristics and poor diastatic potential (Dufour, Melotte, & Srebrnik, 1992).62

As new enzyme blends become available which enable lower temperature mashing63

conditions to be employed, it is of interest to study how this impacts on the brewing64

performance of different sorghum cultivars. Furthermore, in some regions the65

objective to brew with locally produced raw materials can make it of interest to use66

varieties previously considered as sub-optimal for brewing, but which show good67



agronomic performance. In the present study, five sorghum samples were sourced:68

two brewing cultivars (yellow (Nigeria) and yellow (Cameroon)) and three forage69

cultivars (red (Mexico), white (Nigeria) and white (Ghana)). Laboratory scale70

brewing trials were conducted with each of the cultivars, comparing the performance71

of a traditional (high temperature) sorghum mashing schedule with a novel low72

temperature schedule utilising an exogenous enzyme blend (Figure 1). The latter was73

developed to enable the digestion of sorghum starch without a high temperature74

gelatinisation stand prior to saccharification. One objective of the trials was to75

determine whether the low temperature mashing system could produce worts of76

comparable brewing quality to those brewed using the traditional mash schedule. A77

further objective was to study the impacts of cultivar on mashing performance and to78

try to better understand the interactions between kernel structure and composition and79

mashing performance.80



2. Materials and Methods.81

2.1 Sorghum grain samples82

Five samples of sorghum grain were sourced by Diageo and Kerry Enzymes. As83

cultivar identities were unavailable each sorghum variety was identified by colour and84

country of origin. Two brewing cultivars were received: yellow (Nigeria) and yellow85

(Cameroon). Three forage cultivars were received: red (Mexico), white (Nigeria) and86

white (Ghana). Upon arrival, samples were stored at 4°C in plastic bins (as advised87

by Kerry Enzymes).88

2.2 Sorghum grain compositional analysis89

2.2.1 Moisture content90

Milled samples (5 g; 0.2 mm EBC fine grind) were weighed into pre-weighed foil91

trays and placed into a convection oven at 130°C for 90 min. Samples were removed92

into a desiccator, allowed to cool for 30 min and re-weighed to calculate moisture93

content through weight loss. Five replicate measurements were taken.94

2.2.2 Starch content95

Starch content was determined using a Starch (GO/P) Assay Kit (Sigma STA20).96

Whole grain samples (10 mg and 50 mg respectively) were finely milled in a coffee97

grinder and used with the kit alongside a wheat starch standard (10 mg). To remove98

non-starch sugars from the sample before analysis the samples were incubated at99

85°C for 5 min then washed twice in 80 % (v/v) aqueous ethanol solution. To allow100

the kit to act effectively upon sorghum’s resistant starch, 2 mL dimethyl sulphoxide101

(DMSO) was added to each sample prior to analysis; these were then incubated in102

boiling water for 5 min.103



2.2.3 Cellulose and hemicellulose104

Ion chromatography was used to determine monomeric sugars in acid hydrolysed105

samples, whilst HPLC was used to determine sugar degradation products produced.106

Cellulose was estimated as the sum of glucose and hydroxymethylfurfural (HMF)107

minus determined starch. Hemicellulose was estimated as the summed concentrations108

of xylose, arabinose and furfural. Samples (60 mg) were weighed into heat resistant109

screw-capped (with PTFE seal) glass tubes. 12 M H2SO4 (2 mL) was added and the110

contents incubated at 37°C for 1 h. Water (22 mL) was added and the sample was111

further incubated at 100°C for 2 h. The samples were filtered over glass microfibre112

syringe filters (Whatman 25 mm 0.45 μm GD/X glass microfibre) and 1 mL was 113

transferred to HPLC vials and analysed via ion chromatography and HPLC.114

2.2.3.1 Ion Chromatography Analysis115

Sample (10µL) was injected onto a Dionex CarboPac20 column (3 mm x 150 mm)116

coupled to a Dionex ICS 3000 with an electrochemical detector (Dionex, California,117

USA). The samples were eluted isocratically with degassed 10 mM NaOH at a flow118

rate of 0.5 mL/min running at around 3000 psi. Compounds were detected using an119

electrochemical cell over a 30 min run time. The column was regenerated after each120

sample run by flushing with 200 mM NaOH at 0.5 mL/min for 10 min.121

2.2.3.2 HPLC Analysis122

10 μL was injected onto a C18 Techsphere column (250 x 4.6 mm ID; HPLC 123

Technology, Macclesfield, UK) using a Waters 2695 liquid chromatograph (Waters,124

Massachusetts, USA). Gradient elution was used to separate the analytes, using a125

solvent mixture of 1 % (v/v) acetic acid (aq): methanol (80:20) ramped to 50:50 over126

30 min period with a total flow rate of 1 mL/min at a pressure of approx. 2950 psi.127

Compounds were detected using a Waters 996 Photodiode-Array detector using UV128



detection at 270 nm. After 30 min the methanol was increased to 100 % over 1 min,129

held for 2 min before returning to initial solvent conditions for the next run. External130

standards of hydroxymethylfurfural (HMF) and furfural (0.1 g/L) were used for131

calibration. Samples were analysed in triplicate.132

2.2.4 Lipid133

Solvent-extractable lipid was determined via an adapted Folch determination134

(Cequier-Sanchez, Rodriguez, Ravelo, & Zarate, 2008). Sample (400 mg) was added135

to a capped glass test tube with 12 mL dichloromethane/methanol (2:1; v/v). The136

samples were left for 2 h at room temperature with occasional hand agitation before137

filtering through a Whatman GD/X glass microfiber filter (0.45 μm pore size).  To the 138

filtrate 2.5 mL KCl (0.88 %; v/v) was added and after vigorous agitation the samples139

were centrifuged at 380 x g at 4°C for 5 min. The aqueous upper layer was discarded140

and the lower phase was dried over nitrogen gas. The remaining lipid was weighed.141

Four replicate analyses were performed.142

2.2.5 Protein143

A Thermo Flash Nitrogen Analyser (ThermoFisher Scientific, Waltham,144

Massachusetts, USA) was used to determine protein content of the samples. Sample145

(50 mg) was sealed in a tin capsule and combusted at approximately 1800°C.146

Quantitation was achieved with Eager 300 software using an L-aspartic acid standard.147

Protein was determined using the N x 6.25 conversion factor. Samples were analysed148

in triplicate.149

2.2.6 Ash150

Ash content was determined according to the method proposed by Santos, Jimemez,151

Bartolome, Gomez-Cordoves, & del Nozal (2003). Sorghum, wheat or spent grain152

sample (1 g) was accurately weighed into crucibles of known mass (ashed to constant153



mass); these were placed into a muffle furnace at 580°C for 24 h. After ashing the154

samples were placed directly into a desiccator for 30 min. The sample was then155

accurately weighed to 3 decimal places. Samples were analysed in triplicate.156

2.2.7 Lignin157

Determination of sorghum lignin was achieved via an adapted version of the acetyl158

bromide method (Iiyama & Wallis, 1990), as it was necessary to firstly remove tannin159

from the grain. Tannin was washed from the milled sorghum grain using a method160

adapted from Morrison, Asiedu, Stuchbury, & Powell (1995). Milled sorghum (100161

mg) was weighed into a polypropylene tube and mixed with 10 mL acetone:water162

(70:30; v/v). Samples were incubated at 30°C in a water bath for 30 min. After163

incubation, samples were centrifuged at 500 g for 5 min. Extraction was repeated164

twice with acetone:water (70:30; v/v) before a final wash with acetone. Water was165

used to quantitatively transfer the samples into thick-walled glass tubes. The samples166

were dried at 50°C for 48 h. To the dried samples 4 ml acetyl bromide reagent (25 %167

acetyl bromide in glacial acetic acid) was added. The tubes were capped and168

incubated in a water bath for 2 h at 50°C then allowed to cool for 5 min. To prepare169

standards 10 mg lignin (Sigma 471003) was added to 4.5 mL dioxane and 1.5 mL170

water and incubated at 50°C for 30 min (along with a dioxane/water blank) then171

allowed to cool for 5 min. Aliquots of the incubated standard solution (0.2, 0.3, 0.4,172

0.5 and 0.6 mL) and the blank (0.6 mL) were added to separate glass test tubes and173

0.5 mL of the acetyl bromide reagent was added to each. Samples, standards and the174

blank were made up to 16 mL with glacial acetic acid and 0.5 mL of this solution was175

transferred to a glass test-tube. To each test-tube, 2.5 mL glacial acetic acid, 1.5 mL176

sodium hydroxide (0.3 M) and 0.5 ml hydroxylamine hydrochloride (0.5 M) were177

added. Sample volume was adjusted to 10 mL with glacial acetic acid and then178



transferred to quartz cuvettes for analysis at 280 nm using a spectrophotometer.179

Lignin content was calculated using the standard curve detailed. Four analyses were180

performed for each sample.181

2.2.8 Tannin182

Sorghum grain tannin content was determined using the Vanillin-HCl method (Price,183

Vanscoyoc, & Butler, 1978). Milled Sample (200 mg) was weighed into a184

polypropylene tube, to this, 10 mL of 1 % (v/v) HCl was added; samples were185

agitated on a roller bed for 20 min. Samples were centrifuged at 3000 x g to clear the186

supernatant of particulate matter. A 1 mL aliquot of sample was added to a glass test187

tube, to this 5 mL working vanillin reagent was added (using a blank of 1 mL sample188

and 5 mL 4 % (v/v) HCl). Samples were incubated at 30°C for 20 min and measured189

immediately at 500 nm. Five replicate samples were analysed.190

2.3 Determination of α-amylase and β-amylase in sorghum flours 191

2.3.1 Enzyme extraction192

Enzyme extracts for both assays were produced using a Megazyme Betamyl-3 kit (K-193

BETA3; Megazyme, Co. Wicklow, Ireland). Grain sample was milled using a DLFU194

laboratory disc mill using the EBC fine setting. Milled grain (0.5 g) was weighed into195

a 15 mL polypropylene tube, to this, 5 mL extraction buffer (1 M Tris/HCL, 20 mM196

disodium EDTA solution) was added. Extractions proceeded on a Stuart SRT60197

roller bed (Bibby Scientific) for 1 h and were then centrifuged for 10 min at 2000 x g.198

Kit efficacy was monitored using wheat flour controls of known α-amylase and β-199

amylase activity.200

2.3.2 Determination of α-amylase and β-amylase 201

Amylase activities in sorghum flour extracts were assayed using Megazyme test kits202

(Megazyme, Bray, Ireland) and standard methodologies. α-amylase was determined 203



using the Ceralpha kit (K-CERA) whilst β-amylase was determined using the 204

Betamyl-3 kit. Five replicate samples were analysed in each case.205

2.4 Measurement of sorghum starch amylose content206

Amylose content was determined using a Megazyme Amylose/Amylopectin kit207

(K-AMYL). Starch was precipitated from milled sample (25 mg) using 95 % (v/v)208

ethanol. Starch samples were dissolved in ConA solvent and filtered through209

Fisherbrand QL100 filter papers (Fisher Scientific, Loughborough, Leicestershire,210

UK). Upon addition of ConA solution, amylopectin was precipitated from solution211

and removed by centrifugation (14000 x g for 10 min). Amylose supernatant and212

total starch samples were hydrolysed to glucose with a mixture of amyloglucosidase213

and fungal α-amylase.  Liberated glucose was treated with GOPOD reagent (glucose 214

oxidase, peroxidase and 4-aminoantipyrine) and GOPOD buffer (p-hydroxbenzoic215

acid).216

Absorbance was monitored at 510 nm for amylose and total starch samples allowing217

percentage amylose to be calculated. Amylopectin was calculated by subtraction of218

amylose from total starch. Samples were analysed in triplicate.219

2.5 Estimation of grain hardness and 100 grain weight220

Grain hardness was indirectly determined according to the sodium nitrate method of221

grain floatation (Hallgren & Murty, 1983). Sodium nitrate was dissolved in RO222

water to yield a solution of SG 1.300. A sample of 100 sorghum grains were weighed223

to give 100 grain weight, the same samples were then used for grain floatation. Grain224

samples were placed into the sodium nitrate solution and stirred for 30 seconds;225

floating kernels were removed from the solution and counted. Five replicate readings226

were taken for each sorghum sample.227



2.6 Imaging of sorghum grain ultrastructure using Scanning Electron microscopy228

(SEM)229

Sorghum samples were deposited onto a conductive carbon pad and then mounted on230

a standard 12 mm SEM stub and transferred directly to the SEM. All samples were231

imaged at an accelerating voltage of 5-10 kV. The microscope used was an FEI232

Quanta 3D 200 (FEI, Hillsboro, Oregon, USA).233

2.7 Starch extraction and purification from sorghum grain samples234

Sorghum starch was extracted according to the method of Beta, Corke, Rooney, &235

Taylor (2001). Whole sorghum grain was steeped in 0.25 % (w/v) sodium hydroxide236

(200 mL) for 24 h at 5°C. Steeped grains were drained and washed with 200 mL RO237

water, then milled in a Waring blender. Sorghum slurry was passed through a 75 µm238

pore size sieve; materials left on the sieve were milled again until they could pass239

through the sieve. The filtrate was collected in polypropylene tubes and allowed to240

settle for 1 h. Tubes were centrifuged at 760 x g for 10 min. The supernatant was241

discarded and protein (grey material) was scraped from the top of the pellet using a242

metal spatula; samples were washed with excess water until the pellet was white.243

Recovered starch was dried at 40°C for 24 h.244

2.8 Starch pasting properties: Rapid Visco Analyser measurements245

Pasting profiles were established for sorghum grains and extracted sorghum starches246

with the use of an RVA super 4 (Newport Scientific, Jessup, Maryland) using247

Thermocline for Windows software. Milled sorghum grain (3 g) was weighed into an248

aluminium beaker; to this either 25 mL RO water or 25 mL 10 mM silver nitrate (to249

inhibit native amylases) was added (Batey, Hayden, Cai, Sharp, Cornish, Morell, et250

al., 2001). Samples were stirred at 960 rpm for the first 10 seconds and 160 rpm for251

the remainder of the test. Samples were heated with the following temperature252



profile: hold at 50°C for 2 min, heat to 95°C at 7.15°C/min, hold at 95°C for 12 min,253

cool to 50°C at 9°C/min, hold at 50°C for 4 min. Samples were analysed in triplicate.254

2.9 Differential scanning calorimetry255

Samples (approximately 5 mg) were weighed into aluminium pans and dispersed in256

15 mg RO water. To ensure homogenous sample dispersion the aluminium pans were257

mixed overnight on a roller bed. Mixed samples were analysed using a DSC823e258

differential scanning calorimeter (Mettler-Toldeo, Greifensee, Switzerland). Samples259

were measured between 10°C and 95°C (temperature ramp of 10°C/min).260

2.10 Mashing schedules261

Brewing liquor (reverse osmosis water; RO) supplemented with potassium262

metabisulphite (1 g/kg) and calcium chloride dihydrate (2 g/kg) was heated to 50°C263

using a water bath. Sorghum grain was milled to EBC fine grade (0.2 mm gap264

setting) using a DFLU laboratory disc mill (Bühler Group, Uzwil, Switzerland). Grist265

(100 g) was weighed into a metal mashing beaker and mixed with the atemperated266

brewing liquor (300 mL). Mash pH was adjusted to pH 5.5 by addition of 10 % (w/v)267

aqueous lactic acid. Enzymes were added as per either the low or high temperature268

mashing regimes (Figure 1) and the mashing beakers were added to a bench top mash269

bath (1-cube R12, Havlickuv Brod, Czech Replublic). The 1-cube mash bath was270

preheated to 50°C prior to mashing; upon sample addition a temperature profile was271

selected according to the enzyme system being used (Figure 1). Mash was stirred at272

the Hartong speed setting as the Congress setting was insufficient to stir the mash.273

Beakers were covered with aluminium foil for the duration of the mash to minimise274

evaporation.275



After mashing, samples were placed immediately into a 20°C water bath and allowed276

to cool for 20 min. Cooled samples were made up to a standard weight of 700 g with277

RO water.278

2.11 Standard wort (and fermented wort) analyses279

2.11.1 Wort run-off volume after 10 minutes280

Samples were filtered through pleated filter papers (Whatman 2555 1/2 320 mm) into281

individual Erlenmeyer flasks. After 100 mL wort had passed through the filter the282

funnel was moved into a clean 500 mL flask and the initial 100 mL filtrate was283

replaced into the funnel. After 10 min the funnel was moved into a 1 L Erlenmeyer284

flask and allowed to completely drain. The volume of wort collected during those 10285

min of filtration was measured as an index of speed of filtration.286

2.11.2 Analysis of wort turbidity287

Wort haze was measured using a Vos Rota turbidity meter (Haffmans, Venlo,288

Netherlands). The Vos Rota chamber was rinsed and filled with RO water. Glass289

cuvettes (60 mm diameter) were filled with filtered wort sample, capped and placed290

into the Vos Rota chamber. Scattered light was measured at angles of 90° and 25°291

using a wavelength of 650 nm. The turbidity meter was calibrated up to 20 EBC292

units; samples exceeding this value were diluted appropriately to fit within the293

calibrated range of the device.294

2.11.3 Wort Colour295

Wort colour was determined according to Analytica-EBC method 4.7.1.296

(http://www.analytica-ebc.com/).297

2.11.4 Specific gravity and percentage alcohol of samples298

Density, specific gravity (SG) and alcohol content of wort and fermented samples299

were determined using an Anton Paar DMA 4500 and Alcolyzer Plus (Anton Paar,300



Graz, Austria). Sample was passed through a Minisart cellulose acetate 0.45 µm301

syringe filter (Sartorius, Göttingen, Germany) into a 50 mL polypropylene tube.302

Sample (30 mL) was passed through both the DMA 4500 and Alcolyzer Plus and was303

equilibrated to 20.00°C before measurement..304

2.11.5 Free amino nitrogen determination305

The free amino nitrogen (FAN) content of samples was determined according to306

Analytica-EBC method 8.10 (ninhydrin method; http://www.analytica-ebc.com/).307

Samples absorbance values (570 nm) were compared against a glycine standard308

solution (2 mg/L). Samples were analysed in triplicate.309

2.12 Small scale fermentation of wort310

Small scale fermentations (100 mL) were conducted on worts produced using both the311

high and low temperature mashing regimes.312

2.12.1 Yeast propagation313

A metal loop was used to transfer Saccharomyces cerevisiae strain Bry 96 ale yeast314

(Siebel Institute, Chicago, Illinois, USA) from an agar slope into 10 mL autoclaved315

YPD media (1 % (w/w) yeast extract, 2 % peptone, 2 % glucose in RO water). The316

culture was incubated in a Ceromat BS-1 incubator (Sartorius) heated to 25°C and317

shaking at 120 rpm. After 4 days the culture was transferred to a 250 mL Erlenmeyer318

flask containing 90 mL YPD media. After a further 3 days the culture was transferred319

to a 2 L flask containing 900 mL YPD. Finally, after 4 more days the cells were320

harvested. Yeast slurry was centrifuged at 1,370 g in a J2-21 centrifuge (Beckman321

Coulter Inc, Brea, California); the supernatant was discarded and the pellet322

resuspended in RO water. A total yeast cell count was performed.323



2.12.2 Simulated wort boiling and wort aeration324

Wort was placed uncovered onto a Stuart SB162 stirring hot plate (Bibby Scientific;325

preheated to 300°C) and allowed to heat for 55 min, samples were then capped and326

heated for an additional 5 min before being removed from the heat. Samples were327

immediately plunged into iced water for 30 min to cool. Cooled wort (100 mL) was328

transferred aseptically into autoclaved 125 mL Wheaton serum bottles (containing a329

12 x 4.5 mm stirrer bar) that were then sealed with a foam bung. Vessels were placed330

onto magnetic stirrer plates inside a cooled incubator (LMS Ltd, Sevenoaks, United331

Kingdom) set to 4°C and left to aerate overnight. Incubator temperature was332

increased to 18°C two hours before pitching.333

2.12.3 Fermentation conditions334

Yeast cells were pitched into wort at a rate of 1x106 cells/mL/°Plato (Casey &335

Bamforth, 2010; Fix, 1999) before vessels were sealed with butyl rubber bungs and336

crimp caps. The butyl rubber bungs were then pierced with a Bunsen valve to allow337

CO2 formed during fermentation to exit the vessel whilst preventing the entrance of338

potential contaminants. Finally, fermentation vessels were placed onto stirrer plates339

(300 rpm) and incubated at 18°C for 236 h. Fermentation progress was monitored340

regularly by measuring the weight of the vessel.341



3. Results & Discussion342

3.1 Characterisation and analysis of sorghum samples343

Measurement of 100 grain weight for each sample (Table 1) confirmed the visual344

observation that the two brewing sorghum cultivars (the yellow sorghums from345

Nigeria and Cameroon) were larger in size than the agricultural cultivars. Looking at346

the grain compositional analysis (Table 1), the brewing cultivars were notably lower347

in protein and higher in starch than the forage sorghums, confirming their value as348

brewing raw materials. The starch contents reported are within the broad range349

expected for sorghum grain (55.6-75.2 % db; Jambunathan & Subramanian, 1988),350

whilst the range of protein contents reported (8.5-10.6 % db) falls in a tight band351

relative to the overall range for sorghum cultivars (4.4-21.1 % db) suggested by352

Jambunathan & Subramanian (1988). The Ghanaian white sorghum had the lowest353

starch content of the varieties tested and a surprisngly high cellulose content (22.4%354

db, versus 3.6-15.2% db for the remaining samples).355

Tannins are usually associated with the pigmented seed coat of the sorghum grain356

(Dlamini, Taylor, & Rooney, 2007). Thus, it was not surprising that the highly357

pigmented, red sorghum had the highest concentration of condensed tannins358

(measured in catechin equivalents, Table 1). However, it is interesting to note that,359

apart from the yellow (Nigeria) sample, all of the sorghum cultivars contained360

significant amounts of tannin. The tannin contents reported here are within the ranges361

typically quoted for sorghum cultivars (Earp, Akingbala, Ring, & Rooney, 1981).362

Increased tannin content in sorghum has been linked to a number of issues during363

brewing, mostly attributed to the ability of tannins to bind proteinaceous material.364

Tannins have been found to negatively impact the diastatic power of sorghum malts365

through amylase binding (Beta, Rooney, Marovatsanga, & Taylor, 2000).366



Furthermore, tannins have been implicated in inhibition of protease activity (Elmaki,367

Babiker, & El Tinay, 1999); this is usually associated with poor digestibility in human368

or livestock diet, but could likewise result in reduced proteolysis during brewery369

mashing.370

Based on the amount of amylose (Table 1) in the sorghum starches, all of the cultivars371

investigated here fell into the heterowaxy classification (Sang, Bean, Seib, Pedersen,372

& Shi, 2008). Waxy sorghum starch contains very little amylose (<3.5 %) compared373

to normal sorghum starch (>23.6 %), heterowaxy starch amylose content is374

intermediary between these two categories. The yellow (Nigeria) sorghum was375

highest in amylose content (21.4%) whilst the Mexican red sorghum had the lowest376

amylose content (13.0%).377

α-amylase activity was only detectable at low levels in the white sorghum from 378

Nigeria (Table 1).  This is not surprising as α-amylase is mainly produced 24-36 h 379

after the onset of germination and is not thought to be present in the grain before this380

(Aisien & Palmer, 1983).  The activity of β-amylase was either not detectable, or 381

present at very low level (Table 1). This finding is in agreement with the current382

literature which suggests β-amylase in sorghum grain is either not present or is 383

present with limiting quantities (Taylor, Dlamini, & Kruger, 2013). In spite of the low384

diastatic activities identified, it was important to complete this analysis by way of385

context for the RVA and brewing experiments.386

3.2 SEM imaging of sorghum grain samples387

Scanning electron microscopy (SEM) allowed for high resolution imaging of the388

interior of each grain sample (e.g. Figures 2A & B). Cursory investigation of the389

samples by SEM showed the grains to be relatively similar (excluding overall size and390

shape), with all samples displaying the characteristic sorghum grain features of an391



embryo, an endosperm and a pericarp-testa (the outer-coat of the grain). However,392

use of higher magnification SEM enabled a closer look at the detailed structures of the393

different cultivars. The endosperm tissue of the grains all displayed areas of tightly394

packed and loosely packed starch granules, defined as corneous and floury endosperm395

tissue respectively (Hoseney, Davis, & Harbers, 1974). However, within these396

structures there was noticeable variation between the grains. The two brewing397

cultivars possessed a clear delineation between the corneous and floury endosperm398

(e.g. Figure 2C), this was not evident in the other varieties. The border between399

corneous and floury endosperm was not clear in the red variety, with tightly packed400

granules transitioning gradually to a looser structure toward the centre of the401

caryopsis. In addition, the floury region of the red cultivar was not as loosely packed402

as the brewing varieties. A feature unique to the white variety from Nigeria was the403

presence of extensive regions of loosely packed starch granules at the periphery of the404

endosperm. This was interesting as floury (loosely packed) endosperm tissue is405

usually associated with the centre of the sorghum caryopsis (Rooney & Miller, 1981).406

The central region of this cultivar possessed very little observable floury endosperm407

tissue. The other white cultivar, from Ghana possessed little observable floury408

endosperm with corneous endosperm extending throughout the grain (Figure 2B).409

Spherical structures were observed between the starch granules of sorghum samples410

(e.g. Figures 2D & E). Confocal laser scanning microscopy and fluorescent staining411

with Rhodamine B was used to confirm the identity of these structures as protein (data412

not shown). These are probably prolamins, the storage protein that accounts for 60-70413

% of sorghum protein (Duodu, Taylor, Belton, & Hamaker, 2003).414

In agreement with prior literature (Seckinger & Wolf, 1973), protein bodies were415

abundant towards the endosperm periphery, becoming less so in the corneous416



endosperm and floury endosperm. In the corneous endosperm, spherical protein417

bodies were concentrated between starch granules (e.g. Figure 2E). Starch granules in418

corneous endosperm were less spherical and irregularly shaped (Figure 2E).419

Polygonal starch granules are thought to be formed by constriction by storage proteins420

caused by water loss during maturation of the caryopsis (Hoseney, Davis, & Harbers,421

1974). As the starch granules become packed together, protein bodies are compacted422

and concentrated between starch granules.423

Imaging of crudely purified sorghum starch further illustrated the close interaction424

between protein matrix and starch granule (Figure 2F). Many starch granules had425

clear indentations, with some containing protein that survived purification. The white426

sorghum from Ghana displayed the greatest degree of protein surviving crude starch427

isolation, indicating a particularly strong protein-starch interaction in this cultivar.428

Such interactions have the potential to hinder starch swelling and hydration during429

brewery mashing (Almeida-Dominguez, Suhendro, & Rooney, 1997).430

3.3 Thermophysical properties of sorghum flours and extracted/purified starches431

Pasting profiles of sorghum flours in water revealed key differences between the432

sorghum varieties investigated (Figure 3A). The pasting profile of the yellow cultivar433

from Nigeria closely resembled that of a barley control (not shown) and displayed the434

highest peak viscosity and final viscosity. Both yellow (Cameroon) and white435

(Nigeria) displayed low peak and final viscosities (Table 2), this was hypothesised to436

be due to enzyme activity within the sorghum flours, although only the White437

(Nigeria) sorghum contained detectable -amylase activity (Table 1). Use of silver438

nitrate (10 mM) to inhibit enzymes during Rapid Visco Analyser (RVA) testing439

revealed a pasting profile markedly different to that obtained with water (Figure 3B &440

Table 2). During enzyme-inhibited RVA all sorghum flours displayed an increase in441



viscosity as compared to RVA using water. This suggested the presence of enzyme442

activity within the sorghum flours. For silver nitrate RVA, white (Nigeria) and yellow443

(Cameroon) displayed pasting profiles similar to the other sorghums with the444

exception of the white sorghum cultivar from Ghana, which displayed a unique445

pasting profile (Figures 3A and 3B), with neither a clear viscosity peak nor viscosity446

trough being observed. The characteristic lack of a viscosity peak was observed with447

or without silver nitrate addition, suggesting that enzyme activity was not the cause of448

this feature. Lack of a clear viscosity peak in maize has been linked to poor starch449

granule hydration and swelling as a result of protein-starch interactions (Almeida-450

Dominguez, Suhendro, & Rooney, 1997). The hypothesis that protein starch451

interactions inhibited starch granule swelling in the white sorghum from Ghana is452

supported by the SEM imaging results (Figure 2F, Section 3.2). The impact of453

protein-starch interaction on starch granule swelling is thought to be exacerbated in454

material originating from the corneous endosperm due to the tightly packed condition455

of the starch (Almeida-Dominguez, Suhendro, & Rooney, 1997). In agreement with456

findings from SEM imaging, a simple floaters test for grain hardness (Table 1)457

suggested the white sorghum from Ghana contained the highest proportion of458

corneous endosperm as compared to the other sorghum samples (since increased459

endosperm density, reflecting a higher proportion of corneous material, will cause the460

grains to sink rather than float)Furthermore, RVA analysis of starch isolated from the461

white sorghum (Ghana) revealed a pasting profile similar to the other sorghums462

analysed (Figure 3C and Table 2). This suggests that poor swelling was not an463

indigenous characteristic of the starch in that cultivar and was instead mediated by a464

component removed during purification.465



One of the primary issues associated with sorghum brewing is a high starch466

gelatinisation temperature. Use of differential scanning calorimetry revealed that all467

of the sorghum cultivars studied here had a gelatinsation temperature (Table 2) in468

excess of that expected for barley malt (62-63°C; Palmer, Etokakpan, & Igyor, 1989).469

The red sorghum sourced from Mexico had the lowest gelatinisation peak tempeature470

(68.9°C) whilst the other sorghums gelatinised at higher temperatures (peak471

temperature 72.9-74.5°C) Interestingly, an association was observed between starch472

amylose content and peak gelatinisation temperature (Tables 1 and 2). This is in473

agreement with the findings for rice and maize previously determined by other474

researchers (Knutson, 1990; Varavinit, Shobsngob, Varanyanond, Chinachoti, &475

Naivikul, 2003). The complex nature of starch gelatinisation is highlighted by476

comparison of DSC analysis of sorghum flour and sorghum starch in Table 2.477

Gelatinisation of isolated sorghum starches was achieved at a lower value than their478

counterpart sorghum flours. Swelling of starch granules is required for efficient479

gelatinisation, this process has been found to be restricted by interactions of starch480

with lipids and proteins (Debet & Gidley, 2006). The lower gelatinisation481

temperatures observed in isolated sorghum starches can probably be accounted for by482

the removal of lipids and proteins that could inhibit granule swelling.483

3.4 Laboratory mashing of unmalted sorghum samples484

Each of the five sorghum samples were mashed using both the high and low485

temperature mash schedules depicted in Figure 1. Analytical data for the resulting486

wort samples is presented in Table 3, alongside post-fermentation data indicating487

ethanol yield and fermentability when each wort was fermented at laboratory scale.488

Together these data enable the brewing value of the worts to be appraised, with489



reference both to the efficacy of the novel low temperature mashing schedule and also490

to the impacts of sorghum grain composition and structure on the mashing process.491

Hot water extract (HWE) is a key indicator of brewing efficiency. It represents the492

proportion of grist material solubilised during mashing and is calculated based on the493

extract content of wort (expressed in °Plato) and the amount of dry matter in the grist.494

The yellow (Nigerian) brewing sorghum had the highest HWE (82.6%; Table 3) using495

the high temperature (conventional) mash schedule. Surprisingly the other brewing496

cultivar from Cameroon had a lower HWE (78.6%) than two of the forage cultivars497

using this mash schedule. Most interestingly, the low temperature mashing schedule498

evened out the differences between cultivars, yielding HWE values ranging between499

81.1-82.7% for all samples bar the Ghanaian white sorghum (72.9%). This probably500

reflects the activity of the Promalt S-LTP enzyme blend which was apparently able to501

convert starch to sugars at low temperature consistently and irrespective of grain502

protein content. The white sorghum from Ghana performed worst in terms of HWE503

with either mashing schedule and has previously (Section 3.2) been noted to exhibit a504

high proportion of corneous endosperm and strong starch-protein interactions. This505

presumably caused problems with starch swelling and conversion using either506

brewing schedule. Increased corneous endosperm has been associated with reduced507

saccharification during mashing as a result of strong starch-protein interactions508

causing inferior amylase access (Espinosa-Ramirez, Perez-Carrillo, & Serna-Saldivar,509

2014). This hypothesis is corroborated by the RVA results (Table 2). Furthermore the510

Ghanaian sorghum had the lowest starch content of all of the samples (49.3% db;511

Table 1).512

Whilst extract is an important economic consideration, the brewer also needs to513

understand the value of that extract for alcohol production through fermentation. This514



is appraised here in terms of the individual and total amounts of fermentable sugars515

generated in wort. Whilst some of the forage sorghums performed reasonably well in516

terms of extract potential, the known brewing cultivars resulted in significantly higher517

total fermentable sugars using either mashing schedule (Table 3). Interestingly, the518

yellow Nigerian brewing cultivar gave the highest fermentable sugars yield using the519

high temperature mash schedule, but was exceeded in this regard by the other520

(Cameroonian) brewing variety when mashed using the low temperature regime.521

Furthermore, all cultivars yielded higher amounts of fermentable sugars using the low522

temperature mash schedule relative to equivalent data for the high temperature mash.523

The profile of fermentable sugars in wort is principally determined by the enzymes524

present and their interaction with the mash time-temperature schedule. Thus, radically525

different profiles were obtained when comparing the two mash schedules, but526

comparing within each schedule, there was minimal impact of cultivar on fermentable527

sugar spectrum (Table 3). The main feature of this data set is thus the very high528

glucose concentrations (36.8-45.5 g/L) in low temperature mashed worts, due to the529

inclusion of an amyloglucosidase enzyme in the formulation (Amylo 300). In530

comparison, for the high temperature mashed worts, glucose concentrations ranged531

from 9-12.5 g/L and maltose was the major wort fermentable sugar (30.9-47.3 g/L).532

It has been suggested that tannins can be involved in amylase binding and inactivation533

(Okolo & Ezeogu, 1996). Review of the present data set fails to support this534

hypothesis, with analysed tannin levels (Table 1) showing no obvious association with535

fermentable sugars yield (Table 3). We conclude that other factors were more536

significant in determining the yield of sugars and that tannins were not limitng on537

amylase activity at the concentrations noted (35-74 mg/g db catechin equivalents) and538

with the concentrations of exogenous enzymes used.539



Mashing with the white variety from Nigeria produced wort comparable to the540

brewing cultivars in both high- and low-temperature mashing systems in terms of541

extract. Despite this, worts of the white sorghum from Nigeria were lower in glucose,542

maltose and maltotriose content. This probably resulted from incomplete hydrolysis543

of soluble, yet unfermentable dextrins in the wort.544

Based on the current results, the high-temperature system performed optimally with545

the yellow cultivar from Nigeria but with reduced efficiency when acting upon the546

other varieties. The low-temperature enzyme system is assumed to act on547

ungelatinised starch, without the need for efficient starch dissolution, and it is likely548

that starch characteristics had a lesser impact on mashing efficiency in this case.549

The Free amino nitrogen (FAN) content of worts produced (44-94 mg/L; Table 3)550

were comparable to published data for worts produced from 100 % unmalted sorghum551

grain (e.g. 51 mg/L; (Bajomo & Young, 1993)). For all cultivars the low temperature552

mash schedule gave marginally higher FAN contents relative to those from the high553

temperature mashes. However, all of these worts would likely require554

supplementation with additional nitrogen sources prior to fermentation as they would555

not provide the minimum of 100-230 mg/L FAN (dependent on wort gravity) thought556

to be required for efficient yeast cell fermentation (Pierce, 1987). Worts produced557

from the Mexican red sorghum and the white variety from Nigeria gave higher FAN558

worts than did the brewing cultivars. However, they would sill be considered FAN559

deficient relative to a barley malt wort (e.g. 158 mg/L; Bajomo & Young, 1993).560

Worts produced using the Ghanaian sorghum had significantly lower FAN contents as561

compared to other worts when using either enzyme system. Since this variety had a562

similar protein content to the other agricultural varieties (Table 1) a reduced wort563



FAN content implies issues with proteolysis during mashing, which might again564

reflect the impacts of strong starch granule-protein interactions.565

Another characteristic of note during mashing was turbidity in worts of the566

Cameroonian and Mexican cultivars. During high-temperature mashing of both567

cultivars high turbidity wort was produced (Table 3); this was not observed with use568

of the low-temperature mashing system. Wort haze can be attributed to a number of569

causative factors, including lipid content, polyphenol-protein interactions and the570

survival of β-glucan in the wort (Steiner, Becker, & Gastl, 2010).  Interestingly, these 571

two varieties were both of characteristically low amylose content (Table 1); perhaps572

poor amylopectin hydrolysis could have contributed to haze formation. Wort samples573

in this research were only run through a filter paper, it is possible that turbidity may574

not be an issue in at industrial scale using a mash filter.575

3.5 Laboratory scale fermentation trials576

Worts produced from five different sorghum cultivars were fermented at small scale577

(100 mL). The fermentations of the low-temperature mashed worts displayed higher578

final alcohol contents (% ABV) as compared to those of the high-temperature system579

(Table 3) although they took significantly longer to reach attenuation (final gravity).580

In addition, fermentations of low-temperature mashing were lower in residual extract581

and FAN content, suggesting a proportionately greater utilisation of wort components.582

Despite the fact that worts produced using the low-temperature system contained583

higher amounts of fermentable sugars and FAN as compared to high-temperature584

mashed worts, fermentation profiles showed that they fermented relatively slowly by585

comparison (data not shown). Fermentation of worts produced from the high-586

temperature system were mostly complete within 120 h. For low temperature mashed587

worts fermentation was not fully attenuated even after 236 h. This was most likely588



due to the sugar profiles of the worts. Worts produced by low-temperature mashing589

were rich in glucose (due to the amyloglucosidase enzyme addition), which has590

previously been linked to inhibited glucose uptake, yeast growth and slow591

fermentation (MacGregor, Bazin, Macri, & Babb, 1999; Phaweni, O'Connor-Cox,592

Pickerell, & Axcell, 1993). The results illustrate that simply providing a greater593

content of fermentable sugar and FAN does not guarantee an efficient fermentation.594

The worts of the Mexican sorghum and agricultural white sorghum (Nigeria) from595

low-temperature mashing were of comparable fermentability and final alcohol yield to596

those produced using brewing cultivars. This was despite them having a lower starch597

content in the original grist (Table 1).598

The results obtained here suggest that worts produced using the low-temperature599

mashing system can result in fermentation alcohol yields comparable to the high-600

temperature mashing system. In addition, the low-temperature system appeared less601

dependant on the raw materials used. However, fermentation of the low-temperature602

mashed worts was relatively slow, indicating a deficiency in a component required for603

efficient fermentation or the presence of a component at inhibitory concentrations.604



4. Conclusions605

A novel low-temperature mashing system was shown to produce worts of comparable606

brewing value to those resulting from a more traditional, energy intensive, high-607

temperature mash. The energy savings of operating with the low temperature system608

would be substantial at industrial scale because i) Tmax for the schedule was reduced609

from 95°C to 78°C, ii) the energy requirements of heating a mash to 95°C and then610

cooling it back to 65°C to saccharify the mash are removed and iii) the overall mash611

schedule is shorter by approximately 2 hours. Furthermore, our results offer612

preliminary encouragement that the novel low-temperature mashing regime613

compensates for some raw material quality differences and narrowed the gap in614

brewing performance between the use of brewing and non-brewing sorghum cultivars.615

It thus has the potential to facilitate broader use of locally produced sorghum varieties616

in brewing, although full substantiation of this is beyond the scope of the present617

paper. The noted issue with long, sluggish fermentation times for the low temperature618

mashed worts is readily solvable in brewing practice. The excellent apparent619

fermentability results confirm that the worts had the required alcohol yield potential,620

albeit that the fermentations took a long time to attenuate. Fermentation vigour would621

most likely be improved by i) substituting different diastatic enzyme blends for the622

Amylo300 (amyloglucosidase) used here. This enzyme is not the component which623

confers the low temperature gelatinisation property and it generates high624

concentrations of glucose in worts which subsequently can slow yeast glucose uptake625

(Phaweni, O'Connor-Cox, Pickerell, & Axcell, 1993), or ii) the use of supplementary626

yeast nutrients (nitrogen source, Zn2+, etc.).627

With regard to the impacts of cultivar composition, starch properties and628

ultrastructure on brewing performance it was interesting to note that with either629



mashing schedule the impacts of kernel structure, and in particular evidence of strong630

starch-protein interactions had a far greater influence than did starch gelatinisation631

temperature – although the latter is more frequently used to assess likely brewing632

performance. Thus the noted lower gelatinisation temperature range for the red633

sorghum from Mexico did not offer a significant advantage in terms of extract or634

fermentable sugars yield. Whilst the brewing varieties were of lower protein content,635

protein per se did not correlate with mashing performance. Thus, the red sorghum636

contained the highest amount of protein (and tannins) but yielded respectable brewing637

performance, particularly when mashed using the low temperature regime. Hence our638

work suggests that it is the way in which protein is structured and in particular the639

strength of protein-starch granule interactions which most influenced brewing640

performance. Thus the white (Ghana) sorghum performed poorly using either mash641

schedule. The RVA profile represented the easiest way of identifying this sorghum as642

potentially problematic for brewing use.643

In the present work there was no support for the hypothesis that tannin levels644

negatively impact on brewing performance (with the levels of exogenous enzymes645

used here), although this was not the main focus of the study and no sensory tests646

were performed on beers to evaluate the levels of astringency conferred.647

648

Acknowledgements649

We gratefully acknowledge Diageo Global Beer Technical Centre and the British650

Biological Sciences Research Council (BBSRC) for their financial support of this651

work. The authors wish to thank Eoin Lalor and Kerry Ingredients and Flavours for652

supplying the mash enzymes used in the trials. With thanks to the Biomaterials group653

at Nottingham for use of their DSC and RVA facilities.654



Conflict of Interest655

The authors are not aware of any conflict of interest relating to publication of the656

enclosed material.657



Bibliography

Aisien, A. O., & Palmer, G. H. (1983). The sorghum embryo in relation to the hydrolysis of
the endosperm during germination and seedling growth. Journal of the Science of
Food and Agriculture, 34(2), 113-121.

Almeida-Dominguez, H. D., Suhendro, E. L., & Rooney, L. W. (1997). Factors affecting
rapid visco analyser curves for the determination of maize kernel hardness. Journal of
Cereal Science, 25(1), 93-102.

Analytica-ebc. http://www.analytica-ebc.com/. Fachverlag Hans Carl. Accessed: 23.03.16.

Bajomo, M. F., & Young, T. W. (1993). The properties, composition and fermentabilities of
worts made from 100-percent raw sorghum and commercial enzymes. Journal of the
Institute of Brewing, 99(2), 153-158.

Batey, I. L., Hayden, M. J., Cai, S., Sharp, P. J., Cornish, G. B., Morell, M. K., & Appels, R.
(2001). Genetic mapping of commercially significant starch characteristics in wheat
crosses. Australian Journal of Agricultural Research, 52(11-12), 1287-1296.

Beta, T., Corke, H., Rooney, L. W., & Taylor, J. R. N. (2001). Starch properties as affected
by sorghum grain chemistry. Journal of the Science of Food and Agriculture, 81(2),
245-251.

Beta, T., Rooney, L. W., Marovatsanga, L. T., & Taylor, J. R. N. (2000). Effect of chemical
treatments on polyphenols and malt quality in sorghum. Journal of Cereal Science,
31(3), 295-302.

Casey, T. R., & Bamforth, C. W. (2010). Silicon in beer and brewing. Journal of the Science
of Food and Agriculture, 90(5), 784-788.

Cequier-Sanchez, E., Rodriguez, C., Ravelo, A. G., & Zarate, R. (2008). Dichloromethane as
a solvent for lipid extraction and assessment of lipid classes and fatty acids from
samples of different natures. Journal of Agricultural and Food Chemistry, 56(12),
4297-4303.

Daiber, K. H. (1975). Enzyme inhibition by polyphenols of sorghum grain and malt. Journal
of the Science of Food and Agriculture, 26(9), 1399-1411.

Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of
surface proteins and lipids. Carbohydrate Polymers, 64(3), 452-465.

Dlamini, N. R., Taylor, J. R. N., & Rooney, L. W. (2007). The effect of sorghum type and
processing on the antioxidant properties of African sorghum-based foods. Food
Chemistry, 105(4), 1412-1419.

Dufour, J. P., Melotte, L., & Srebrnik, S. (1992). Sorghum malts for the production of a
lager beer. Journal of the American Society of Brewing Chemists, 50(3), 110-119.

Duodu, K. G., Taylor, J. R. N., Belton, P. S., & Hamaker, B. R. (2003). Factors affecting
sorghum protein digestibility. Journal of Cereal Science, 38(2), 117-131.



Earp, C. F., Akingbala, J. O., Ring, S. H., & Rooney, L. W. (1981). Evaluation of several
methods to determine tannins in sorghums with varying kernel characteristics. Cereal
Chemistry, 58(3), 234-238.

Elmaki, H. B., Babiker, E. E., & El Tinay, A. H. (1999). Changes in chemical composition,
grain malting, starch and tannin contents and protein digestibility during germination
of sorghum cultivars. Food Chemistry, 64(3), 331-336.

Espinosa-Ramirez, J., Perez-Carrillo, E., & Serna-Saldivar, S. O. (2014). Maltose and
glucose utilization during fermentation of barley and sorghum lager beers as affected
by beta-amylase or amyloglucosidase addition. Journal of Cereal Science, 60(3), 602-
609.

Fix, G. J. (1999). Principles of brewing science: A study of serious brewing issues. Brewers
Publications.

Hallgren, L., & Murty, D. S. (1983). A screening-test for grain hardness in sorghum
employing density grading in sodium-nitrate solution. Journal of Cereal Science, 1(4),
265-274.

Hoseney, R. C., Davis, A. B., & Harbers, L. H. (1974). Pericarp and endosperm structure of
sorghum grain shown by scanning electron-microscopy. Cereal Chemistry, 51(5),
552-558.

Iiyama, K., & Wallis, A. F. A. (1990). Determination of lignin in herbaceous plants by an
improved acetyl bromide procedure. Journal of the Science of Food and Agriculture,
51(2), 145-161.

Jambunathan, R., & Subramanian, V. (1988). Grain quality and utilisation of sorghum and
pearl millet. In: Proceedings of the International Biotechnology Workshop.
International Crops Research Institute for the Semi-Arid Tropics.

Knutson, C. A. (1990). Annealing of maize starches at elevated-temperatures. Cereal
Chemistry, 67(4), 376-384.

Kobue-Lekalake, R. I., Taylor, J. R. N., & de Kock, H. L. (2007). Effects of phenolics in
sorghum grain its bitterness, astringency and other sensory properties. Journal of the
Science of Food and Agriculture, 87(10), 1940-1948.

Lyumugabe, F., Gros, J., Nzungize, J., Bajyana, E., & Thonart, P. (2012). Characteristics of
African traditional beers brewed with sorghum malt: A review. Biotechnologie
Agronomie Societe et Environnement, 16(4), 509-530.

MacGregor, A. W., Bazin, S. L., Macri, L. J., & Babb, J. V. (1999). Modelling the
contribution of alpha-amylase, beta-amylase and limit dextrinase to starch degradation
during mashing. Journal of Cereal Science, 29(2), 161-169.

Morrison, I. M., Asiedu, E. A., Stuchbury, T., & Powell, A. A. (1995). Determination of
lignin and tannin contents of cowpea seed coats. Annals of Botany, 76(3), 287-290.

Novellie, L. (1981). Fermented beverages. In: Proceedings of the International Symposium
on Sorghum Grain Quality. International Crops Research Institute for the Semi-Arid
Tropics.



Okolo, B. N., & Ezeogu, L. I. (1996). Enhancement of amylolytic potential of sorghum
malts by alkaline steep treatment. Journal of the Institute of Brewing, 102(2), 79-85.

Palmer, G. H., Etokakpan, O. U., & Igyor, M. A. (1989). Sorghum as brewing material.
Mircen-Journal of Applied Microbiology and Biotechnology, 5(3), 265-275.

Phaweni, M., O'Connor-Cox, E. S. C., Pickerell, A. T. W., & Axcell, B. C. (1993). Influence
of adjunct carbohydrate spectrum on the fermentative activity of a brewing strain of
saccharomyces cerevisiae. Journal of the American Society of Brewing Chemists,
51(1), 10-15.

Pierce, J. S. (1987). Brown, Horace memorial lecture - the role of nitrogen in brewing.
Journal of the Institute of Brewing, 93(5), 378-381.

Price, M. L., Vanscoyoc, S., & Butler, L. G. (1978). Critical evaluation of vanillin reaction
as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry,
26(5), 1214-1218.

Rooney, L. W., & Miller, F. (1981). Variation in the structure and kernel characteristics of
sorghum. In: Proceedings of the International symposium on sorghum grain quality.
International Crops Research Institute for the Semi-Arid Tropics.

Sang, Y. J., Bean, S., Seib, P. A., Pedersen, J., & Shi, Y. C. (2008). Structure and functional
properties of sorghum starches differing in amylose content. Journal of Agricultural
and Food Chemistry, 56(15), 6680-6685.

Santos, M., Jimemez, J. J., Bartolome, B., Gomez-Cordoves, C., & del Nozal, M. J. (2003).
Variability of brewer's spent grain within a brewery. Food Chemistry, 80(1), 17-21.

Seckinger, H. L., & Wolf, M. J. (1973). Sorghum protein ultrastructure as it relates to
composition. Cereal Chemistry, 50(4), 455-465.

Steiner, E., Becker, T., & Gastl, M. (2010). Turbidity and haze formation in beer-insights
and overview. Journal of the Institute of Brewing, 116(4), 360-368.

Taylor, J. R. N., Dlamini, B. C., & Kruger, J. (2013). 125th anniversary review: The science
of the tropical cereals sorghum, maize and rice in relation to lager beer brewing.
Journal of the Institute of Brewing, 119(1-2), 1-14.

Varavinit, S., Shobsngob, S., Varanyanond, W., Chinachoti, P., & Naivikul, O. (2003).
Effect of amylose content on gelatinization, retrogradation and pasting properties of
flours from different cultivars of Thai rice. Starch-Starke, 55(9), 410-415.



Table 1: Analytical data for the five sorghum cultivars used in the trial.

Yellow
(Nigeria)

Yellow
(Cameroon)

Red
(Mexico)

White
(Nigeria)

White
(Ghana)

Ash (g/100g db) 1.8 ±0.19 1.8 ±0.16 2.3 ±0.18 2.2 ±0.35 2.5 ±0.18

Cellulose (g/100g db) 11.7 ±3.1 3.6 ±2.39 13.1 ±3.28 15.2 ±4.22 22.4 ±0.95

Hemicellulose (g/100g db) 7.6 ±0.60 6.6 ±2.11 6.9 ±2.67 5.6 ±1.79 4.1 ±0.31

Lignin (g/100g db) 5.3 ±1.09 7.4 ±1.66 6.7 ±1.8 5.0 ±0.95 4.9 ±1.03

Lipid (g/100g db) 3.1 ±0.2 3.2 ±0.16 2.7 ±0.15 3.2 ±0.23 3.9 ±0.53

Protein (g/100g db) 9.4 ±0.06 8.5 ±0.59 10.6 ±0.2 9.8 ±0.36 10.2 ±0.30

Starch (g/100g db) 61.7 ±6.04 64.4 ±2.33 58.1 ±2.39 55.8 ±1.75 49.3 ±0.62

TOTAL 100.49 95.53 100.32 96.7 97.19

Moisture content (%) 11.2 ±0.16 10.4 ±0.04 14.7 ±0.13 11.5 ±0.05 11.4 ±0.21

Amylose (%) 21.4 ±2.60 14.1 ±0.00 13.0 ±1.20 18.4 ±3.10 18.9 ±1.80

Floaters (%) 94.0 ±1.00 99.7 ±0.60 90.3 ±3.20 95.3 ±0.60 32.0 ±1.00

100 grain weight 3.94 ±0.31 5.24 ±0.43 2.26 ±0.07 3.22 ± 0.28 2.55 ±0.28

-amylase (DU/g) nd nd nd 1.66±0.24 nd

β-amylase               
(betamyl-3-units)

nd 0.19±0.096 0.21±0.058 0.23±0.081 nd

Catechin equivalents mg/ g (dry weight basis)

Tannins
(Vanillin-HCl method)

nd 48 ±27 74 ±6 43 ±7 35 ±6

Results are the mean of at least triplicate independent analyses ± standard deviation



Table 2: Thermophysical properties of sorghum flours and starches according to Differential

Scanning Calorimetry (DSC) and Rapid Visco Analysis (RVA) in the presence of 10 mM

silver nitrate.

Yellow
(Nigeria)

Yellow
(Cameroon)

Red
(Mexico)

White
(Nigeria)

White
(Ghana)

Sorghum flour samples (DSC)

Gelatinisation Onset (°C) 72.49 71.07 64.54 72.54 71.87

Gelatinisation Peak (°C) 77.34 76.48 71.47 76.83 76.87

Gelatinisation Endset (°C) 84.73 83.97 78.76 83.65 85.60

Sorghum flour samples (RVA)

Time of gelatinization (s) 371 347 314 355 360

Peak Viscosity (cP) 733 1010 782 765 -

Trough Viscosity (cP) 661 786 605 723 -

Breakdown (cP) 72 224 177 41 -

Final Viscosity (cP) 1388 1617 1305 1469 1419

Total Setback (cP) 726 831 700 746 -

Sorghum starches (DSC)

Gelatinisation Onset (°C) 70.32 68.43 63.36 69.83 69.95

Gelatinisation Peak (°C) 74.47 72.90 68.92 73.50 74.16

Gelatinisation Endset (°C) 80.28 79.14 75.58 79.35 80.79

Sorghum starches (RVA)

Time of gelatinization (s) 325 315 274 319 322

Peak Viscosity (cP) 3928 4159 4893 3986 4068

Trough Viscosity (cP) 993 1044 1027 1229 1206

Breakdown (cP) 2935 3115 3866 2757 2862

Final Viscosity (cP) 2605 2718 2451 3137 3317

Total Setback (cP) 1612 1674 1424 1908 2111

Results are the mean of triplicate analyses.



Table 3: Results to mashing and fermentation trials using five sorghum cultivars mashed using either the high temperature or low temperature1

mashing schedule. Standard conditions: mashing-in pH 5.5, KMS 1 g/kg, CaCl2·2H2O 2 g/kg, enzymes.2

3

HT mashing system LT mashing system

Wort analyses
Yellow
Nigeria

Yellow
Cameroon

Red
Mexico

White
Nigeria

White
Ghana

Yellow
Nigeria

Yellow
Cameroon

Red
Mexico

White
Nigeria

White
Ghana

Extract (°P) 10.71 ±0.1 10.34 ±0.06 9.86 ±0.08 10.42 ±0.34 10.12 ±0.05 10.62 ±0.06 10.71 ±0.06 10.12 ±0.08 10.69 ±0.12 9.55 ±0.25

Hot Water Extract (% db) 82.6 78.6 78.8 80.4 77.7 81.8 81.7 81.1 82.7 72.9

Wort colour (EBC) 5 ±0 6 ±1 7 ±1 3 ±0 2 ±0 5 ±0 6 ±0 5 ±0 3 ±0 2 ±0

Wort pH 5.71 ±0.01 5.74 ±0.01 5.67 ±0.02 5.80 ±0.01 5.63 ±0.04 5.70 ±0.01 5.80 ±0.01 5.71 ±0.02 5.88 ±0.03 5.72 ±0.04

FAN (mg/L) 61 ±5 70 ±1 78 ±1 86 ±5 44 ±2 63 ±1 73 ±0 82 ±4 94 ±2 49 ±1

fructose (g/L) 0.7 ±0.1 1.3 ±0 0.3 ±0 0.7 ±0.1 0.5 ±0 0.6 ±0 1.1 ±0.1 nda 0.7 ±0 0.3 ±0

glucose (g/L) 9.9 ±0.4 12.5 ±1.5 11.1 ±0.3 11 ±0.7 9 ±0.3 45.3 ±3.2 45.5 ±3.9 44 ±1.3 41.4 ±1.5 36.8 ±1.6

maltose (g/L) 47.3 ±2.8 41.1 ±3.4 37.5 ±1.4 32.9 ±2.1 30.9 ±1.9 26.7 ±3 27.6 ±1.8 24.9 ±0.9 26.6 ±0.9 22.3 ±2.4

maltotriose (g/L) 29.2 ±1 26.7 ±2.9 23.9 ±0.9 21.8 ±1.7 23.9 ±1.8 15.3 ±2.1 15.4 ±1.4 11.3 ±0.2 13 ±0.7 12.1 ±0.3
aFermentable sugars
(TOTAL)

87.1 81.6 72.8 66.4 64.3 87.9 89.6 80.3 81.7 71.5

haze 25° (EBC) 1.86 ±0.01 8.78 ±0.19 7.79 ±2.13 1.9 ±0.47 0.13 ±0.04 1.7 ±0.2 1.08 ±0.06 0.63 ±0.24 2.18 ±0.07 0.22 ±0.07

haze 90° (EBC) 1.12 ±0.03 3.71 ±0.13 2.98 ±0.72 1.19 ±0.22 0.25 ±0.05 1.41 ±0.1 2.04 ±0.22 0.37 ±0.09 1.09 ±0.02 0.37 ±0.11

run-off volume (mL) 327 ±28 425 ±22 319 ±19 245 ±9 300 ±6 448 ±8 443 ±23 441 ±5 366 ±15 383 ±14

Post-fermentation analyses

Alcohol content (% ABV) 4.68 ±0.16 4.37 ±0.59 4.40 ±0.09 4.17 ±0.41 4.11 ±0.15 4.69 ±0.25 5.13 ±0.61 4.71 ±0.25 5.11 ±0.17 4.36 ±0.12

Residual Extract (° Plato) 2.69 ±0.06 2.09 ±0.23 2.04 ±0.03 2.71 ±0.28 2.99 ±0.1 1.39 ±0.11 1.55 ±0.06 0.83 ±0.2 1.28 ±0.04 1.37 ±0.07

FAN (mg/L) 27 ±0 24 ±1 31 ±2 29 ±1 16 ±4 17 ±3 21 ±1 19 ±1 19 ±8 15 ±1

Apparent fermentability (%) 76.8 81.2 81.0 75.4 72.4 87.2 86.1 92.0 88.7 86.5

Results are the mean of triplicate independent mashes ± standard deviation. asum total of fructose, glucose, maltose and maltotriose.4
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Figure 1: Details of A) traditional high temperature and B) novel low temperature mashing

regimes used in the research, together with details of the respective exogenous enzymes

added.

Enzyme
preparation

Principal Activities Enzyme source Temperature
optimum

pH
optimum

Amylo 300 amyloglucosidase A. niger 75 4.0
Bioprotease P1 protease Bacillus spp. 70 6.0
Hitempase STXL -amylase B. lichenformis 90 6.0
MPA 5 -amylase A. oryzae 60 6.0

Promalt S-LTP
Amylolytic and
proteolytic

GM and non-
GM strains

50-70 5.0-7.0

A)

B)



Figure 2 Scanning electron micrographs showing: Longitudinal cross section through an entire caryopsis of
A) yellow sorghum from Nigeria and B) white sorghum from Ghana. C) the border between floury and
corneous endosperm in the yellow (Nigeria) sample D) High magnification image of the floury endosperm
of yellow Nigerian sorghum E) corneous endosperm of the white Ghanaian sorghum and F) a starch granule
isolated from the white sorghum originating in Ghana, labelled with (i) protein body and (ii) indentation.
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Figure 3: RVA pasting profiles of (A) sorghum flours tested in water (B) sorghum flours tested in 10 mM silver nitrate and (C) extracted and

purified sorghum starches in 10 mM silver nitrate.

Results displayed are the mean of triplicate analyses.
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