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Abstract 

For the first time, a molecular symmetry group (MSG) analysis has been undertaken in the 

investigation of the electronic spectroscopy of p-xylene (p-dimethylbenzene). Torsional and 

vibration-torsional (vibtor) levels in the S1 state and ground state of the cation of p-xylene (p-

dimethylbenzene) are investigated using resonance-enhanced multiphoton ionization 

(REMPI) and zero-kinetic-energy (ZEKE) spectroscopy. In the present work, we concentrate 

on the 0–350 cm-1 region, where there are a number of torsional and vibtor bands and we 

discuss the assignment of this region. In an accompanying paper [Tuttle et al. J. Chem. Phys. 

XXX, xxxxxx (2016)], we examine the 350–600 cm-1 region where vibtor levels are observed as 

part of a Fermi resonance. The similarity of much of the observed spectral activity to that in 

the related substituted benzenes, toluene and para-fluorotoluene, is striking, despite the 

different symmetries. The discussion necessitates a consideration of the MSG of p-xylene, 

which has been designated G72, but we shall also designate [3,3]D2h and we include the 

symmetry operations,  character table and direct product table for this. We also discuss the 

symmetries of the internal rotor (torsional) levels and the selection rules for the particular 

electronic transition of p-xylene investigated here.  
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I. INTRODUCTION 

The prevalence of molecules that contain methyl groups, and their role in understanding 

photophysical phenomena, has led to fundamental studies on simple molecules. The body of 

work from the group of Parmenter and coworkers (see Ref. 1 and other work by the same 

group) is noteworthy, where a significant amount of work has been undertaken comparing 

the molecules p-difluorobenzene (pDFB) and p-fluorotoluene (pFT). This work has been given 

a modern twist by the group of Reid using time-resolved photoelectron spectroscopy (tr-PES) 

(see Ref. 2 and other work by the same group), with whom we have collaborated.3,4 

In previous work, our group has studied toluene, using resonance-enhanced multiphoton 

ionization (REMPI) and zero-kinetic-energy (ZEKE) spectroscopy,5,6 as has the group of 

Lawrance,7 using two-dimensional laser-induced fluorescence (2D-LIF). Recently, this work 

was furthered by Lawrance and coworkers,8,9 with the role of methyl groups in coupling to 

vibrational levels being emphasised. This is related to the concept of intramolecular 

vibrational redistribution (IVR), or more generally intramolecular energy redistribution. These 

coupling processes are important since they can govern the rapid dispersal of internal energy 

within a molecule following photoexcitation, giving it enhanced photostability – particularly 

pertinent to biomolecules.10,11 Thus, an understanding of the role of torsions in such 

mechanisms requires knowledge of the torsional and vibration-torsional (vibtor) level 

structure in different molecules. In particular, the assignment of the vibrations (atomic 

motion) will underpin models of how interactions with torsional motion occurs. In previous 

work, our group has also studied the pFT molecule;4,12,13 as has the group of Lawrance,14,15 

some of which was in collaboration with ourselves. In addition, we shall make passing 

comment on previous fluorescence work on pFT,16,17,18 ZEKE spectroscopy on toluene by Lu 

et al.19 and ZEKE spectroscopy on pFT by Takazawa et al.20 and ourselves.12,13 

In the present work, we examine the S1  S0 electronic transition in p-xylene (pXyl), which 

has two methyl groups that are located on opposite sides of a phenyl ring, using REMPI and 

ZEKE spectroscopy. We shall discuss the 0–350 cm-1 region in detail, guided by the above-

cited previous work on toluene and pFT, in terms of both transitions between internal rotor 

levels in the two states, and those involving interactions between low-lying vibrational and 

torsional levels – the vibtor levels mentioned above. We shall initially remark on the similarity 
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of the structure < 100 cm-1 that arises from the “pure” torsional bands for toluene, pFT and 

pXyl, then further remark on how similar the structure is up to 200 cm-1 for pFT and pXyl, 

which is attributable to torsional and vibtor bands. These similarities, and the departure 

therefrom for the structure above 200 cm-1, will be noted and discussed. 

As noted in ref. 9, vibration-torsional interactions will pervade the higher energy levels of 

each electronic state and so combination levels involving such vibtor levels must be 

considered when assigning the rest of the spectrum. In an accompanying paper, we shall 

consider the 350–600 cm-1 region of the spectrum of pXyl, where it will be seen that, although 

dominated by vibrational bands, vibtor levels also appear in this region.21 

We note that other workers have studied the electronic spectrum of pXyl .22,23,24,25,26,27,28,29,30 

There have also been studies on the cation that have involved intermediate vibronic 

excitation steps: REMPI combined with photoelectron spectroscopy (REMPI-PES)25; ZEKE 

spectroscopy;31 and mass-analyzed threshold ionization (MATI) spectroscopic studies.28,29,32 

The latter studies have a much higher resolution than both an earlier photoionization study,33 

and HeI photoelectron work that at best only showed partially-resolved and unassigned 

vibrational bands.34,35,36,37 We shall only discuss pertinent aspects of the previous studies at 

appropriate points of the present paper.  

 

II. THEORETICAL BACKGROUND 

A. Single rotor 

Molecules containing methyl groups undergo some internal motions that may be considered 

as torsions. These are also often termed (hindered) internal rotations and these terms are 

used largely interchangeably in the literature, depending on the context and emphasis. In 

Appendix A we outline the key points regarding the energy levels and labelling of single-rotor 

molecules38 such as toluene39,40 and pFT, which belong to the G12 molecular symmetry group 

(MSG).41,42 (The atom numbering is presented in Figure 1.) In particular, we provide the 

rationale as to why, even under jet-cooled conditions such as used in the present work, both 

the m = 0 and m = 1 torsional levels are populated. These ideas underpin those for a two-

rotor system – the focus of the present work – which is developed in the next subsection. 
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B. Two-rotor systems 

1. Background and Previous Work 

Although there has been a wealth of detailed studies on the spectroscopy of molecules with 

two methyl rotors,38 ,41 this has largely been concentrated on microwave spectroscopy and as 

such the pXyl molecule has received little attention, since it has no permanent dipole 

moment. That said, there also seem to have been no detailed infrared studies of pXyl 

examining the torsional levels, although there have been such studies for other dimethyl 

molecules.43,44 For non-centrosymmetric molecules, many articles are available that cover the 

background theory of such systems, sometimes alongside a description of a computational 

program (see Groner45 for a recent review of these). In principle, the detailed theory required 

to study the energy levels in pXyl is available, in papers such as that by Swalen and Costain,46 

Groner and Durig43 and books such as that by Wollrab38 and the key treatise in the area by 

Bunker and Jensen41 (see also ref. 42), but we are unaware of any detailed development and 

application of the theory to a specific analysis of the spectroscopy of p-xylene. 

We note that Breen et al.23 have studied the S1  S0 electronic transition in the three different 

xylenes and considered (in overview) the effect of the two rotors in discussing the assignment 

of their spectrum. They concluded that, at their resolution, the methyl rotors are essentially 

non-interacting, and this was expected to be particularly true for pXyl where they are the 

most distant. Although noting that the true levels would have a definite symmetry in the full 

MSG for pXyl, Breen et al.23 assigned the structure seen in the case of pXyl in terms of the 

same levels as seen in the single-rotor case, toluene; however, they assigned some levels in 

terms of independent excitation of each methyl group. We make two comments on this 

assignment: first, the pXyl torsional levels will in fact each correspond to linear combinations 

of the single-rotor levels, in order to be of a definite symmetry in the MSG of pXyl; and 

secondly, as we shall see below, the expected intensities and also comparison of the present 

work with the corresponding spectrum of pFT, implies that some of the previous assignments 

for pXyl are incorrect. 
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2. Axis systems 

We define the axis systems employed, in Figure 2, with the numbering given in Figure 1. For 

benzene, the molecule lies in the xy plane, with the z axis coincident with the C6 symmetry 

axis. For a D2h molecule, the z axis will pass through the fluorine atoms of pDFB, but the 

protocol for selecting the x and y axes are not so definitive. We follow the axis system 

employed by Knight and Kable,47 who located the molecule in the yz plane. (A similar issue 

arises with a C2v molecule and, where discussed, to be consistent with our previous work, we 

also locate the molecule in the yz plane, with the z axis passing through the unique substituent 

atom (or group) and the centre of the phenyl ring.) With these axis conventions, in the D6h 

point group for benzene, the S1 state is designated Ã1B2u, the S2 state is 𝐵̃1B1u, and the S3 state 

is 𝐶̃1E1u. These will be pertinent to a discussion of Herzberg-Teller (HT) vibronic coupling 

effects that will be presented later. For the G12 MSG, the a axis (coincident with the z axis) 

passes through the ipso and para carbon atoms of the phenyl ring as well as the carbon of the 

methyl group, and the phenyl ring lies in the ab (yz) plane; the c (x) axis is thus perpendicular 

to the phenyl ring. 

3. Molecular symmetry group of p-xylene 

The MSG of pXyl is of order 7243 and has been referred to as G72, but it does not yet appear 

to have been applied to its spectroscopy. It has been mentioned in the literature, such as in 

the paper by Groner and Durig43 (where it was denoted 3 × 3 × V2 or C3vT–D2hF–C3vT, where 

the T refers to the CH3 groups (torsions), and the F to the framework to which these are 

attached); additionally, some guidance as to the construction of the G72 character table has 

been given.41,48,49  We also note that Smeyers and coworkers have considered symmetry 

effects on the potential energy and conformational behaviour of two-rotor (and higher-rotor) 

molecules.50,51,52,53 

Most molecular symmetry analyses begin with the PI operators of feasible motions to derive 

the commutation relations between the operators and to establish the MSG and its character 

table. It is then possible to determine Γ*, the irreducible representation dictating the selection 

rules for electric dipole transitions and to reduce the representation of the nuclear spin 

functions. The description of everything else in spectroscopic problems requires the definition 

of rotational and internal (large-amplitude and vibrational) coordinates. We begin with the 
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definition of the nuclear position vectors as functions of Eulerian angles and internal 

coordinates and determine the substitutions of the coordinates and that lead to permutation-

inversion (PI) operators of feasible motions. Hence, to derive the MSG of pXyl, the molecule 

is placed into a molecule-fixed Cartesian (frame) axis system. In this axis system, see Figure 

1(b), the frame position vectors of the H atoms in the phenyl group are given by: 

 𝑋𝑗𝑙
𝑓

= 𝐷(𝑙𝜋, 𝑗𝜋, 0) 𝐷(0, 𝜑, 0) 𝑅𝐻 , l, j = 1, 2     (1) 

While the positions of the methyl group H atoms are defined as: 

 𝑋𝑗𝑘
𝑓

= 𝐷(𝑗𝜋, 𝑗𝜋, 0) [𝑅 + 𝐷(𝜏𝑗 + 𝑘𝜔, 𝜃, 0) 𝑅𝑋] 

   = (2π)/3,  j = 1, 2;  k = 0, 1, 2 (modulo 3) 

(2) 

RH, R and RX are vectors whose b- and c-components are zero; the a-components are the 

distances of: a phenyl H atom from the origin; a methyl C-atom from the origin; and a methyl 

H atom from its corresponding methyl C atom, respectively. (The position vectors of the C 

atoms are not required to derive the symmetry operators, since they can be inferred from 

those of the H atoms; their positions can be found by replacing RH by RC in Eq. (1), which 

generates the position vectors of the C atoms a, b, c, and d; further, setting RX to the null 

vector in eq. (2) defines the locations of the methyl C atoms; and changing R to R in that last 

expression generates the positions of the ipso and para phenyl C atoms.) The rotation 

matrices D are defined according to: 

 𝐷(𝛼, 𝛽, 𝛾) =  𝐷(𝛼, 0,0) 𝐷(0, 𝛽, 0) 𝐷(0,0, 𝛾)  

 =  (
cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1
) (

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
) (

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0

0 0 1
) 

(3) 

In the space-fixed axes system, the Cartesian coordinate vectors are given by: 

 𝑋𝑗𝑚 = 𝐷(𝛼, 𝛽, 𝛾) 𝑋𝑗𝑚
𝑓
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(4) 

Where ,  and  are the Eulerian angles defining the rotation of the molecule in space. The 

S-1 matrix that is used by many (see, for example, Hougen)44,54 is related to the D matrix as 

follows: 

 𝑆−1(𝜒, 𝜃, 𝜑) = 𝐷(𝜑, 𝜃, 𝜒) 

(5) 

It is easy to show that the five generating operators C1, C2, D, S and T, which are defined in 

Tables I and II, are symmetry operations which lead to permuted position vectors and 

corresponding PI operators. (Note that S and D have also been used for rotation matrices 

above – the context makes it clear to what we are referring in each case.) All the generating 

operators commute with each other, except for: 

 [S,Cj] = Cj
-1, and  [T,Cj] =  C3-j 

(6) 

Specifically, D commutes with any of the other operators Cj, S, and T. The molecular symmetry 

group can therefore be denoted [3,3]D2h = [3,3]C2v  {E, D}. In this notation,55  [3,3]G stands 

for the semidirect product (C3  C3)G, where C3 is the cyclic group of order 3;  and  are the 

symbols for a direct product and semidirect product, respectively; and G is the symbol for a 

point group. {E, D} is the group of order 2 containing the elements E and D. The group [3,3]C2v 

has been called C3v
-  C3v

+ in some work,56,57 3  3 in others,43,58 and G36 in some publications 

on acetone-like molecules.59 While the PI groups, each denoted G36, for acetone and 

dimethylacetylene are isomorphic their application to vibronic states59 necessitates the 

extended PI group G36
† = G72 “double group” for dimethylacetylene, but not for acetone. In 

fact, [3,3]D2h for pXyl is isomorphic to G72 but, in this case, it is not a “double group”. 

The character table of [3,3]D2h is given in Table III. The labels of the [3,3]D2h irreducible 

representations consist of the two symmetry numbers σ1 and σ2 for each of the individual 

internal rotors. To this are appended a g or u subscript for positive or negative character 

under operator D and superscripted signs s1 and s2, which represent the behaviour under T 

and/or U (=TS), respectively, as follows: for 00 levels both signs will be present (both 
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characters are ±1); for 11 levels there will be a single sign, s1 (the character of T is ±2, while 

that for U is 0); for 12 levels there will be a single sign, s2 (the character of U is ±2, while that 

for T is 0); and for 01 levels there will be no such sign (both characters are 0). 

Also, included in Table III is a column that contains irreducible representation labels that are 

based on the labels of G36 in ref. 41, since G72 = G36  {E, D}; we shall use these “G72” labels 

when discussing the assignment of the spectra later on. The PI operators of G72 are identified 

with those of [3,3]D2h in Table II.  

The transformation properties of the free internal rotor functions 

   |𝑚1𝑚2⟩ =  (2𝜋)−1 𝑒𝑖𝑚1𝜏1𝑒𝑖𝑚2𝜏2  , 0 ≤ integers |m1|, |m2| < ∞ 

(7) 

are shown in Table IV. The symmetry operators T, U, and S transform the functions m1m2 

into m2m1, -m2-m1 and -m1-m2, respectively. The set of these four functions is labelled by 

{m1,m2}. When |m1| = |m2|, the set contains only two functions, and for |m1| = |m2| = 0, the 

set has only one function. In Table IV, m1 and m2 have been expressed with the symmetry 

numbers as: 

  m1 = 3m+σ1  and  m2 = 3n+σ2 

  σ1 = m1 (modulo 3)  and  σ2 = m2 (modulo 3) 

(8) 

The appropriate linear combinations for each irreducible representation are given in Table V. 

The symmetry characteristics of the rotational basis functions are derived from their 

properties in the molecular symmetry group [3,3]D2h. Since pXyl is an asymmetric rotor, we 

can express them in terms of the parities (e for even, o for odd) of the KaKc labels of an 

asymmetric rotor. Functions with parities ee, eo, oo and oe transform like 00g
++ (A1), 00g

-+ 

(A2), 00u
+- (A3), and 00u

-- (A4), respectively. The electric dipole moment is of course a 

function of the internal rotation angles 1 and 2. The transformation properties of the 

simplest periodic functions are listed in Table VI for G72 and will be made use of later. 
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4. Nuclear Spin States and Jet Cooling 

In Appendix A, we outline why it is that even under the coldest jet-cooled conditions, we still 

expect significant populations in the m = 0 and m = 1 torsional levels for a single-rotor system, 

because of satisfying the Pauli principle when nuclear spin states are considered. A similar 

situation arises in the case of pXyl, and this is developed in Appendix B. The conclusion is that 

now we expect four torsional levels to be populated under jet-cooled conditions: {0,0}, {0,1}, 

{1,1} and {1,-1}. As a consequence, excitations from S1  S0 can involve any of these four 

levels. 

 

5. Labelling the {m1,m2} states 

Because of the degeneracies of the various levels, a single {m1, m2} label can be used for 

various combinations of pairs of mi, mj quantum numbers (see Tables IV and V, discussion 

above and Appendix C.) In addition, to be able to compare assignments between one-rotor 

and two-rotor systems, it will prove useful to have alternative labels for the {0, m} states for 

m = 0 modulo 3 (m  0) levels. These are {0,3(+)}+ and  {0,3(+)}- and {0,3(-)}+ and  {0,3(-)}-, 

which are +/- combinations of the m = 3(+) and m = 3(-) levels on each rotor – see Appendix 

C. 

6. Hamiltonian for coupled equivalent internal rotors 

 

As usual, the Hamiltonian is the sum of operators for the kinetic energy, T, and the potential 

energy, V: 

H = T + V 

(9) 

The kinetic energy for a two-rotor system, without the contributions from the coupling with 

overall rotation, may be written as (see Eq. (5c) in ref. 60) 

𝑇 =  (𝑝1
∗ 𝑝2

∗) (
𝐹 𝐹′

𝐹′ 𝐹
) (

𝑝1

𝑝2
) 
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(10) 

The symbols 𝑝𝑗 and 𝑝𝑗
∗ represent the internal angular momentum operator for rotor j and its 

complex conjugate, respectively. For methyl internal rotors, the quantities F and F are 

essentially constant and are obtained from: 

𝐹 = (𝐼𝑎 − 𝐼′) 𝑑 

 𝐹′ = −𝐼′𝑑 

  𝑑 = (ℎ/8𝜋2𝑐)/[𝐼′(𝐼𝑎 − 2𝐼′)] 

 

(11) 

where Ia is the smallest principal moment of inertia for overall rotation of the whole molecule 

and I' is the moment of inertia of one methyl group about its internal rotation axis. 

Approximate values of these parameters, obtained from calculated equilibrium (“Re”) 

structures from B3LYP/aug-cc-pVTZ and TD-B3LYP/aug-cc-pVTZ optimized structures of pXyl21 

are (in cm-1), F = 5.591 and F' = -0.194 for the S0 state and F = 5.547 and F' = -0.184 for S1. 

Neglecting higher orders in the internal angular momenta, the kinetic energy is then given by  

𝑇 =  𝐹 (𝑝1
2 + 𝑝2

2) + 2𝐹′𝑝1𝑝2 

(12) 

The potential function can be written as a 2-dimensional Fourier series  

2𝑉(𝜏1, 𝜏2) = ∑ 𝑉𝑗,𝑘

𝑗,𝑘

 𝑒𝑖𝑗𝜏1𝑒𝑖𝑘𝜏2 

(13) 

The generating symmetry operators C1 and C2 (see Tables I and II) require that j and k are signed integer 

multiples of 3. The other generating operators of Table II, together with the condition that V(1, 

2) be real, lead to the following relations between the coefficients, Vj,k: 

𝑉𝑗,𝑘 = 𝑉𝑗,𝑘(−1)𝑗+𝑘 =  𝑉−𝑗,−𝑘
∗ = 𝑉−𝑗,−𝑘 = 𝑉𝑘,𝑗 = 𝑉−𝑘,−𝑗 
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(14) 

These relations also mean that the coefficients, 𝑉𝑗,𝑘, are real and, moreover, that they may 

be non-zero only for j+k = even. Therefore, the potential function may be rewritten: 

 

 2𝑉(𝜏1, 𝜏2) = 𝑉0,0 + 2 ∑ [𝑉𝑗,𝑗cos(𝑗(𝜏1 + 𝜏2)) + 𝑉𝑗,−𝑗 cos(𝑗(𝜏1 − 𝜏2))]𝑗=3,3    

  +2 ∑  𝑗=6,3  ∑ 𝑉𝑗,𝑘[cos(𝑗𝜏1 + 𝑘𝜏2) + cos(𝑘𝜏1 + 𝑗𝜏2)]𝑗−6
𝑘=−𝑗+6,6   

 (15) 

In this equation, the summation index j increases in steps of 3 whereas k increases in steps of 

6. Besides the trivial constant, V0,0, the lowest order coefficients in this potential function are 

V3,3, V3,-3 and V6,0. A simplified expression may therefore be written: 

  

𝑉(𝜏1, 𝜏2) = (𝑉3,3 + 𝑉3,−3) cos 3𝜏1 cos 3𝜏2 

−(𝑉3,3 − 𝑉3,−3) sin 3𝜏1 sin 3𝜏2 + 𝑉6,0 (cos 6𝜏1 + cos 6𝜏2) 

(16) 

A potential function described by this equation with a dominant V6,0 coefficient has 36 minima 

and 36 maxima over a range of 2π of both variables. The minima and maxima (which occur in 

pairs) in the -π/3 < τ1, τ2 ≤ π/3 range are listed in Table VII for V6,0 > 0, together with their 

energies and descriptions. The energy minima occur for conformations in which one C-H bond 

of each methyl group are in the ac plane (the methyl groups are staggered (ss) with respect 

to the benzene ring). One pair of these is labelled C2h(b) because it has C2h(b) point group 

symmetry with the C2 axis coinciding with the b axis). The other pair of minima is labelled 

C2v(c). The structures at the maxima of the potential have one C–H bond of each methyl group 

eclipsing the benzene ring (ee). They are labelled C2v(b) or C2h(c). The energies of minima, 

maxima and saddle points are given in terms of the potential coefficients, also their relative 

energy with respect to conformation C2h(b). This structure is the one shown in Figure 1, which 
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is the calculated minimum energy structure in the electronic ground state S0.21 If the C2h(b) 

structure corresponds to the global minimum (in S0), V3,3 must be smaller than V3,-3. Structure 

C2v(c) corresponds to the structure of the S1 state. For the C2v(c) structure to be the global 

minimum (in the S1 state), V3,3 must be larger than V3,-3. 

Figure 3 contains contour plots of potentials which have global minima at the C2h(b) and C2v(c) 

conformations. In both plots, the horizontal axis (τ1) and vertical axis (τ2) run from -π/3 to 

+π/3. The global minima and maxima of the potential are in the centre of the dark purple and 

dark orange areas, respectively. 

The potential coefficients, V3,3, V3,-3 and V6,0, cause the first order splittings of levels that 

belong to the {0,3} set of free internal rotor functions. Table VIII displays the matrix with the 

interaction matrix elements, with the resulting energies of the symmetrized functions being 

given in Table IX. These results will be discussed later.  

7. Vibrational Labels 

In the same way that the vibrations of monosubstituted benzenes are significantly different 

from those of benzene,61 the presence of a second substituent also modifies the vibrations 

significantly, both in form as well as wavenumber, so that they are different from those of 

both benzene and the monosubstituted species. We have recently examined the vibrations 

of para-disubstituted benzenes62 and in the present work we shall use the Di nomenclature 

described therein for the vibrational labels. 

 

III. EXPERIMENTAL 

The REMPI apparatus employed has been described previously in detail elsewhere,63 with 

small modifications having been incorporated in order to perform the two-colour ZEKE 

experiments, which have also been described,64 and so only a brief description is given here. 

The excitation laser was a dye laser (Sirah Cobra-Stretch) operating with C540A and was 

pumped with the third harmonic (355 nm) of a Surelite III Nd:YAG laser. The ionization laser 

was a dye laser (Sirah Cobra-Stretch) operating with DCM pumped with the second harmonic 

(532 nm) of a Surelite I Nd:YAG laser. The fundamental frequencies produced by each dye 
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laser were frequency doubled using beta-barium borate (BBO) and potassium dihydrogen 

phosphate (KDP) crystals for the pump and probe lasers, respectively.  

The vapour above room temperature p-xylene (99.5% purity, Sigma-Aldrich) was seeded in 

~1.5 bar of Ar and the gaseous mixture passed through a General Valve pulsed nozzle (750 

μm, 10 Hz, opening time of 180–210 μs) to create a free jet expansion. The focused, 

frequency-doubled outputs of the two dye lasers were overlapped spatially and temporally 

and passed through a vacuum chamber coaxially and counterpropagating. Here they 

intersected the free jet expansion between two biased electrical grids located in the 

extraction region of a time-of-flight mass spectrometer, which was employed in the REMPI 

experiments. These grids were also used in the ZEKE experiments by application of pulsed 

voltages, giving typical fields (F) of ~10 V cm-1, after a delay of up to 2 s, where this delay was 

minimized while avoiding introducing excess noise from the prompt electron signal. Because 

of the well-known decay of the lower-lying Rydberg states accessed in the pulsed-field 

ionization process,65 bands had widths of ~5–7 cm-1, even when F relationships would 

suggest the widths should be significantly greater. 

 

IV. RESULTS AND DISCUSSION 

A. REMPI Spectrum - Overview 

The 0–350 cm-1 region of the (1+1) REMPI spectrum of pXyl is presented in Figure 4, where it 

is compared with the corresponding spectra of pFT and toluene having been previously 

published in Refs. 13 and 5, respectively. The spectra are presented on a relative wavenumber 

scale, with the wavenumbers of the origin transitions noted in the figure caption. If we treat 

the methyl groups as point masses, as noted above, then pXyl may be considered in the D2h 

point group, and the resulting transition may be denoted A
~ 1B2u  𝑋̃1Ag; for molecules with 

C2v point group symmetry, then the transition is A
~ 1B2  𝑋̃1A1. The transition observed here 

for pXyl is hence the corresponding transition observed in our recent REMPI work on 

monohalobenzenes66,67,68 toluene,5,6 and pFT3,13 (in the latter two cases, if the methyl group 

is again taken to be a point mass).  
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As may be seen from Figure 4(c), the first ~ 350 cm-1 of the spectrum of pXyl above the intense 

origin band consists of a series of weak features. The lowest wavenumber weak features have 

been discussed by Breen et al.23 in terms of torsions only; but, by analogy with the recent 

work by Gascooke et al. on toluene,8 and recent work by them and us on pFT,13,14,15  (see also 

the work of Zhao18), we also expect some contribution from low-wavenumber vibrations via 

vibration-torsional coupling in this region of the spectrum. We note that Ebata et al.22 saw 

very few features in this wavenumber region and indeed there were very few features in their 

wider-range spectrum and none below 600 cm-1. In contrast, Gunzer and Grotemeyer28,29 

observed a number of low-wavenumber bands,  but only assigned these to generic “methyl 

torsions”; a few others to higher wavenumber were assigned to vibrations using Wilson 

notation and a discussion of this region is contained in our accompanying paper.21 

Additionally, they observed torsional bands in their MATI spectrum, plus some unassigned 

features, which we shall also remark upon below. Blease et al.24 observed a few torsional 

transitions, but these were only generically assigned; they also gave assignments for four of 

the vibrational bands in this region, again which we shall comment in the accompanying 

paper.21 They noted some other features in their REMPI spectrum that were unassigned and 

we shall comment on some of these below. The REMPI spectrum presented in ref. 24 appears 

to be the best quality of those previously reported (albeit with little comment regarding the 

assignment therein) and is in excellent agreement with that presented in Figure 4(c) of the 

present work. 

With regards to the cation, the resolution and/or signal-to-noise in Walter et al.’s REMPI-PES 

study25 was not sufficient to see any torsional bands. Gunzer and Grotemeyer28 observed 

some torsional bands in their MATI spectrum, but these were only assigned in a generic way. 

On the other hand, Held et al.31 provided detailed assignments for ZEKE bands that they 

observed when exciting via the S1 origin, in terms of transitions on one or both methyl groups. 

Similar to our comments above regarding the S1  S0 spectrum of Breen et al.,23 we are not 

convinced that the picture presented is entirely correct for the full molecular symmetry group 

and indeed will reassign a number of bands later in the present paper. 

In the following, we shall discuss the assignment of the main REMPI features by reference to 

the activity we see in the ZEKE spectra when we excite through various S1 levels that are each 
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the terminating states of various REMPI transitions; we shall also find it useful to make 

analogy with the corresponding spectra of toluene and pFT. 

On occasion, we were able to identify some bands in the REMPI spectra of pXyl attributable 

to complexation of pXyl with Ar via their changing relative intensities with conditions, the 

observation of the parent cation in the mass spectrum, and by comparison with the work of 

Lu et al.69 We do not believe any of the spectra presented herein are contaminated to any 

significant extent by bands arising from complexes. 

B. “Pure” Torsional Transitions 

In Figure 4 we show the 0–350 cm-1 region of the REMPI spectra of toluene, pFT and pXyl. In 

the case of toluene, the assignment of the region < 100 cm-1 has been discussed by Walker et 

al.39 and more recently by Virgo et al.40 with a particular emphasis on explaining the relative 

intensities of the symmetry-forbidden bands. The explanation for these was based on 

electronic-torsional coupling via a Fourier expansion of the transition dipole moment in terms 

of the torsional angle. It was deduced that the 𝑚   0
3(+)

 transition should be the most intense of 

the non-Franck-Condon bands and other m = 3 transitions should be seen, explaining the 

presence of the 𝑚1
2 and 𝑚1

4 bands (noting that m can be signed). This explanation did not, 

however, explain the appearance of the very weak 𝑚   0
3(−)

 transition, which was suggested as 

arising from torsion-rotation coupling, with this considered in detail by Virgo et al.,40 where 

simulations gave close-to-quantitative agreement with experiment, and revealed the 

dependence of the intensity of the  𝑚   0
3(−)

 feature on the magnitude of V6 and the rotational 

temperature. (Here the 𝑚𝑎
𝑏 notation indicates a transition from m = a in the S0 state to m = b 

in the S1 state.) 

The assignment of the spectrum of toluene was largely confirmed by ZEKE experiments19 

based upon expected selection rules and the more general analogue of the v = 0 vibrational 

propensity rule, which we designate the “(v,m) = 0” propensity rule, referring to preferential 

excitation of the same vibrational and torsional character in the cation as in the intermediate 

S1 level. In ref. 9, Gascooke et al. showed that essentially the same assignment of the torsional 

features in the S1  S0 transition resulted when considering vibration-torsion coupled levels, 

but that the values of the effective rotational constants and V6 barrier heights were different 



16 
 

– very starkly so for V6. In the absence of any significant perturbation of the potential by the 

presence of the fluorine atom in pFT, and with the comments above concerning the excitation 

of the non-interacting methyl torsions in pXyl, we would expect the appearance of the REMPI 

spectra for the three molecules, toluene, pFT and pXyl to be very similar in this region. In fact, 

as may be seen from Figure 4, the regions < 100 cm-1 do indeed look very similar in all three 

spectra, indicating that the assignments are expected to correspond. It is then noteworthy 

that also in the region 100–200 cm-1, the spectra of pFT and pXyl agree very closely, while that 

of toluene is somewhat different; in the below, we shall attribute this to an almost identical 

value of D20 in the S1 state of pFT and pXyl, while the value of the lowest wavenumber 

vibration in toluene is somewhat different. In the region 200–350 cm-1 it may be seen that 

the spectra of pFT and pXyl now also differ – this will be attributed to the different value of 

D19 in the S1 state of the two molecules. (Note from Refs 13 and 62 that the D20 and D19 modes 

are both related to the M20 vibration, and so it is less straightforward to compare between 

the mono- and disubstituted molecules in these cases.) 

This is also an appropriate point to note that the D30 vibration also should appear in this region 

of the spectrum, and the corresponding vibration, M30, has been clearly seen in the spectra 

of toluene,5,7 and D30 seen for pFT (where it is coincident with the D14D20 combination 

band)13,14 – see Figure 4. However, no such band is present for pXyl, and such a band is also 

absent in the LIF spectrum of pDFB in ref. 47 (where it is denoted Mulliken mode 22). This is 

explainable in terms of point group symmetry: in a D2h molecule, D30 is of b2u symmetry and 

hence forbidden by both Franck-Condon and Herzberg-Teller (HT) coupling arguments, which 

cause b3g modes to be allowed; on the other hand, in C2v symmetry, it has b2 symmetry and 

so is HT-allowed. 

C. Vibrations, Symmetry and Selection Rules 

If we assume a complete separation of electronic, vibrational and torsional motion in pXyl, 

then we expect the v = 0 propensity rule to hold (since the geometries of the S0, S1 and D0
+ 

states of substituted benzenes are very similar) and, separately, a {m1, m2} = 0 propensity 

rule to hold (since the torsional potentials of the three states are expected to be quite similar), 

where both mi remain unchanged. We use the notation {m1, m2} =  (  0) to denote a 

change in either one (but not both) of the mi quantum numbers; in cases where we wish a 
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change to refer to the sum of those of both quantum numbers, we shall use (m1 + m2).  The 

most intense bands are hence expected to be associated with transitions that are in line with 

the torsional and vibrational propensity rules; however, non-totally-symmetric vibrations are 

also expected via HT coupling. Also, some torsional transitions are seen which do not conform 

to the {m1, m2} = 0 propensity rule and these arise from electronic-torsional coupling, as 

mentioned above in the case of single-rotor molecules. Finally, following on from the 

discussion given in refs. 8 and 9 for toluene, and refs. 13 and 14 for pFT, we may expect to 

see transitions involving vibration-torsional (vibtor) levels. 

1. Transitions involving torsions and the dependence on electronic-torsional coupling 

Since the dipole moment, and hence the electric transition dipole moment, will be a function 

of the two torsional angles, 1 and 2, its variation can induce torsional activity during an 

electronic transition, and we shall now examine this. For a single rotor system, it has been 

argued that the more robust method of examining this is via a Fourier expansion of the dipole 

moment as a function of the torsional angle – see ref. 39. We outline this in Appendix D, and 

extend the ideas here to the two-rotor case. 

For a two-rotor system the electric dipole transition moment (EDTM) for a pure torsional 

transition can be written as: 

  

𝝁 = 〈{𝑚1
′, 𝑚2

′} |⟨𝜓1(𝒒; 𝜏1, 𝜏2)|𝝁|𝜓0(𝒒, 𝜏1, 𝜏2)〉|{𝑚1
′′, 𝑚2

′′}⟩ 

(17) 

The mi represent the internal rotor quantum numbers in the upper electronic state, and mi 

represent those in the lower electronic state, but remembering that each eigenstate must 

transform as a definite symmetry species of [3,3]D2h and so involve both rotors;  is the 

electric dipole moment operator; 1 and 2 are the torsional angles of the two methyl groups 

and q represents the electronic coordinates. With the defined axis system (see Figure 2), the 

components of   transform as Ta, Tb, and Tc, and hence in G72 these symmetries are A4, 

A1and A2, respectively – see Table IV. Since the symmetries of the S1 and S0 electronic states 

are A1 and A1, respectively (see Table X for the G12 – G72 correspondence), the middle 
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integral will transform as a4, a1 and a2 for each of  a,  b and  c, respectively. The next 

stage is to identify the symmetries of the terms in the Fourier expansion; these will be various 

combinations of sine and cosine terms of each of 3i and 6i. Owing to the propensity rules, 

we would only expect the {m1, m2} = 0 or 3 transitions to have appreciable intensity in our 

spectra, with overall (m1 + m2) = 6 transitions expected to be weak, with the latter including 

cross terms; any higher-order changes are expected to be exceptionally weak. 

The dependence of the dipole moment of two-rotor molecules on the torsional angles has 

been described as a two-dimensional Fourier series.39,51 We use a complex representation like 

Eq. (13) for the potential function to expand the dipole moment functions. However, the 

dipole moment components in general are not totally symmetric functions like the potential 

function; therefore, the relationships between the coefficients of the series are not identical 

to those that are valid for the coefficients of the potential function (Eq. (14)). Taking the 

potential function as an example, the relations between the coefficients need to be modified 

depending on the symmetry species as follows: 

 

𝑉𝑗,𝑘 = 𝑉𝑗,𝑘(−1)𝑗+𝑘+𝑤 =  𝑉−𝑗,−𝑘
∗ = 𝑠1𝑠2 𝑉−𝑗,−𝑘 = 𝑠1 𝑉𝑘,𝑗 = 𝑠2 𝑉−𝑘,−𝑗 

(18) 

where 𝑤 = (1 − 𝑠3)/2 and s1, s2, and s3, are the characters of the desired irreducible 

representation under the operators T, U and D, respectively. 

Without going into further details, only the important lowest order terms are listed here for 

the components of the transition dipole moment.  The symmetry species of the transition 

dipole moment components are obtained as the direct product of the species of Tq (q = a, b 

or c) and of the species of the electronic wavefunctions of the S0 and S1 states. 

 

a4 :  a(1, 2) = C3
-C(cos31-cos32) 

 

a1 :   b(1, 2) = C0 + C33
ccos31cos32 + C33

ssin31sin32 
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a2:  c(1, 2) = C33
-SC(sin31cos32-cos31sin32) 

 

(19) 

where the subscripts on the coefficients are analogous to those of the single rotor case, and 

the superscripts denote the cosine/sine nature of the terms, in an obvious fashion. We expect 

{m1,m2} = 0 transitions to be b-type and the most intense, followed by the a-type (m1,m2) 

= 3 ones, which can gain intensity via electronic-torsion (Herzberg-Teller) intensity stealing 

(see below). Transitions that have (m1+m2) = 6 (b-type and c-type) are expected to be weak 

and any higher-order transitions, are expected to be very weak. 

Earlier, we noted that we would expect the four lowest internal rotor levels, {0,0}, {0,1}, {1,1} 

and {1,-1} (hereafter referred to as the “cold” levels) still to be populated in the S0 state after 

free jet expansion (since they are each associated with different symmetry nuclear spin 

functions), and consequently transitions can occur out of any of these. We now consider 

which internal rotor levels are expected to be accessed via direct or electronic-torsion-

induced excitation from these four “cold” levels; we indicate in bold those transitions that are 

expected to have significant intensity. 

For {m1,m2} = {0,0}, the symmetry is a1, and so the states with lowest allowed values of m 

that give an overall totally symmetric EDTM are: 

a-type: {0,3}-- = {0,3(+)}- 

b-type: {0,0}, {3,3}+, {3,-3}+, {0,6}++ = {0,6(+)}+ 

c-type: {3,-3}-, {0,6}- + = {0,6(-)}- 

For {m1,m2} = {0,1}, the symmetry is g and so possible values of m that give an overall 

totally symmetric EDTM) must have symmetries g and g, and are (recalling that the notation 

includes other signed values of mi – see Table V): 

a-type: {0,2}, {-3,1}, {3,1}, {0,4}, {3,-5} and {-3,-5} 
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b-type: {0,1}, {3,-2}, {-3,-2}, {-3,4}, {0,5}, {3,4} 

c-type: {0,1}, {3,-2}, {-3,-2}, {-3,4}, {0,5}, {3,4} 

For {m1,m2} = {1,1}, the symmetry is e3 and so possible values of m that give an overall 

totally symmetric EDTM must have symmetries e4, e3 and e4 and are: 

a-type: {1,-2}-, {1,4}-, {-2,-5}- 

b-type: {1,1}, {-2,-2}, {4,-2}+, {1,-5}+, {4,4} 

c-type: {4,-2}-, {1,-5}- 

For {m1,m2} = {1,-1}, the symmetry is e1 and so the possible values of m (that give an 

overall totally symmetric EDTM) are: 

a-type: {1,2}-, {1,-4}-, {-5,2}- 

b-type: {1,-1}, {2,-2}, {4,2}+, {1,5}+, {4,-4} 

c-type: {1,-1}, {2,-2}, {4,2}+, {1,5}+, {4,-4} 

Thus, we expect to see transitions involving the bolded levels above as the most distinct in 

our REMPI spectra. Other transitions might be observed as the result of (a generalized form 

of) Fermi resonance; the latter would also lead to perturbed band positions. When recording 

ZEKE spectra, we would, of course, be selecting a particular S1 level, and so this will determine 

what ZEKE bands are expected, with the v = 0, (m1+m2) = 0 bands expected to be the most 

intense, and (m1+m2) = 3 bands also being expected; bands with changes in vibration 

quantum number may also be observed depending on the geometry change during the D0
+ 

 S1 transition. 

2. Torsional transitions and Herzberg-Teller coupling 

As is well known, in substituted benzene molecules, “symmetry or Franck-Condon forbidden” 

vibrations can appear and, in molecules such as toluene and pFT, also “forbidden” torsions 

may be observed. These arise as a result of intensity stealing via Herzberg-Teller (vibronic) 

coupling, and its analogue for torsions, in a similar manner to the well-known case of benzene. 

Employing point group symmetry, the relevant state in benzene is the 𝐶̃1E1u state, with e2g 
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vibrations mediating the vibronic coupling for the A
~ 1B2u state; in D2h the relevant state is the 

𝐵̃1B1u state, with b3g vibrations mediating intensity stealing from a higher 1A1g state, which is 

derived from the benzene 𝐶̃ state. As mentioned above, in the cases of toluene and pFT, there 

has been shown to be an analogous electronic-torsion intensity stealing mechanism, and this 

leads to the 3(+) torsion being active in the S1  S0 transition, arising from a m  m 

transition of 3(+)  0. Using MSG symmetry, the a1 vibrations and torsions of the S1 (1A1) 

state gain intensity via intensity stealing from a higher 1A1 state, again which is derived from 

the benzene 𝐶̃ state. More generally, m = 3 transitions gain intensity via this mechanism and 

hence it is also possible to see 4  1 and 2  1 transitions (again, recalling that the m are 

signed). Also, possible to see but much more weakly, are m = 6 transitions and even weaker 

still for higher changes of m = 3n (n = integer). 

In the case of pXyl, similar considerations hold. First we note that in [3,3]D2h the S1  S0 

transition can be denoted A
~ 1A1  𝑋̃1A1, and the relevant excited electronic state to which 

electronic-torsion coupling needs to occur when exciting from {0,0} has A4 symmetry (again 

this will be derived from the benzene 𝐶̃ state); thus, we expect a4 symmetry torsions to be 

active via this mechanism, which Table IV reveals to be {0,3}- -, which (see Section II.B.5 and 

Appendix C) may be written as {0, 3(+)}-. In a similar way, exciting from {0,1}, which has g 

symmetry, requires g torsions, and so we expect {0,2}, {-3,1}, {3,1} and {0,4} amongst others, 

to be active; exciting via {1,1}, which has e3 symmetry, requires e4 torsions, and so we expect 

{1,-2}- and {1,4}- to be active; and finally, exciting via {1,-1}, which has e1 symmetry, requires 

e2 torsions and hence we expect {1,2}-, {1,-4}- to be active. Note that we have only considered 

(m1+m2) = ± 3 transitions, as these are expected to be the most intense. 

3. Vibration-torsion (vibtor) states 

Finally, we note that vibtor levels have been seen in toluene and pFT and it is expected that 

such levels will be seen for pXyl. For a vibtor level to be FC-active when exciting from the {0,0} 

torsional level, we expect the direct product of the vibrational symmetry and the torsional 

symmetry to be totally symmetric, A1, for pXyl; however, there will also be transitions from 

the other still-populated torsional levels, and these will need to be considered when assigning 

the spectrum. First, we need to determine what the equivalent of the D2h symmetries are in 

G72; the correspondence between these, using the axis systems shown in Figures 1 and 2, are 
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given in Table X. Then, in Table XI we tabulate the symmetries of the vibtor levels that arise 

when each of the torsional levels interact with each of the three lowest energy vibrations, 

D20, D19 and D14. As may be seen, as well as bands from the “pure” {0,0} (intense) and {0,6(+)}+ 

(weak) torsions when exciting from {0,0} in the S0 state, we may also expect to see symmetry-

allowed transitions to D20 {0,3(-)}-, D19 {0,3(-)}+ and D14 {0, 6(-)}+ for the S1  S0 excitation. The 

fact that two different {0, 3(-)} levels are associated with the D20 and D19 vibrations in the FC-

allowed vibtor levels arises as a result of the different symmetries of these vibrations under 

D2h (and hence G72); in pFT both D20 m = 3(-) and D19 m = 3(-) levels were seen with reasonable 

intensity, with both of these vibrations interacting with the same torsional level under the 

lower-order MSG. Additionally, there will also be corresponding transitions from the {0,1}, 

{1,1} and {1,-1} levels, which will access different upper vibtor levels in each case and these 

will be discussed at appropriate points below. 

It will also be the case that vibtor levels of the same symmetry can interact with each other 

and with “pure” torsional levels that have the corresponding symmetry. As has been shown 

for toluene8,9 and pFT,13,14,15  these interactions can shift levels in wavenumber and hence 

cause transitions not to be in the expected position. We shall comment on this below for 

some of the transitions observed, but will not report a full analysis of this in the present paper. 

We expect vibtor transitions involving the same vibrational change, but different “cold” 

torsional levels to be at relatively similar transitions energies; however, these will be at 

different energies owing to the different upper levels accessed and perhaps also as a result 

of different symmetry levels interacting differently with other vibtor levels. The latter 

suggests that we may observe splitting of bands, if this effect is sizeable. 

In Figure 4 we show expanded views of the pertinent region of the low-wavenumber regions 

of the REMPI spectra of toluene, pFT and pXyl. It is striking that the region below 100 cm-1 is 

very similar in all three spectra, but even more striking is the very similar appearance of the 

spectra of pFT and pXyl below 200 cm-1. The assignments of the toluene spectrum come from 

refs.  9 and 39 and those for pFT come from refs. 13, 14 and 15. The assignments for pXyl are 

from the present work and will be discussed in more detail below. For now, we note that the 

assignments for pXyl are very similar to pFT, in that the same values of the m quantum 

numbers are associated with bands at similar wavenumbers; however, because of the 

different (higher) symmetry of pXyl arising from the two methyl groups, the levels are not the 
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same and loosely consist of various symmetric and asymmetric combinations of the 

corresponding single-rotor levels. 

In the subsections below, we shall deal with each REMPI band in turn, discussing its 

assignment in terms of the allowed symmetries of the S1 internal rotor levels that can be 

accessed from the cold {m1, m2} levels (see Appendix B). Thus, we need to consider population 

of S1 internal rotor levels when exciting from each of the {0,0}, {0,1}, {1,1} and {1,-1} levels 

taking into account the symmetries of the components of the transition dipole moment (see 

Section IV.C.1). In all cases, it transpires that more than one S1 internal rotor level will be 

populated. We will treat various REMPI bands together and, in each case, show the relevant 

section of the REMPI spectrum, together with ZEKE spectra that have been recorded. In a 

number of cases, ZEKE spectra are recorded at wavenumbers corresponding to different parts 

of a REMPI feature to establish if there are distinct overlapping contributions. 

We first note that excitations involving totally-symmetric vibrational levels will consist of four 

associated internal rotor transitions in each case, i.e. the {m1, m2} = 0 transitions from the 

four “cold” internal rotor levels just noted; these will all appear almost completely overlapped 

in our spectra as the transition energies are all expected to be within 1 cm-1 of each other. 

We shall also see that various non-totally symmetric vibrations will be seen via HT coupling 

and vibtor transitions will be seen, again involving non-totally-symmetric vibrations. 

(a) Excitation via {0,0}, {0,1}, {1,1}, {1,-1} 

In Figure 5(a) we show an expanded view of the pertinent region of the REMPI spectrum 

where the “pure” torsional excitations are located. We indicate the bands whose 

wavenumbers correspond to the excitation positions we employed to record ZEKE spectra. In 

Figure 5(b) we show the ZEKE spectrum when exciting via the origin transition focusing on the 

torsional region. Being a transition involving the totally-symmetric zero-point vibrational 

energy levels, the most intense REMPI feature will consist of the four overlapped bands 

associated with the four “cold” torsional levels and as a consequence, the ZEKE spectrum will 

also consist of transitions from these four levels into various levels of the cation; the most 

intense will be the four {m1, m2} = 0 transitions which will appear as a single overlapped ZEKE 

feature as the torsional potentials in the S1 and D0
+ states are expected to be very similar. The 

wavenumber of this band defines the adiabatic ionization energy (see ref. 21). 
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(b) Excitation via {0,2}, {1,2} - and {1,-2} - 

We recorded a ZEKE spectrum via the REMPI band at 00 + 16 cm-1 and this is shown in Figure 

5(c). It may be seen to consist of a main band at 15 cm-1, with a shoulder corresponding to 

the origin position. The REMPI band is expected to consist of three overlapped transitions: 

{0,2}  {0,1}, {1,-2}-  {1,1} and {1,2}-  {1,-1} and hence each of the S1 levels could be the 

starting level for a ZEKE transition. We expect the {m1, m2} = 0 transitions to be the most 

intense, but we may also see other transitions induced by electronic-torsional coupling. By 

considering the symmetry of each of these, plus the symmetry of the dipole moment integral 

we find that the {0,1}  {0,2} and {1,1}  {1,-2}- transitions can be induced via electronic-

torsional coupling and hence these could both be contributing to the weak ZEKE band at the 

origin. There are also some very weak bands to higher wavenumber, which could arise from 

transitions to other levels, induced by electronic-torsional coupling. 

 (c) Excitation via {0, 3(-)} - and {0, 3(+)} - 

We then consider the ZEKE spectra when exciting through the m = 3 levels, which are shown 

in Figures 5(d) and 5(e). The question arises as to which {0,3} levels could be accessed in the 

S1 state, as there are four such of these. First, we note that in pFT13, consistent with toluene,39 

it has been concluded that the more intense band was associated with the 3(+) level and arose 

as a result of a transition from m = 0 via electronic-torsional coupling in the S1 state, similar 

to that in toluene39,40 and as summarized above. For pXyl the S1 1A1 state in G72, and so the 

expected torsional level that arises from corresponding coupling when exciting from the {0,0} 

S0 level is {0,3}- -, which can be written as {0,3(+)}-, as noted above (see also Appendix C). 

A lower wavenumber, and significantly less intense, band in the REMPI and 2D-LIF spectra of 

toluene have been seen and assigned as arising from the 3(-) state,5,7,8,19,39,40 attributed to 

torsional-rotational coupling. 39,40  We noted that this band in the spectrum of pFT had the 

same symmetry as the cation, which is 2A2 for pXyl, since the corresponding band for the 

cation was seen in the ZEKE spectrum recorded via the origin and arose via electronic-

torsional coupling with the first excited cation electronic state.13 If the same mechanisms hold 

here for pXyl, then the expected level is {0,3}- + = {0,3(-)}- and could be contributing to the 

REMPI band at 40 cm-1. Although weak, the ZEKE spectrum recorded via the 40 cm-1 band, 

Figure 5(d), consists of what looks like a single {m1,m2} = 0  band, with any other features 
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being too weak to see. On the other hand, exciting from the {0,1} level in the S0 state would 

allow the {3,1} and {-3,1} levels to be accessed and so transitions to these could be 

contributing to the REMPI feature. Further, these transitions can steal intensity via a 

generalized form of HT coupling, and so perhaps are likely to be the main contributors to this 

feature. Contributions from the {1,-1} level in the S0 state are also possible, but would give 

rise to features that will be coincident with those from the {1,1} state, within our resolution. 

The spectrum obtained when exciting through the {0,3(+)}- level at 53 cm-1, Figure 5(e), again 

appears to consist of an intense feature assumed to be the {m1, m2} = 0 transition, but with 

a weak {m1, m2} = -3 feature visible for the origin. Further, since the two features are clearly 

distinct in the S1 state for pXyl, this suggests a clear assignment of two ZEKE bands, and places 

the {0,3(-)}- band below the {0,3(+)}- band in the cation. This assignment order is consistent 

with that of the m = 3 levels in pFT presented in ref. 16 and also in our recent conclusions for 

pFT.13 Additionally, this conclusion suggests that the assignment of the m = 3 region of the 

toluene ZEKE spectrum by Lu et al.19 is incorrect, with the band profile therein being affected 

by a rotational envelope effect – see reference 13 for a more-detailed discussion. 

Earlier (Section II.B.6) we discussed the main torsional potential terms that are expected for 

pXyl and showed the interaction matrix for the four {0,3} functions. The eigenfunctions in G72 

are found by diagonalizing this and Table IX shows the resultant eigenfunctions (see also Table 

V and Section II.B.6) and energies, where E03 is the free internal rotor energy. Looking at the 

REMPI spectra in Figure 4(c) and noting the discussion above, then we see that there is a good 

correspondence between the positions of the m = 3(+) bands in toluene and pFT and the 

corresponding {0,3(+)}-band in pXyl. If the 40 cm-1 band were solely arising from transitions to 

and {0,3(-)}- from the {0,0} level, then the fact that it is in almost the same position as the 3(-) 

band in toluene would suggest that the interactions are similar. This is surprising as the 

interactions in toluene involve the M20 vibration, which is higher in wavenumber than the D20 

vibration in pXyl that would be involved here. Assigning this band solely to the {3,1} and {-3, 

1} levels does not help as the D20 {0,1} level could be interacting and so affecting the position. 

Currently, we note this correspondence in the position of the m2= 3 bands in pXyl with those 

in toluene and pFT is interesting and seems to arise from coincidences in the overall 

magnitudes of the interactions in the various molecules. 
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From the results in Table IX, we can see that the V6,0 term plays the equivalent role of V6 in 

single-rotor systems and splits the pair of {0,3(+)}+ and {0,3(+)}- states from the {0,3(-)}+ and 

{0,3(-)}- pair; while within each pair, the (V3,3±V3,-3) term will cause a splitting between the 

pairs of {0,3(+)}± and {0,3(-)}± states. The indications from the spectra, comparing the < 200 

cm-1 regions of pFT and pXyl, is that the V6,0 term is the largest, and the (V3,3±V3,-3) terms are 

relatively small. Further, if the 40 cm-1 REMPI band contains contributions from the 

{0,3(-)}- level, then this lies below the {0,3(+)}- one; then the expectation is that the V6,0 term 

is negative with the present axis system and definition of the torsional angle. Of course, 

caution is required since the 40 cm-1 band may contain more than one contribution and also 

we know that vibration-torsion interactions are likely to be present, and this will affect 

spectral positions. If the relative energies of enough levels are measured, however, a more 

accurate picture of the energy levels should be possible via a full vibration-torsional 

perturbation analysis.8,9,15 

 

(d) Excitation via {0,4}, {1,4}- and {1,-4} - 

Between 68 and 82 cm-1 there is a broad REMPI band that appears to consist of at least two 

features. This wavenumber region is expected for the location of bands associated with 

transitions involving mi = 4 on one of the rotors. The symmetry of the TDM suggests that three 

transitions could be contributing to this feature: {0,4}  {0,1}, {1,4}-  {1,1} and {1,-4}-  

{1,-1}. Given the band profile, we recorded spectra at three different wavenumbers in the 

profile corresponding to 00 + 72 cm-1, 00 + 76 cm-1 and 00 + 79 cm-1; these three spectra are 

shown in Figure 6. Some caution is required in interpreting spectra recorded within a single 

REMPI band as the sampling of different tranches of the rotational profile can lead to 

differently shaped ZEKE bands.13 

In the present case we can see that exciting at 72 cm-1 gives rise to a main ZEKE band at 77 

cm-1, together with a weak band at the origin and another weak band at 104 cm-1; exciting at 

76 cm-1 gives rise to a band that appears to show a double maximum at 77 and 80 cm-1, 

together with weak bands at 103 cm-1 and the origin; finally, when exciting at 79 cm-1, the 

band at 77 cm-1 may be seen, together with a possible shoulder at 86 cm-1. Thus, with the 
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caveat above regarding rotational profiles, there are indications that the REMPI feature may 

have more than one contribution. 

The weak band at the origin arises from the {0,1}  {0,4} and {1,1}  {1,4}- transitions, while 

the strong band arises from {m1, m2} = 0 transitions involving all three populated S1 torsional 

levels. Although electronic-torsional coupling can lead to levels with mi = 5 being accessed, 

the band at 105 cm-1 seems too low in wavenumber for this. Based on our experience with 

pFT and spectra to be discussed below, we expect to see bands associated with the D20 band. 

Indeed the D20 {0,1} level has the correct symmetry to interact with the {0,4} level (both are 

g symmetry) and this is also consistent with the wavenumber expected for the D20 vibration 

(on the basis of quantum chemical calculations presented in ref. 21, and other spectra 

presented later). Additionally, a second contribution to this band is possible from interaction 

of the D20 {1,1} level with the {1,4}- level (both are e4 symmetry). It is difficult, based on the 

available spectra, to disentangle the effect of rotational envelope changes and differing 

contributions to the different bands/band profiles, observed when exciting through the 

features in the REMPI spectrum at 68–82 cm-1. Interaction with the different D20 torsional 

levels would give a further mechanism for such band profile changes and/or splitting from 

differing interactions between the (pairs of) different symmetry levels. We can say that 

interactions between the states mentioned above would tend to lead to the {0,4} and {1,4}- 

levels moving down in wavenumber, but the {1,-4}- level remaining in position – this then 

provides a possible mechanism for the broadening/splitting that is seen in the 68–82 cm-1 

feature. 

4. Excitation at wavenumbers 100-120 cm-1 

We now move on to the REMPI feature at ~ 110–120 cm-1, see Figure 7(a), which is relatively 

broad and so may consist of more than one band. Its wavenumber suggests possible 

contributions from mi = 0, 1 levels associated with D20 as well as levels that have m1 = 0, 1 and 

m2 = 5. We have recorded ZEKE spectra at three positions, A, B and C as marked in Figure 7(a) 

and these spectra are shown in Figures 7(b)–(d). The indications from these spectra are that 

there are three contributions to the REMPI band, with the low wavenumber edge (A) giving 

rise to a ZEKE band at ~ 102 cm-1, the centre of the band (B) giving rise to the ZEKE band at 

113 cm-1 and the high-wavenumber side (C) giving rise to the ZEKE band at 122 cm-1. 
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First, we note that we did not see any significant variation of the REMPI feature with backing 

pressure and so rule out a contribution from any hot bands. When exciting at position A (at 

~108 cm-1), the spectrum in Figure 7(b) shows what looks like two clear, but overlapping 

bands, one at 102 cm-1, which we assume is the same band seen when exciting via the mi = 4 

levels (see Figure 6), i.e. accessing D20 {0,1} in the cation, and a more intense band at 111 cm-1. 

Essentially the same two ZEKE features, but with intensity changes, are observed when 

exciting at position B (at ~110 cm-1); however, when exciting at position C (at 114 cm-1), a very 

different spectrum is seen, Figure 7(d), with a single ZEKE band at 122 cm-1. Very similar 

behaviour was observed for pFT13 and so we expect an assignment in line with this where m 

= 5 levels were accessed, as well as vibtor levels involving D20. First, we note that when 

exciting from the various cold {m1, m2} levels, symmetry dictates that we can access the {0,5}, 

{1,-5}-, {1,-5}+ and {1,5}+ S1 levels, which are all expected at transition wavenumbers that will 

be essentially coincident at our resolution. These have symmetries of g, e4, e3 and e1, 

respectively, and each of these has the same symmetry as D20 {0,2}, D20 {1,-2}+, D20 {1,-2}- and 

D20 {1,2}+, respectively. The latter are all expected at about the same unperturbed transition 

wavenumber and at approximately the same separation from the respective m2 = 5 levels, 

from which they are all related by a v = 1, {m1, m2} = 3 change; hence, although there may 

be small differences in the coupling terms, we may reasonably expect a fairly similar 

interaction between the respective pairs of states and hence resulting eigenfunctions that 

have approximately the same transition wavenumbers and separations. 

To summarize, the ZEKE band at 102 cm-1 is associated with the D20 {0,1}{0,4} eigenstate, 

which is of g symmetry with a dominant contribution at position A, and this eigenstate does 

not interact with the other levels within the REMPI feature. At position B, there is a small 

contribution from the high-wavenumber edge of the D20 {0,1}{0,4} eigenstate, but the 

major contribution is from eigenstates arising from transitions involving the D20 {0,2}{0,5}, 

D20 {1,-2}+{1,-5}-, D20 {1,-2}-…{1,-5}+ and D20 {1,2}+{1,5}+ eigenstates, which lead to the 111 

cm-1 band. At position C (114 cm-1), we expect the “partner” eigenfunction contributions: 

{0,5}D20 {0,2}, {1,-5}-D20 {1,-2}+, {1,-5}+…D20 {1,-2}- and {1,5}+D20 {1,2}+. 

Given the above interactions, it is initially surprising that both the 111 cm-1 and 122 cm-1 ZEKE 

bands do not appear in each spectrum when exciting at both positions B and C; however, this 
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may be rationalized if both the torsional potential and D20 vibrational wavenumber in the S1 

and D0
+ states are very similar. Under such a scenario the interactions between the pertinent 

levels in both electronic states would be very similar and hence transitions would be largely 

“diagonal” – i.e. between the same eigenstates with almost the same make-up in each state. 

5. Comparison with previous work 

As mentioned above, Breen et al.23 reported a REMPI spectrum of pXyl in the range 0–110 

cm-1. Assignments of the bands were given in terms of excitations of independent torsions of 

the two methyl groups, with some involving two mi = 3 changes, one on each rotor, i.e. (m1 

+ m2) = 6; as we have noted above, we anticipate such transitions to be extremely weak. 

Further, inspection of Figure 4 shows that essentially the same features are seen in the 

spectra of pFT (a single-rotor system) and pXyl (a two-rotor system); and, in the range 0–85 

cm-1, essentially the same features are seen in the REMPI spectra of these two molecules and 

toluene. We therefore conclude that assignments in ref. 23 that involve more than one m = 

3 transition in pXyl are likely incorrect, and we have reassigned those here. 

We are in general agreement with the assignment of the origin, but which we assign to the 

four essentially coincident {m1,m2} = 0 transitions involving {0,0}, {1,0}, {1,1} and {1,-1}. In 

ref. 23, this was assigned to three of the same transitions, albeit referring to two (essentially 

degenerate) transitions involving the (1,0) and (0,1) methyl-localized states. Related 

comments apply to their assignment of pairs of 𝑚1
2 and 𝑚1

4 transitions, which we assign to 

three coincident transitions in each case. We loosely concur with their assignment of the 

 𝑚   0
3(+)

 transition, which we designate as a transition to {0,3(+)}-. It is peculiar that they noted 

a weak band at 40.5 cm-1 in their spectrum in Figure 6 of their work, while also calculating the 

position of the m = 3(-) state at 41 cm-1, but did not assign that weak band, which we attribute 

here to transitions that have one mi = 3 level. Two bands whose assignment we do not agree 

with are those of the feature at 72 cm-1, assigned as [2, 3(+)]  (1,0) in ref. 23, or the one at 

110 cm-1, assigned as [3(+), 3(+)]  (0, 0) therein. In the case of the 72 cm-1 band the 

assignment of ref. 23 involves a (m1 + m2)  = 6 transition, and hence we would expect this to 

be extremely weak; we have discussed the assignment of this feature via ZEKE spectra 

recorded at three different wavenumbers.  In the case of the 110 cm-1 band: again, we first 

note that the assignment of ref. 23 involves a (m1 + m2)  = 6 transition and hence would be 
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expected to be very weak; secondly, we see a corresponding feature in the single-rotor pFT 

spectrum at essentially the same position; and thirdly, we would expect a ZEKE band at ~ 94 

cm-1 when exciting at the corresponding wavenumber, if the assignment of ref. 23 were 

correct, while in actuality, the main bands are at 113 cm-1 and 121 cm-1. In summary, our 

assignments are based on a more complete consideration of the molecular symmetry of the 

system; the expected intensities of the transitions in terms of (m1+m2) changes; the 

observation of corresponding features in the single-rotor pFT and two-rotor pXyl cases; and 

the observed ZEKE bands. As a consequence, we feel the present assignments are more 

reliable. 

The only other previous work that has addressed the assignment of the “pure” torsional 

transitions for pXyl upon photoionization is the MATI study of Held et al.,31 who only recorded 

a spectrum via the origin. We essentially agree with their assignment of the origin band as a 

composite of transitions involving mi = 0,1 levels of the two rotors (see comments above), but 

our discussion is more complete in molecular symmetry terms and we conclude there are four 

such transitions. We also essentially agree with the assignments of the band at ~ 15 cm-1 in 

terms of transitions between cold {m1, m2} levels in S0 involving mi = 0 and 1, to S1 levels 

involving mi = 2, but again we take full account of molecular symmetry. We disagree with the 

assignment of the ~43 cm-1 band as involving the m = 3(+) levels, as discussed above, where 

we have assigned this to a transition to the {0, 3(-)}- level. We also disagree with the 

assignment of the ~112 cm-1 band, which Held et al.31 assign to a hot-band transition involving 

an mi = 2 level in the S1 state, while we have noted above that we assign this to various 

transitions involving cold S0 levels and S1 mi = 5 and vibtor levels of D20. 

6. Excitation via other vibtor levels involving D20 

In Figure 8(a) we indicate the REMPI transitions that involve the various other vibtor levels of 

the D20 vibration. In Figure 8(b)–(f), we show the ZEKE spectra obtained when exciting through 

these various intermediate levels. The deduction that these correspond to vibtor levels 

involving the D20 vibration is consistent with the calculated vibrational wavenumbers, and 

also consistent with expectations based on toluene9 and pFT.13,14 
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For an overall totally-symmetric vibtor level, we require the D20 vibration to combine with a 

torsion of a2 symmetry, and so wavenumber considerations lead to this being {0,3(-)}- – see 

Table XI. Hence, when exciting from the S0 {0,0} level, we can access the D20 {0,3(-)}- level on 

symmetry grounds (via a generalized form of the Franck-Condon principle). However, we 

should also consider transitions from the other cold {m1, m2} levels and looking at the 

symmetries of the four such levels with m1 = 0 or 1 and m2 having a value of 3 (or equivalent), 

we see that the S1 D20 {3,1} and D20 {-3, 1} levels are accessible from the S0 {0,1} level. The 

REMPI band at 135 cm-1 is then assigned to these two transitions. As a consequence, we 

expect the intense feature at 146 cm-1 in the ZEKE spectrum in Figure 8(b) to be three 

overlapped (v,m) = 0 bands, and so correspond to transitions to D20 {0,3(-)}-, D20 {3,1}  and 

D20 {-3,1}. We use (v,m) = 0  to represent a combination of the v = 0 and {m1, m2} = 0 

transitions. Close inspection of this REMPI feature reveals that it has the appearance of a 

double band, and so we recorded spectra at excitation wavenumbers corresponding to the 

two maxima, at  00
0 +135 cm-1 and 00

0 +138 cm-1. 

When exciting at 135 cm-1, a rich ZEKE spectrum is seen with the intense (v,m) = 0 band at 

146 cm-1, which is assigned to the cation D20 {0, 3(-)}- band; to higher wavenumber is the 

expected D11D20 {0,3(-)}- combination band – combinations of the main (v,m) = 0 band with 

the D11 vibration are seen in the ZEKE spectra of many substituted benzenes. Also common in 

the case of pFT,12,13 were combination bands with the non-totally-symmetric vibrations D19 

and D14; here we see the latter at 487 cm-1, but do not discern the former, likely owing to the 

signal-to-noise. Another common observation in pFT13 was the observation of v = -1 and m 

= -3 bands; corresponding bands are indeed seen here at 46 cm-1 from overlapped transitions 

to {0 3(-)}-, {3,1} and {-3,1} and to D20 {0,0} and D20 {0,1} at 97 cm-1. Transitions to other totally-

symmetric bands appear at: 204 cm-1  – assigned to a transition to 2D20 – see below; 617 cm-1 

– assigned as a transition to 2D19D20 {0,3(-)}-; and 188 cm-1, tentatively assigned as a transition 

to {0, 6(+)}+. A band is observed at 288 cm-1 which currently remains unassigned, but may be 

due to a state that has arisen from an interaction that gives it unexpected intensity in a 

perturbed position.   

When exciting at 00 + 138 cm-1 we see a weaker spectrum, but the two most intense bands 

appear at almost the same wavenumber as in the spectrum exciting at 00 + 135 cm-1. Other, 
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weaker bands are essentially absent although there is a band at 204 cm-1, which can be 

associated with 2D20. Thus, there is no conclusive evidence that the 135 and 138 cm-1 REMPI 

bands are associated with different S1 levels, but we note that in this region we can expect 

transitions from the “cold” S0 torsional levels to levels involving D20 and levels with mi = 3. 

Hence, as well as the D20 {0, 3(-)}- level, we may also expect to see the D20 {3,1} and D20 {-3,1} 

levels accessed from S0 {0,1}, which will have g symmetry (Table XI). In the absence of any 

interactions between other levels, these three transitions will be expected at almost an 

identical wavenumber, but since they have different symmetry, then this could be an 

explanation for the observed splitting of the band. The most obvious cause of this would be 

an analogue of an interaction seen in toluene and pFT, where the m = 6(+) level interacted 

with the D20 m = 3(-) level, with possible involvement for pFT from the 2D20 level, all of which 

were totally-symmetric levels. There is also the possibility that vibtor levels involving D19 could 

be involved in other cases (see below). In the case of pXyl interactions, the corresponding 

interactions would be between D20 {0,3(-)}-, {0,6(+)}+ and 2D20, specifically 2D20 {0,0}. That 

these may be interacting could be supported by the observation of both a band at ~ 188 cm-1, 

which could be attributable to {0,6(+)}+ and a band a 204 cm-1, which seems likely to be 2D20 

{0,0}. Given the position of the D20 ZEKE band mentioned above, it does seem that the 

overtone level is at a lower wavenumber than might be expected. Further, comparison 

between the spectra of pFT and pXyl indicates that although the D20 {0,3(-)}- level, and (see 

below) vibtor level(s) involving D20 and mi = 4, are in almost identical positions for the two 

molecules, the 2D20 band has moved to lower wavenumber. Given that the levels to lower 

wavenumber all appear in approximately the same position – indicting very similar non-

perturbed and perturbed positions and, hence, very similar overall interactions – then the 

suggestion is that the 2D20 level has been pushed down in wavenumber via interaction with a 

higher-wavenumber level, with the D19 {0,3(-)}+ level appearing to be the most likely. We note 

that all of the D19 vibtor levels in pXyl are to lower wavenumber than those in pFT, in line with 

the expected lowering in the D19 wavenumber between the two molecules (see calculated 

vibrational wavenumbers in ref. 21). Thus, interactions between 2D20 {0,0} and D19 {0,3(-)}+ 

will be more significant in pXyl than the corresponding interaction in pFT. If this is the cause 

of the splitting, then for this to lead to the split features at 135 and 138 cm-1, it suggests a 

stronger interaction between the a1 levels relative to the g ones. 
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This assignment disagrees with that of Held et al.,31 who assigned the ZEKE band (only a single 

band was mentioned) at ~146 cm-1 to a transition commencing at m = 3(+) level, which was 

thought to be accessed via a hot band transition; however, it seems unlikely in a jet-cooled 

experiment that excitation of any levels involving m = 3(+) in the S0 state will be observed, 

and so this assignment cannot be correct. The same band (at 144 cm-1) was reported by 

Gunzer and Grotemeyer29 using MATI spectroscopy and assigned as an unspecified methyl 

torsion transition; again, an assignment with which we do not concur. Blease et al.24 saw a 

band in their REMPI spectra at 136 cm-1 but this was unassigned. 

There is a weak REMPI band at 153 cm-1 and excitation through this band yields a single (v,m) 

= 0 ZEKE band at 156 cm-1 – see Figure 8(d). Our best assignment for the REMPI band is to a 

vibtor level involving D20 and a level with mi = 3, with a transition to the D20 {0,3(+)}+ being 

allowed via a generalized form of Herzberg coupling, being of a2 symmetry. The assignment 

of the REMPI band to a transition to D20 {0,3(+)}+ is consistent with a very weak D20 m = 3(+) 

feature seen in the 2D-LIF spectrum of pFT.14  

To slightly higher energy in the REMPI spectrum is a band at 173 cm-1 that can be assigned as 

the D20 {0,4}  {0,1} transition; again, ionization through this level, see Figure 8(e), leads to 

the expected (v,m) = 0 band in the ZEKE spectrum in a position (176 cm-1) that leads to 

straightforward assignment to the corresponding cation D20 m={0,4} vibtor level. In addition, 

to higher wavenumber (618 cm-1) we observe the combination band with D11, this is different 

to the 617 cm-1 band discussed above via the D20 {0,3(-)}-. We also see a ZEKE band at 155 

cm-1, which is almost at the same wavenumber as the just-assigned band corresponding to a 

transition to D20 {0,3(+)}+ (see above), and assignment to this level does not seem to fit on 

symmetry grounds, and this is currently only a tentative assignment of this feature.  

Unfortunately, the signal-to-noise is not good enough to discern the v = -1 or {m1, m2}  = -3 

bands corresponding to the main ZEKE feature, which were common features in the pFT ZEKE 

spectra,13 but the assignment of the (v,m) = 0 band is relatively straightforward. 

In Figure 8(f) the ZEKE spectrum obtained when exciting at 211 cm-1 is presented, which shows 

just two bands, one at 203 cm-1 and one at 643 cm-1. An assignment of the ZEKE bands to the 

2D20 and D11 + 2D20 “pure” vibrational bands is facile, leading to the assignment of the REMPI 

transition as 200
2. (Recalling that four vibtor transitions involving the “cold” torsional levels 
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will be coincident for all “pure” totally-symmetric vibrational bands.) Blease et al.24  also saw 

a band in their REMPI spectra at 211 cm-1 but this was unassigned. 

A weak band at 338 cm-1 appears to be present in this ZEKE spectrum, and this would be 

consistent with an assignment to 140
1. The presence of this (symmetry-forbidden) band in 

ZEKE spectra of toluene5 and pFT13 has been reported previously. 

7. Excitation via vibtor levels involving D19 

We now move onto the next higher pair of bands in the REMPI spectrum, which are 

highlighted in Figure 9(a), the second of these appears to be a split band (see expanded trace 

in insert to Figure 9(a)). We have recorded ZEKE spectra via the lowest band at 227 cm-1 

(Figure 9(b)) and at two positions of the split band, at 254 cm-1 and 255 cm-1 Figs 9(c) and 9(d). 

The latter two spectra show the same single feature across the wavenumber range scanned, 

similar to what was seen in the corresponding case for D20. For the lower wavenumber level, 

only the region around the expected (v,m) = 0 band was scanned, since the corresponding 

REMPI feature was very weak; a ZEKE band at 248 cm-1 was observed. Together with the 

calculated vibrational wavenumbers, the REMPI band could be assigned as a transition D19 

{0,2}  {0,1}, which are both of g symmetry; this then assigns the 248 cm-1 ZEKE band to the 

cation D19 {0,2} level. Although {m1, m2}  = -3 and v = -1 bands would be expected, no such 

bands could be discerned, owing to the poor signal-to-noise. 

To assign the apparently split REMPI band at 254 cm-1, we note that it is expected to be a 

transition to a vibtor level involving the D19 vibration, with its intensity suggesting it is totally 

symmetric. By analogy with a similarly observed band in pFT, and considering the symmetry 

of the D19 vibration and corresponding vibtor levels (see Table XI), we assign the transition as 

D19 {0,3(-)}+  {0,0}. With the assumption of the “(v,m) = 0” propensity rule the ZEKE band 

at 279 cm-1 may be assigned as arising from the cation D19 {0,3(-)}+ level. These values indicate 

a cation D19 vibrational wavenumber of ~233–236 cm-1 and a corresponding S1 value of 211–

214 cm-1; these values are both in good agreement with calculated values.21 Again, no {m1, 

m2}  = -3 and v = -1 bands could be discerned with the achieved signal-to-noise. 

Returning to the split nature of the band at 254 cm-1, we note that exciting from the S0 {0,1} 

level could access the D19 {3,1}, D19 {-3,1} and {0,4} levels, all of which have g symmetry and 
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all of which are expected to have very similar transition energies as for the D19 {0,3(-)}+  

{0,0} transition. In addition, there are corresponding vibtor transitions involving the D20 which 

will have the same symmetry. Hence, in line with comments made above, the splitting in the 

254 cm-1 and 135-138 cm-1 bands could be in line with interactions between the two sets of 

D20 and D19 vibtor levels, with the two different symmetries having a slightly different 

interaction. Another plausible explanation is that interactions with the 2D20 {0,0} and 2D20 

{0,1} levels is causing the splitting, with the interaction with the D19 levels being the stronger, 

so causing the 2D20 band to lower in wavenumber; we note that there is no obvious splitting 

in the 2D20 band, however, and so it seems likely there are multiple vibronic interactions 

occurring across the 130–260 cm-1 region. 

The band at 254 cm-1 was observed by Blease et al.,24 but not assigned. 

 

V. SUMMARY AND CONCLUDING REMARKS 

For the first time the spectroscopy of pXyl has been considered in detail using a molecular 

symmetry group approach. This indicates that the REMPI spectrum consists of a number of 

overlapping bands, which arise from different torsional levels that cannot be collisionally 

cooled in a supersonic free jet expansion owing to the different nuclear spin symmetries. This 

means that in ZEKE experiments, we are exciting from more than one intermediate S1 level 

each time. Despite this complication, it is found that the assignment of the REMPI and ZEKE 

spectra are achievable and that these are very much in line with the assignments of pFT13,14,15  

and toluene.7,8,9 In particular, we have highlighted the similarity of the REMPI spectra in the 

“pure” torsional region, 0–100 cm-1, for all three molecules, toluene, pFT and pXyl, which 

provides confirmation of the expected similar torsional potentials. More remarkable was the 

close agreement between the spectra for pFT and pXyl in the region 100–200 cm-1, which is 

where we expect to find vibtor levels involving the D20 vibration.13,14,15  The suggestion is, 

therefore, that the D20 vibrational wavenumber is very similar in both molecules, in 

agreement with quantum chemical calculations,21 as are the low wavenumber vibration-

torsional interactions. Above 200 cm-1 there are deviations in the two spectra, which is in line 

with this region being associated with vibtor levels that involve the D19 vibration, which is 

expected to lower in wavenumber21 in pXyl. The unexpected shift in the position of the band 
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associated with 2D20 (given that vibtor levels involving this vibration had not shifted 

significantly) suggested interaction with the higher D19 {0,3(-)}+ vibtor level; further, a splitting 

of the D20 {0,3(-)}- band and a similar splitting in the D19 {0,3(-)}+ band suggest that these bands 

consist of different interacting levels, consistent with both a1 and g contributions from the 

different cold torsions, and that these are also involved in interactions in this region. 

The close agreement also extends to the ZEKE spectra with regard to the activity seen in pFT13 

and for pXyl in the present paper. To emphasise this, in Figure 10 we show the 0–600 cm-1 

regions of the ZEKE spectra of pFT and pXyl when exciting through the origin band. As may be 

seen, the level of agreement of the activity seen in the two cases, bearing in mind the slightly 

different notation required for the torsional levels in the two molecules, is striking. Using 

point group symmetry, we see an intense origin and D11 band in both cases, but also sizeable 

bands arising from non-totally symmetric vibrations, D14 (a2, au) and D19 (b1, b2g). We also see 

weak bands from D28 and D29 (b2, b3g) for both molecules, but only a weak D30 (b2) band in the 

case of pFT, with this vibration being of b2u symmetry in the case of pXyl. Further comments 

on the vibrational activity will be provided in ref. 21.   

In line with initial discussion by Parmenter and coworkers,1 and more recently by Lawrance 

and coworkers,8,9 it is becoming clear that vibration-torsion coupling pervades the spectra of 

methyl-substituted molecules and so provides a mechanism by which accelerated internal 

energy flow is possible. What will be interesting to determine, is the effect of the presence of 

a second methyl rotor and (longer term) whether the position of this second methyl is 

important or not in enhancing coupling and so accelerating IVR in the higher wavenumber 

levels. In the low-wavenumber region examined here, these effects are not so evident but we 

are currently analysing REMPI and ZEKE spectra of pFT and pXyl in the higher-wavenumber 

region. In the accompanying paper,21 we show that similar couplings of vibrations and vibtor 

levels occur in the 400–440 cm-1 region as seen for pFT13, but it is clear that the details can 

vary from molecule to molecule as levels shift in and out of resonance, owing to structural 

changes in the molecules. 
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Supplementary Material 

See supplementary material for the direct product table for the G72 molecular symmetry 

group. 
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APPENDIX A. ENERGY LEVELS AND NUCLEAR SPIN STATES FOR A SINGLE ROTOR SYSTEM 

1. Energy levels 

Molecules containing methyl groups undergo some internal motions that may be considered 

as torsions. These are also often termed (hindered) internal rotations and these terms are 

used largely interchangeably in the literature, depending on the context and emphasis.  

For a methyl group attached to an infinite mass, the energies, Etor, of the internal 

rotor/torsional levels are given by 

Etor = m2F          (A.1) 

where m is the torsional quantum number for an unhindered rotor and is integral, and each 

level (except for m = 0) is doubly degenerate; 8,38 F is the rotational constant of the methyl 

group. In a real molecule, torsion of the methyl group must be counteracted by rotation of 

the rest of the molecule in the opposite direction, and this slightly changes the rotational 

constant. This may simply be accounted for by noting that F is an effective rotational constant 

associated with the torsional motion and includes both the motion of the methyl group and 

the contrarotary motion of the phenyl ring. Once we have hindered rotation, such as in the 

molecules toluene and pFT, the m = 3 and m = 6 levels lose their degeneracy and, following 

Gascooke et al.,8 the internal rotor states are now represented by quantum numbers, m. If m 

is not a multiple of 3, then the levels are still doubly degenerate, but each component could 

be separately referred to with a +/- sign. If m is a multiple of 3, then new eigenstates are 

formed, which can be represented8 as m = 3(+) and m = 3(-), with the sign indicating the 

specific linear combination of the original m = +3 and m = -3 states. These m levels are 

solutions to the hindered rotor Schrödinger equation: 

 

[𝑇𝑁(𝜏) + 𝑉(𝜏)]𝜙𝑖𝑚 (𝜏) = 𝐸𝑖𝑚𝜙𝑖𝑚(𝜏), 𝑚 = 0, ±1, ±2 … 

(A.2) 

Here   is the torsional angle and V() is the potential energy function; if V(τ) is expressed as 

a Fourier series of terms with coefficients, Vn,39 the first non-trivial term is V6 for molecules 

such as toluene and pFT, representing the six-fold symmetric potential energy function of the 
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hindered rotation of the methyl group. The sign of V6 determines the ordering of the 3(+) and 

3(-) levels, and we use the standard definition of , such that V6 > 0 corresponds to an eclipsed 

geometry, with one of the methyl C–H bonds in the same plane as the phenyl ring. 39  The 

corresponding eigenfunctions, 𝜙𝑖𝑚 (𝜏), have definite symmetries in the appropriate 

molecular symmetry group (MSG).41,42 For toluene and for pFT, the MSG is usually termed G12, 

which is isomorphic to the point group D3h; however, for consistency with the present work, 

we note that the MSG for toluene and pFT can also be termed [3]C2v, indicating the MSG 

formed from a threefold rotor attached to a C2v point group framework. The character table 

for G12 is presented in Table XII, where the symmetry operations have been expressed in 

terms of permutation-inversion (PI) operations involving the hydrogen atoms only, which are 

sufficient to define the group; the behaviour of the C atoms may be deduced from the 

hydrogen operations. The numbering for the hydrogen atoms is given in Figure 1(a) for 

toluene; in the case of pFT, the fluorine does not add nor detract from the symmetry and so 

the same character table and PI operations are sufficient to define its symmetry. We note 

that this table is based on Table A-24 of ref.  41, with the same principal axis system. 

For toluene and other para-disubstituted benzene molecules with a single rotor, 39,40  we 

expect to see m = 0 transitions (i.e. ones where the torsion quantum number m does not 

change during the transition) as the most intense torsional transitions, followed by m = 3 

and then m = 6 ones and so on. These rules arise from a consideration of an expansion of 

the transition dipole moment in terms of the torsion angle of a rapidly converging Fourier 

series and a consideration of the symmetries of each term39,40 (see below); i.e. they result 

from electronic-torsional coupling, which may be viewed as a generalized form of Herzberg-

Teller coupling. 39  

In a simple perturbation treatment, the splitting between the m = 3(+) and m= 3(-) levels is 

equal to V6/2, centred about the unperturbed position, with the ordering of the two levels 

determined by the sign of V6. However, the reanalysis of the low-wavenumber region of the 

spectrum of toluene8,9 in terms of vibration-torsion coupled levels has led to reassessments 

of the barriers to internal rotation, lowering the value dramatically in the S1 state of toluene 

and resulting in a change in sign for the S0 state; there is thus the expectation that such 

interactions also occur in pXyl. This is important, since additional transitions may be seen and 
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observed transitions could be at shifted positions with respect to those determined by the 

unperturbed torsional potential and/or unperturbed vibrational levels. 

2. Nuclear Spin States 

At this point it is pertinent to note that it is often stated (see ref. 23, for example) that the 

two lowest, m = 0 and m = 1 levels have nuclear spin wavefunctions of different symmetries 

(a and e), and these cannot interconvert in a supersonic jet expansion; as a consequence, 

both m = 0 and m = 1 levels are still populated in such experiments. However, the reasoning 

behind the above statement, which does not refer to complete G12 symmetry labels, is not 

usually presented in detail, with that of Walker et al. 39  being the most instructive. Since we 

shall also need to look at this issue for pXyl, we first examine the nuclear spin issue in detail 

for single-rotor cases such as toluene and pFT. 

We describe the construction of Table XIII, which shows the allowed symmetries of the 

various wavefunctions that combine to give an overall allowed tot, which is the symmetry of 

the overall, or total wavefunction, tot.41,42 This overall wavefunction includes the symmetry 

of the electronic motion, the vibrations, torsions and rotations and the nuclear spin functions. 

We shall include the electronic motion, vibrations and rotations together as evr, considering 

the electronic and different nuclear motions as separable, and then consider the torsions (tor) 

and nuclear spin functions (ns) separately; thus: 

 

tot = evrtorns 

(A.3) 

First, tot must be antisymmetric with respect to interchange of odd numbers of pairs of H 

atoms, and symmetric with respect to even numbers. For the following discussion, the reader 

is referred to Table XII, which is the character table for the [3]C2v MSG, applicable to molecules 

such as toluene and pFT (adapted from the G12 table in ref. 41). We see that the only two 

allowed symmetries for tot are A1 and A2, by considering the operations (123) and (ab)(cd), 

which both are permutations of even numbers of pairs of hydrogens. 
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Second, toluene is an asymmetric rotor and hence has sets of rotational levels whose 

symmetries depend on the KaKc labels that fall into even (e) and odd (o) combinations: ee, eo, 

oe, oo. These can be shown to have symmetries A1, A2, A1 and A2, respectively. We 

additionally note that in our experiments and analysis we are: (i) working under jet-cooled 

conditions and hence only the vibrational ground state, (i.e where all of the vibrational 

quantum numbers are zero, which has an overall symmetry of a1ʹ) has significant population; 

(ii) assuming the Born-Oppenheimer approximation (where electronic and nuclear motions 

are separable); (iii) assuming the torsional motion is separable from the vibrational motions, 

and each of these are separable from rotational motion; and (iv) exciting from the S0 state 

which has A1 symmetry. These considerations mean that the symmetries of evr will be the 

same as the symmetries of the asymmetric rotor functions. 

Third, the symmetries of the lowest m levels in G12 are known39,40 and are given in Figure 2; 

sometimes, the symmetries have been used with the value of m to label the torsional levels 

in earlier work. We note that since neither evr nor tot has either e or e symmetry functions, 

then for cases where tor has these symmetries, then ns must also have one of the e/e 

symmetries to give a total symmetry, tot, of A1 and A2. Lastly, the symmetries of the ns can 

be derived as: 

80 A1 + 0 A2 + 48 A1 + 0 A2 + 40 E + 24 E 

This leads to the following spin weights for evrtor functions when combined with the 

appropriate ns: 

80 for A1, A2 and E, 48 for A1, A2 and E 

Table XIII is therefore constructed by entering the four evr symmetries and for each of these 

noting which combinations of tor and ns yield an overall tot that is one of A1 or A2. We 

designate a required ns that is not available in square brackets. We see from Table XIII that, 

for example, m = 2 (e) levels that have ns = e and evr = a1 or a2, respectively, can be 

collisionally cooled to m = 1 (e) levels that also have ns = e but evr = a1ʹ or a2ʹ, respectively; 

similar arguments hold for m = 2 levels with e ns functions. Further, we see that it is not 

possible for m = 2 levels to cool to the m = 0 level, as there are no appropriate evr e/e states, 

and these would be needed to produce an acceptable tot overall. 
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We can also see, for example, that m= 3(+) (a1) levels with ns = a1 and evr = a1ʹ or a2ʹ, 

respectively, can be collisionally cooled to m = 0 (a1) levels also with ns = a1 and evr = a1ʺ 

or a2ʺ, respectively (and vice versa). Further, we see that it is not possible for m = 3(+) levels 

to cool to the m = 1 level, as there are no appropriate evr = e/e states, which would be 

needed to produce an acceptable tot overall; again, similar arguments hold for other levels. 

Variations on these arguments hold for higher m levels, but note also that pre-supersonic jet 

expansion thermal populations would be low in these cases. In conclusion, therefore, each of 

the higher (thermally populated) m levels can collapse into one of the m = 0 and m = 1 levels 

via collisional cooling in the free jet expansion conditions of our experiments. Below we shall 

discuss similar arguments for a two-rotor system such as pXyl where the situation is slightly 

more complicated. 

APPENDIX B. NUCLEAR SPIN STATES FOR A TWO-ROTOR SYSTEM 

The spin statistical weights of the rovibronic-internal rotor states were determined for pXyl 

consisting of the following isotopes 12C and 1H. The ten 1H atoms give rise to 210 = 1024 1H-

spin functions which belong to the irreducible representations as shown in Table IV and noted 

below. The sum of the products of the numbers in the column labelled #NS, each combined 

with the dimension of the respective irreducible representation, is 1024.  

As with G12 (see Appendix A.2) and with the same assumptions noted there, we construct 

Table XIV, which shows the allowed symmetries of the various wavefunctions that give an 

overall allowed tot, which is the symmetry of the total wavefunction, tot. First, as we 

discussed for [3]C2v above, we note that tot must be antisymmetric with respect to 

interchange of odd numbers of pairs of H atoms, and symmetric with respect to even 

numbers. Because the 1H nuclei are fermions, it may be seen here that tot must be symmetric 

and antisymmetric with respect to the symmetry operators, D and T, respectively. Thus, the 

allowed symmetry species for the total wavefunction are 00g
- + (A2) and 00g

- - (A4), 

respectively – where the labels in parentheses are the G72 labels noted above. Second, the 

symmetries of evr will be the same as the symmetries of the asymmetric rotor functions, 

noted above and given in Table IV. Third, we know that the symmetries of the four lowest 

{m1, m2} levels are: {0,0} (a1); {0,1} (g); {1,1} (e3); and {1,-1} (e1) – see Table IV. In completing 

Table XIV we note that since evr does not have any of the ei, ei, g or g symmetry functions, 
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and that nor does tot, then for cases where tor has these symmetries, then ns must also 

have one of the appropriate e1, e2, e1, e2, g or g symmetries. Lastly, we note that the 

symmetries of the ns can be derived as (see Table IV): 

88 A1 + 72 A4 + 24 E3 + 16 E4 + 24 E1 + 16 E2 + 80 G + 48 A1 + 48 A4 + 12 E3 + 12 E4 + 12 

E1 + 12 E2 + 48 G 

We start by entering the four permitted evr symmetries and for each of these consider which 

combinations of tor and ns yield an overall tot that is one of A2 and A4. We designate a 

required ns that is not available in square brackets. 

First, we consider the lowest {m1, m2} levels that might be expect from combinations of mi = 

0 and 1: the {0,0}, {0,1} and {1,1} levels. These may be seen to have different nuclear spin 

symmetries and hence cannot interconvert in a supersonic jet expansion – they will all 

therefore survive and be present in our experiment. However, we can also see that the {1,-1} 

level cannot be cooled to any of these three levels, and hence also survives the expansion in 

our experiments: it has e1 torsional symmetry and the permitted nuclear spin symmetries are 

all different from those of the other three states. On the other hand, the {0,2} level (g 

torsional symmetry) can be cooled to the {0,1} level, with a change in rotational level 

symmetry, while the {0,3}++ level (a1 torsional symmetry) also does not appear to be able to 

cool to a lower level, and this is true for some other levels; however, it is likely that only the 

four lowest levels will be present in the experiment to any significant extent, since pre-

supersonic jet expansion thermal population of levels with mi > 2 will be small. 

 

APPENDIX C. 

1. Comments about the {m1,m2} states 

We have already noted that when one of m1 and m2 is divisible by 3, and the other not, such 

as {0,1}, the four functions are exactly degenerate and such a set belongs to one of the 01 (G) 

symmetry species. In such levels, the molecule exists in all four of the separate levels 

simultaneously unless further interactions are brought to bear. To take the specific case of 

{0,1}, which contains |0,1>, |0,-1>, |1,0> and |-1,0> , one may loosely think of the individual 
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components as being associated with each methyl group rotating with one quantum of 

excitation in either direction; however, in reality, actual eigenstates are isoenergetic linear 

combinations of all of these and both methyl groups are thus rotating, as demanded by the 

molecular symmetry of the molecule. 

When both m1 and m2 are multiples of 3, such as |0,3> or |0,6>, the allowed kinetic and 

potential energy terms create interactions between all members of the set, splitting them up 

into four energetically-separate levels; to first order their eigenfunctions are linear 

combinations of all members of the set that can be classified by the characters of the linear 

combination under the operators T, U and S. These four linear combinations transform like 

the 00g (Ai) or the 00u (Ai) species (i = 1–4). 

If neither m1 or m2 are divisible by 3, such as |1,4> or |1,-4>, kinetic and potential energy 

terms create interactions within the set, but only such that the energy splits into 2 different 

levels, each doubly degenerate. Each wavefunction can be classified with respect to the 

character under the operators T or U; to first order, they are linear combinations of just 2 of 

the 4 functions in the set. The two pairs of eigenfunctions transform as Ei or Ei(i = 1–4). 

Specific combinations are given in Table V for the various sets given in Table IV. 

 Here are 3 illustrative examples: 

A. For the set {1,4} where 1 = 1, 2 = 1, the functions (|1,4> + |4,1>)/2 and (|-4,-1> + 

|-1,-4>)/2 are the degenerate functions belonging to the 11u
+ (E3) species, whereas 

(|1,4> - |4,1>)/2 and (|-4,-1> - |-1,-4>)/2 belong to 11u
- (E4). 

B. For the set {1,-4} where 1 = 1, 2 = 2, the functions (|1,-4> + |4,-1>)/2 and (|-4,1> + 

|-1,4>)/2 are the degenerate functions belonging to 12u
+ (E1) species, whereas 

(|1,-4> - |4,-1>)/2 and (|-4,1> - |-1,4>)2 belong to 12u
- (E2). 

C. As an example of how these ideas can be extended, for the set {1,7}, one may just substitute 

4 by 7 in A) above. The only difference is that the functions now belong to 11g
+ (E3) or 

11g
- (E4), because |m1|+|m2| is now even. 
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2. {0, m} states for m = 0 modulo 3 (m  0) 

To draw a comparison with the single-rotor states, it will prove insightful to express the {0, 

3}, states for the two-rotor system in a different way to that given in Table IV. If we consider 

m = 3, then, from Table V, there are four {0,3} states: 

{0,3}++ = 
1

2
[(0,3)+(3,0)+(0,-3)+(-3,0)] 

{0,3}+- = 
1

2
 [(0,3)+(3,0)-(-3,0)-(0,-3)] 

{0,3}-+ = 
1

2
 [(0,3)-(3,0)+(-3,0)-(0,-3)] 

{0,3}-- = 
1

2
 [(0,3)-(3,0)-(-3,0)+(0,-3)] 

(C.1) 

If we label the rotor states based on each of the two methyl groups, 1 and 2, as: 

3(+)1, 3(-)1, 3(+)2 and 3(-)2
 

with 

3(+)1
  = 

1

√2
[(3,0)+(-3,0)] 

3(-)1
  = 

1

√2
[(3,0)-(-3,0)] 

3(+)2
  = 

1

√2
 [(0,3)+(0,-3)] 

3(-)2
  = 

1

√2
[(0,3)-(0,-3)] 

(C.2) 

Then it is easy to see that, subject to normalization, the following relations hold: 

{0,3}++ = 3(+)1 + 3(+)2
 

{0,3}+- = 3(-)1 + 3(-)2 

{0,3}-+ = 3(-)2 - 3(-)1
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{0,3}-- = 3(+)2 - 3(+)1 

(C.3) 

So, the first and fourth levels are +/- linear combinations of 3(+) levels on each centre, which 

we can denote {0,3(+)}+ and  {0,3(+)}-, respectively; while the second and third levels are +/- 

linear combinations of 3(-) levels on each centre, which we can denote {0,3(-)}+ and  {0,3(-)}-, 

respectively. An analogous analysis can be performed for the various {0,6} levels. This 

notation will be useful for comparing to the single-rotor examples later in the present work. 

 

APPENDIX D. SELECTION RULES FOR A ONE-ROTOR SYSTEM 

For a single rotor, the electric dipole transition moment (EDTM) for a pure torsional transition 

can be written as: 

  

𝝁 = 〈𝑚′|⟨𝜓1(𝒒; 𝜏)|𝝁|𝜓0(𝒒, 𝜏)〉|𝑚′′⟩ 

 

(D.1) 

where m represents the internal rotor quantum number in the upper electronic state; m 

represents that in the lower electronic state;  is the electric dipole moment operator;  is 

the torsional angle; and q represents the electronic coordinates. With the defined axis system 

(see Figure 2), the components of  transform as Ta, Tb, and Tc, and hence in G12 this is as A1, 

A1and A2 (see Table XII).  The G12 symmetries of the S1 and S0 electronic states are A1 and 

A1, respectively, and so the middle integral will transform as a1, a1 and a2 for a, b and c, 

respectively. The next stage is to identify the symmetries of the first few terms in the Fourier 

transform; these will be sine and cosine terms of 3 and 6 and the symmetries of these are 

given in Table XV. The Fourier transform will have coefficients associated with each term, Ci. 

Equating each trigonometric term with each dipole moment component by symmetry we get: 
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a() = C3
acos3 (a1 symmetry) 

 

b() = C0
b + C6

bcos6 (a1 symmetry) 

 

c() = C6
csin6 (a2 symmetry) 

(D.2) 

For m = 0, the symmetry is a1, and so possible values of m that give an overall totally 

symmetric EDTM are: a-type, m = 3(+); b-type: 0, 6(+); and c-type: 6(-). We expect m = 0 

transitions to be driven by the C0 term and be strong, those driven by C3 terms (m = 3) to be 

moderately intense, and those driven by C6 terms to be weak. (Those driven by higher terms 

will be exceptionally weak and not observable in our spectra.) The m = 3(+) band gains 

intensity via electronic-torsional interaction, which is analogous to HT vibronic interaction; 

this interaction corresponds to that which allows b2 vibrations to steal intensity from a higher-

lying A1 symmetry state in the spectra of C2v point group symmetry substituted benzenes. 

For m = 1, the symmetry is e and so possible values of m that give an overall totally 

symmetric EDTM are: a-type: m = 2, 4; b-type: 1,5; and c-type: m = 1,5. The m = 0 transition 

to m = 1 will be intense, the m = 3 transition to m = 2 (remembering m is signed) will be 

weak, and the m = 6 transition to m = 5 will be very weak. 

For the 𝑋̃2A2 (D0
+)  A

~ 1A1 (S1) transition, the symmetries of the electronic states now mean 

that the “middle” integral will have symmetries a2 × (a1, a1, a2) × a1 = a2, a2 and a1, 

corresponding to a-, b- and c-type transitions, respectively. This means that, when exciting 

from the m = 0 level (and disregarding the symmetry of the departing Rydberg electron), we 

can access the 6(-), 3(-) and 3(+) states, respectively (see left-hand side of Figure 2) through 

an electronic-torsional coupling mechanism. The second and third of these will be weak, while 

the first will be very weak, being a m= 6 transition. However, it is possible for the m = 3 

transitions to steal oscillator strength from higher lying electronic states, analogous to the HT 

intensity stealing mechanisms of vibrations, see below. Hence the relative intensity of 

3(+)/3(-) in photoelectron/ZEKE spectra depends on the proximity of higher states of the 
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correct symmetry from which intensity can be stolen – see the discussion in our recent pFT 

ZEKE paper.13 It should be noted that only the 3(+) level may be observed through electronic-

torsion coupling in the S1 state since there is no component of the TDM of the correct 

symmetry for the 3(-) state to appear. 39  
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Table I: Generating symmetry operators and their effects on space-fixed position vectors a 

Operator C1 C2 T S D 

Order  3 3 2 2 2 

 →    + π  + π  

 →   π -  π -   

 →   -  π-   + π 

1 → 1 -  1 2  -1 1 - π 

2 → 2 2 -  1  -2 2 - π 

Xj,l → Xj,l Xj,l X3-j,3-l -Xj,l Xj,3-l 

X1,k → X1,k-1 X1,k X2,k -X1,-k X1,k 

X2,k → X2,k X2,k-1 X1,k -X2,-k X2,k 

Equivalent 

rotation 
 R0  R0  Rb

π  Rc
π  Ra

π 

PI operator (123) (456) (14)(25)(36)(ac)(bd) (23)(56)* (ab)(cd) 

 

a The labels 1,2,3 of the methyl H atoms in the permutation inversion operator notation correspond 

to k = 3, 2, 1 for j = 2. Similarly, the labels 4, 5, 6 correspond to k = 3, 2, 1 for j = 1.  For the H atoms 

on the benzene ring, a, b, c, and d correspond to (j, l) = (2,1), (2,2), (1,2) and (1,1), respectively. 
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Table II: Equivalent permutation inversion (PI) operators of the class representative operators of 

group [3,3]D2h.  

 

Operatora Equivalent PI operatorb Operatora Equivalent PI operatorb 

E E D (ab)(cd) 

C1C2
-1 (123)(465) C1C2

-1D (123)(465)(ab)(cd) 

C1C2 (123)(456) C1C2D (123)(456)(ab)(cd) 

C1 (123) C1D (123)(ab)(cd) 

T (14)(25)(36)(ac)(bd) TD (14)(25)(36)(ad)(bc) 

C1C2T (153426)(ac)(bd) C1C2TD (153426)(ad)(bc) 

U (14)(26)(35)(ac)(bd)* UD (14)(26)(35)(ad)(bc)* 

C1C2
-1U (163425)(ac)(bd)* C1C2

-1UD (163425)(ad)(bc)* 

S (23)(56)* SD (23)(56) (ab)(cd)* 

 

a See Table II for the effect of the generating symmetry operators on the space-fixed axes. 

b The letters and numbers refer to Figure 1(b). The PI symbols show only the effects on the 

H atoms which is sufficient to define the MS group. 
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Table III: Character table of the molecular symmetry group [3,3]D2h (G72)a 

 

[3,3]D2h G72
b E C1C2

-1 C1C2 C1 T C1C2T U C1C2
-1U S D C1C2

-1D C1C2D C1D TD C1C2TD UD C1C2
-1UD SD 

# c  1 2 2 4 3 6 3 6 9 1 2 2 4 3 6 3 6 9 

00g
++ A1' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

00g
+- A3' 1 1 1 1 1 1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 

00g
-+ A2' 1 1 1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 -1 

00g
-- A4' 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 

11g
+ E3' 2 2 -1 -1 2 -1 0 0 0 2 2 -1 -1 2 -1 0 0 0 

11g
- E4' 2 2 -1 -1 -2 1 0 0 0 2 2 -1 -1 -2 1 0 0 0 

12g
+ E1' 2 -1 2 -1 0 0 2 -1 0 2 -1 2 -1 0 0 2 -1 0 

12g
- E2' 2 -1 2 -1 0 0 -2 1 0 2 -1 2 -1 0 0 -2 1 0 

01g G' 4 -2 -2 1 0 0 0 0 0 4 -2 -2 1 0 0 0 0 0 

00u
++ A1" 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

00u
+- A3" 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 

00u
-+ A2" 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 

00u
-- A4" 1 1 1 1 -1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 

11u
+ E3" 2 2 -1 -1 2 -1 0 0 0 -2 -2 1 1 -2 1 0 0 0 

11u
- E4" 2 2 -1 -1 -2 1 0 0 0 -2 -2 1 1 2 -1 0 0 0 

12u
+ E1" 2 -1 2 -1 0 0 2 -1 0 -2 1 -2 1 0 0 -2 1 0 

12u
- E2" 2 -1 2 -1 0 0 -2 1 0 -2 1 -2 1 0 0 2 -1 0 

01u G" 4 -2 -2 1 0 0 0 0 0 -4 2 2 -1 0 0 0 0 0 

 

a U = TS = ST 

b G72 species labels adapted from labels of G36 (Table A-28 in Ref. 41) since G72 = G36  {E, D} 

c # is the number of operators in the class
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Table IV: Transformation properties of nuclear spin (NS) functions, free internal rotor functions, asymmetric rotor functions (ASR)  and the electric vibronic 

dipole moment terms.  

[3,3]D2h G72 #NS a Free internal rotor functions b c, d 

   m ≠ n m+n  [m1,m2} set of lowest energy e  

00g
++ A1' 88 {3m,3n}++ even {0,0}, {3m,-3m}+, {3m,3m}+ {0,0}; {3,3}+; {3,-3}+; {0,6}++ ee  

00g
+ - A3' 0 {3m,3n}+- even {3m,3m}- {3,3}-; {0,6}+ - Γ*  

00g
- + A2' 0 {3m,3n}-+ even {3m,-3m}+ {3,-3}-; {0,6}- + eo,  Ja  

00g
-- A4' 72 {3m,3n}-- even  {0,6}- - Ta  

11g
+ E3' 24 {3m+1,3n+1}1+ even {3m+1,3m+1} {1,1}; {-2,-2}; {4,-2}+; {1,-5}+; {4,4}  

11g
- E4' 16 {3m+1,3n+1}1- even  {4,-2}-; {1,-5}-  

12g
+ E1' 24 {3m+1,3n+2}2+ odd {3m+1,3m+2} {1,-1}; {-2,2}; {4,2}+; {1,5}+; {4,-4}  

12g
- E2' 16 {3m+1,3n+2}2- odd  {4,2}-; {1,5}-  

01g G' 80 {3m,3n+1} odd  {0,2}; {-3,1}; {3,1}; {0,4}; {3,-5}; {-3,-5}  

00u
++ A1" 48 {3m,3n}++ odd  {0,3}++ Tb 

00u
+ - A3" 0 {3m,3n}+- odd  {0,3}+ - oo,  Jb  

00u
- + A2" 0 {3m,3n}-+ odd  {0,3}- + Tc 

00u
- - A4" 48 {3m,3n}-- odd  {0,3}- - oe, Jc 

11u
+ E3" 12 {3m+1,3n+1}1+ odd {3m+1,3m+1} {1,-2}+; {1,4}+; {-2,-5}+  

11u
- E4" 12 {3m+1,3n+1}1- odd  {1,-2}-; {1,4}-; {-2,-5}-  
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12u
+ E1" 12 {3m+1,3n+2}2+ even {3m+1,3m+2} {1,2}+; {1,-4}+; {-5,2}+  

12u
- E2" 12 {3m+1,3n+2}2- even  {1,2}-; {1,-4}-; {-5,2}-  

01u G" 48 {3m,3n+1} even  {0,1}; {3,-2}; {-3,-2}; {-3,4}; {0,5}; {3,4}  

        

 

a #NS indicates the number of nuclear spin functions of each symmetry type. 

b Each of the different types of functions is defined in Table VI. 

c ee, eo, oo, oe are the parities of the asymmetric rotor eigenfunction, KaKc. 

d Transformation of translational and rotational degrees of freedom designated by Ta,b,c ,and  Ja,b,c, respectively; Γ* = species of electric dipole transitions in 

space-fixed axes system.  

e {m1,m2} set with lowest energies for this spin function
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Table V: Syntax for internal rotor function combinations as employed in Table V 

Syntax Number of  degenerate functions Linear combination 

{a,b}++ 1 (𝑓𝑎,𝑏 + 𝑓𝑏,𝑎 + 𝑓−𝑏,−𝑎 + 𝑓−𝑎,−𝑏)/2 

{a,b}+ - 1 (𝑓𝑎,𝑏 + 𝑓𝑏,𝑎 − 𝑓−𝑏,−𝑎 − 𝑓−𝑎,−𝑏)/2 

{a,b}-+ 1 (𝑓𝑎,𝑏 − 𝑓𝑏,𝑎 + 𝑓−𝑏,−𝑎 − 𝑓−𝑎,−𝑏)/2 

{a,b}- - 1 (𝑓𝑎,𝑏 − 𝑓𝑏,𝑎 − 𝑓−𝑏,−𝑎 + 𝑓−𝑎,−𝑏)/2 

{a,b}1+ 2 (𝑓𝑎,𝑏 + 𝑓𝑏,𝑎)/√2, (𝑓−𝑏,−𝑎 + 𝑓−𝑎,−𝑏)/√2 

{a,b}1- 2 (𝑓𝑎,𝑏 − 𝑓𝑏,𝑎)/√2, (𝑓−𝑏,−𝑎 − 𝑓−𝑎,−𝑏)/√2 

{a,b}2+ 2 (𝑓𝑎,𝑏 + 𝑓−𝑏,−𝑎)/√2, (𝑓𝑏,𝑎 + 𝑓−𝑎,−𝑏)/√2 

{a,b}2- 2 (𝑓𝑎,𝑏 − 𝑓−𝑏,−𝑎)/√2, (𝑓𝑏,𝑎 − 𝑓−𝑎,−𝑏)/√2 

{a,b} 4 𝑓𝑎,𝑏, 𝑓𝑏,𝑎, 𝑓−𝑏,−𝑎, 𝑓−𝑎,−𝑏 

{a,a}+ 1 (𝑓𝑎,𝑎 + 𝑓−𝑎,−𝑎)/√2 

{a,a}- 1 (𝑓𝑎,𝑎 − 𝑓−𝑎,−𝑎)/√2 

{a,-a} 2 𝑓𝑎,−𝑎, 𝑓−𝑎,𝑎 

{a,-a}+ 1 (𝑓𝑎,−𝑎 + 𝑓−𝑎,𝑎)/√2 

{a,-a}- 1 (𝑓𝑎,−𝑎 − 𝑓−𝑎,𝑎)/√2 

{a,a} 2 𝑓𝑎,𝑎, 𝑓−𝑎,−𝑎 
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Table VI: Symmetries of Trigonometric Functions for the G72 MSG 

 

{m1, m2} Trig. function symmetry 

G72 

3 cos31 + cos32 a1 

sin31 + sin32 a3 

cos31 - cos32 a4 

sin31 - sin32 a2 

6 cos31cos32 a1 

sin31sin32 a1 

sin31cos32 + cos31sin32 a3 

sin31cos32 - cos31sin32 a2 

cos61 + cos62 a1 

sin61 + sin62 a3 

cos61 - cos62 a4 

sin61 - sin62 a2 
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Table VII: Energies of local minima and maxima of potential functions with V6,0 > 0 

Conformationa τ1, τ2 
Position 1 

τ1, τ2 
Position 2 

Type of turning point Energy Relative Energy 

C2v(b)   ee 0, 0 π/3, π/3 maximum 2V6,0 + V3,3 + V3,-3 4V6,0 + 2V3,3 
C2h(c)   ee 0, π/3 π/3, 0 maximum 2V6,0 - V3,3 - V3,-3 4V6,0 - 2V3,-3 
C2v(c)   ss π/6, -π/6 -π/6, π/6 minimum -2V6,0 + V3,3 - V3,-3 2V3,3 - 2V3,-3 
C2h(b)  ss π/6, π/6 -π/6, -π/6 minimum -2V6,0 - V3,3 + V3,-3 0 

 0, ±π/6 
±π/6, 0 

π, ±π/6 
±π/6, π 

saddle point 0 2V6,0 + V3,3 - V3,-3 

 

a See text for descriptions of conformation
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Table VIII: Hamiltonian matrix for the energy levels of the {0,3} set of internal rotor 

functions  

 |0,3> |3,0> |-3,0> |0,-3> 

|0,3> E03 V3,-3/2 V3,3/2 V6,0/2 

|3,0> V3,-3/2 E03 V6,0/2 V3,3/2 

|-3,0> V3,3/2 V6,0/2 E03 V3,-3/2 

|0,-3> V6,0/2 V3,3/2 V3,-3/2 E03 
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Table IX:  Results for the energies of symmetrized functions for the matrix in Table X 

Function  Energy  

|0,3> + |3,0> + |-3,0> + |0,-3> = {0,3}++ = {0,3(+)}+ E03 + 
1

2
 (V3,3+V3,-3) + V6,0/2 

|0,3> - |3,0> - |-3,0> + |0,-3> = {0,3}-- = {0,3(+)}- E03 - 
1

2
 (V3,-3+V3,3) + V6,0/2 

|0,3> + |3,0> - |-3,0> - |0,-3> = {0,3}+- = {0,3(-)}+ E03 + 
1

2
 (V3,-3-V3,3) – V6,0/2 

|0,3> - |3,0> + |-3,0> - |0,-3> = {0,3}-+ = {0,3(-)}- E03 - 
1

2
 (V3,-3-V3,3) – V6,0/2 
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TABLE X: Correspondence between symmetry classes for the D2h point group and the 

[3,3]D2h MSG; in the case of the latter, the corresponding G72 labels are given, as are the 

corresponding ones for G12 

 

D2h [3,3]D2h G72 G12 

ag 00g
++ A1' A1 

b1g 00g
-+ A2' A2 

au 00g
+- A3' A2 

b1u 00g
-- A4' A1 

 12g
+ E1' E 

 12g
– E2' E 

 11g
+ E3' E 

 11g
– E4' E 

 01g G' A1+A2 + E 

b2u 00u
++ A1" A1 

b3u 00u
–+ A2" A2 

b2g 00u
+– A3" A2 

b3g 00u
–– A4" A1 

 12u
+ E1" E 

 12u
– E2" E 

 11u
+ E3" E 

 11u
– E4" E 

 01u G" E 
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TABLE XI: Symmetries of torsions and vibtor levels involving the lowest three vibrations. 

 

{m1,m2} Pure or A1 D20(A2) D19 (A3) D14 (A3) 

{0,0} a1 a2 a3 a3 

{0,1} g g g g 

{1,1} e3 e4 e3 e3 

{1,-1} e1 e1 e2 e2 

{0,2} g g g g 

{1,2}+ e1 e1 e2 e2 

{1,2}- e2 e2 e1 e1 

{1,-2}+ e3 e4 e3 e3 

{1,-2}- e4 e3 e4 e4 

{0,3(+)}+ a1 a2 a3 a3 

{0,3(+)}- a4 a3 a2 a2 

{0,3(-)}+ a3 a4 a1 a1 

{0,3(-)}- a2 a1 a4 a4 

{3,1} g g g g 

{-3,1} g g g g 

{0,4} g g g g 

{1,4}+ e3 e4 e3 e3 

{1,4}- e4 e3 e4 e4 

{1,-4}+ e1 e1 e2 e2 

{1,-4}- e2 e2 e1 e1 

{0,5} g g g g 

{1,5}+ e1 e1 e2 e2 

{1,5}- e2 e2 e1 e1 

{1,-5}+ e3 e4 e3 e3 

{1,-5}- e4 e3 e4 e4 

{0,6(+)}+ a1 a2 a3 a3 

{0,6(+)}- a4 a3 a2 a2 

{0,6(-)}+ a3 a4 a1 a1 

{0,6(-)}- a2 a1 a4 a4 

{6,1} g g g g 

{-6,1} g g g g 
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Table XII: Character table of the MS group [3]C2v (G12) adapted from ref. 41 for molecules 

such as toluene and pFT – See Figure 1(a) 

[3]C2v E (123) (23)* (ab)(cd) (123)(ab)(cd) (23)(ab)(cd)* a 

b E C1 S D C1D SD  

c 1 2 3 1 2 3  

d R0 R0 Rc
π Ra

π Ra
π Rb

π  

A1 1 1 1 1 1 1 Ta, ee 

A1 1 1 1 -1 -1 -1 Tb, Jc, oe 

A2 1 1 -1 1 1 -1 Ja, eo, * 

A2 1 1 -1 -1 -1 1 Tc, Jb, oo 

E 2 -1 0 2 -1 0  

E 2 -1 0 -2 1 0  

 

a Transformation of translational and rotational degrees of freedom designated by Ta,b,c ,and  Ja,b,c, 

respectively; Γ* = species of electric dipole transitions in space-fixed axes system. ee, eo, oo, oe are 

the parities of KaKc,  the asymmetric rotor eigenfunction label. 

b Equivalent operator in [3,3]D2h / G72, with the molecule-fixed axis system identical to that used for 

G72. 

c Number of operators in class. 

d Equivalent rotation. 
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Table XIII (for Appendix A): Wavefunction symmetry combinations that give an allowed 

overall symmetry for tot in G12  

 

evr tor ns
a tot 

A1 a1 a1 A1 
a1 a1 

a2 [a2] 

a2 [a2] 

e e 

e e 

a1 [a2] A2 
a1 [a2] 

a2 a1 

a2 a1 

e e 

e e 

A2 a1 [a2] A1 
a1 [a2] 

a2 a1 

a2 a1 

e e 

e e 

a1 a1 A2 
a1 a1 

a2 [a2] 

a2 [a2] 

e e 

e e 

A1 a1 a1 A1 
a1 a1 

a2 [a2] 

a2 [a2] 

e e 

e e 

a1 [a2] A2 
a1 [a2] 

a2 a1 

a2 a1 

e e 

e e 

A2 a1 [a2] A1 
a1 [a2] 

a2 a1 

a2 a1 

e e 

e e 

a1 a1 A2 
a1 a1 

a2 [a2] 

a2 [a2] 

e e 

e e 

 

a Square brackets indicate that these symmetries do not exist and so the corresponding 

combination of evr and tor is not allowed.  
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Table XIV:   Wavefunction symmetry combinations that give an allowed overall symmetry for 

tot in [3,3]D2h 

evr tor ns
a tot 

A1 a1 [a2] A2 
 g g  

 e3 e4  

 e1 e1  

 g g  

 a1 [a2]  

 a1 a4 A4 
 g g  

 e3 e4  

 e1 e2  

 g g  

 a1 a4  

A2 a1 a1 A2 
 g g  

 e3 e3  

 e1 e1  

 g g  

 a1 a1  

 a1 [a3] A4 
 g g  

 e3 e3  

 e1 e2  

 g g  

 a1 [a3]  

A4 a1 [a3] A2 
 g g  

 e3 e3  

 e1 e2  

 g g  

 a1 [a3]  

 a1 a1 A4 
 g g  

 e3 e3  

 e1 e1  

 g g  

 a1 a1  

A3 a1 a4 A2 
 g g  

 e3 e4  

 e1 e2  

 g g  

 a1 a4  

 a1 [a2] A4 
 g g  

 e3 e4  

 e1 e1  

 g g  

 a1 [a2]  

 

a Square brackets indicate a combination of evr and tor that is not allowed. 
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Table XV (for Appendix B): Symmetries of Trigonometric Functions for the G12 MSG 

 

m Trig. function symmetry 

G12 

3 sin3 a2 

cos3 a1 

6 sin6 a2 

cos6 a1 
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Figure Captions 

Figure 1: Numbering of the atoms in (a) toluene and (b) p-xylene. These numberings are 

employed in denoting the effect of the permutation-inversion operations — see text. 

Figure 2: Schematics of the axis systems used in the present work are presented at the top of 

the figure. Below this, on the left-hand side are the correlations between the symmetry 

classes of the point groups D6h and C2v, and then with those of the G12 molecular symmetry 

group, which can also be denoted [3]C2v. On the right-hand side, are the correlations between 

the symmetry classes of the point groups D6h and D2h and then with those of the G72 molecular 

symmetry group, which can also be denoted [3,3]D2h. The {m1,m2} levels are not added to this 

figure to avoid overcrowding, but their symmetries can be found in Table V. Note that there 

are no equivalent classes of the various e and g molecular symmetry classes in the point 

groups. 

Figure 3: Contour plots of potential surfaces with global minima at the C2h(b) and C2v(c) 

conformations. Dark purple: global minima; dark orange: local maxima. C2h(b) plot: V6,0 = 25, 

V3,3 = 15, V3,-3 = 1. C2v(c) plot: V6,0 = 25, V3,3 = 15, V3,-3 = 1. C2v(c). The horizontal axis (τ1) and 

vertical axis (τ2) run from -π/3 to +π/3 – the numbers are arbitrary energy units. 

Figure 4: REMPI spectra of (a) toluene, (b) pFT and (c) pXyl in the range 0–350 cm-1. The 

wavenumber scale is relative to the respective origins, which are located at 37476.8 cm-1,5 

36859.9 cm-1,13 and 36724 cm-1 (present work). The assignments of the bands are given as 

transitions that involve just torsional or a combination of vibration and torsional quantum 

numbers. Owing to different nuclear spin state symmetries, various initial torsional levels are 

populated in our free jet expansion (see text), while only the zero-point vibrational level is 

expected to be populated significantly. For clarity, the lower torsional levels are omitted for 

pXyl. The assignments in many cases rely on the ZEKE spectra recorded via different 

intermediate levels, which are presented in subsequent figures and discussed in the text. 

Hence a number of transitions appear at the same wavenumber, but for clarity these are not 

all marked here: for example, the origin band, marked 00 will consist of two m = 0 excitations 

from m = 0 and 1 for toluene and pFT; while for pXyl, the origin band will consist of four 

{m1,m2} = 0 transitions from S0 levels {0,0}, {0,1}, {1,1} and {1,-1} – see text. 

Figure 5: (a) REMPI spectrum of pXyl highlighting the “pure” torsions below 100 cm-1. Traces 

(b)–(e) show the ZEKE spectra recorded when exciting through the S1 origin band and different 

S1 levels as indicated. Assignments are discussed in the text. For clarity, only the terminating 

torsional levels are shown on the REMPI spectrum. 

Figure 6: (a) REMPI spectrum of pXyl emphasising the REMPI feature at ~76 cm-1. Owing to 

the profile, different excitation wavenumbers were employed. Traces (b)–(d) show the ZEKE 

spectra recorded at these points, and their assignment is discussed in the text. For clarity, 

only the terminating torsional levels are shown on the REMPI spectrum. 
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Figure 7: (a) REMPI spectrum of pXyl emphasising the REMPI feature at ~110 cm-1. Owing to 

the profile, different excitation wavenumbers were employed as shown in the insert in (a), 

with the main trace indicating the position of the band in the REMPI spectrum. Traces (b)–(d) 

show the ZEKE spectra recorded at these points, and their assignment is discussed in the text. 

Figure 8: (a) REMPI spectrum of pXyl emphasising levels involving the D20 vibration. Traces 

(b)–(e) show the ZEKE spectra recorded using the indicated S1 level as the excitation step. The 

intermediate levels are shown on the right-hand side of each trace, and just the terminating 

levels of the ionization step are indicated on each band.  

Figure 9: (a) REMPI spectrum of pXyl emphasising levels involving the D19 vibration; the insert 

shows an expansion of the band at ~ 254 cm-1, which appears to be split – see text. Traces (b), 

(c) and (d) show the ZEKE spectra recorded using the indicated S1 level as the excitation step. 

The intermediate levels are shown on the right-hand side of each trace, and just the 

terminating levels of the ionization step are indicated on each band.  

Figure 10: Expanded views and assignments of the 0–600 cm-1 regions of the ZEKE spectra of 

(a) pXyl and (b) pFT, obtained when exciting via the S1 origin band. The vertical scale has been 

expanded compared to traces for pXyl shown in other spectra. The similarity between the 

spectral activity and assignments is noteworthy. 
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73 
 

Figure 7 

 

  



74 
 

Figure 8 

  



75 
 

 

Figure 9 

 

 

  



76 
 

Figure 10 

  



77 
 

References 

 

1 C. S. Parmenter and B. M. Stone, J. Chem. Phys. 84, 4710 (1986). 

2 J. A. Davies and K. L. Reid, J. Chem. Phys. 135, 124305 (2011). 

3 C. J. Hammond, V. L. Ayles, D. E. Bergeron, K. L. Reid and T. G. Wright, J. Chem. Phys. 125, 124308 

(2006) 

4 J. A. Davies, A. M. Green, A. M. Gardner, C. D. Withers, T. G. Wright, and K. L. Reid, Phys. Chem. 

Chem. Phys. 16, 430 (2014). 

5 A. M. Gardner, A. M. Green, V M. Tamé-Reyes, V. H. K. Wilton and T. G. Wright 

J. Chem. Phys. 138, 134303 (2013). 

6 A. M. Gardner, A. M. Green, V. M. Tamé-Reyes, K. L. Reid, J. A. Davies, V. H. K. Parkes and T. G. 

Wright J. Chem. Phys. 140, 114038 (2014). 

7 J. R. Gascooke and W. D. Lawrance, J. Chem. Phys. 138, 134302 (2013). 

8 J. R. Gascooke, E. A. Virgo and W. D. Lawrance, J. Chem. Phys. 142, 024315 (2015). 

9 J. R. Gascooke, E. A. Virgo and W. D. Lawrance, J. Chem. Phys. 142, 044313 (2015). 

10 Y. He, C. Wu and W. Kong, J. Phys. Chem. A 107, 5145 (2007). 

11 C. Skinnerup Byskov, F. Jensen, T. J. D. Jørgensen, and S. Brøndsted Nielsen, Phys. Chem. Chem. 

Phys. 16, 15831 (2014). 

12 V. L. Ayles, C. J. Hammond, D. E. Bergeron, O. J. Richards, and T. G. Wright J. Chem. 

Phys. 126 (2007), 244304.  

13 A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter, and T. G. Wright, J. Chem. Phys 

145, 124307 (2016). 

14 L. D. Stewart, J. R. Gascooke, P. G. Sibley, and W. D. Lawrance, “Methyl torsion, low-frequency 

vibrations and torsion-vibration states in S0 and S1 p-fluorotoluene” (unpublished). 

15 L. D. Stewart, J. R. Gascooke, A. M. Gardner, W. D. Tuttle, T. G. Wright, and W. D. Lawrance, 

“Torsion-vibration interactions in the S0 and S1 states of p-fluorotoluene and the D0
+ state of the p-

fluorotoluene cation” (unpublished). 

16 K. Okuyama, N. Mikami and M. Ito, J. Phys. Chem. 89, 5617 (1985). 

17 Z.-Q. Zhao, C. S. Parmenter, D. B. Moss, A. J. Bradley, A. E. W. Knight, and K. G. Owens, J. Chem. 

Phys. 96, 6362 (1992). 

18 Z.-Q. Zhao, PhD Thesis, Indiana University (1992). 

19 K.-T. Lu, G. C. Eiden, and J. C. Weisshaar, J. Phys. Chem. 96, 9742 (1992). 

20 K. Takazawa, M. Fujii, and M. Ito, J. Chem. Phys. 99, 3205 (1993). 

                                                           



78 
 

                                                                                                                                                                                     
21 W. D. Tuttle, A. M. Gardner, K. B. O’Regan, W. Malewicz, and T. G. Wright, J. Chem. Phys. (to be 

co-submitted). 

22 T. Ebata, Y. Suzuki, N. Mikami, T. Miyashi, and M. Ito, Chem. Phys. Lett. 110, 597 (1984). 

23 P. J. Breen, J. A. Warren, E. R. Bernstein, and J. I. Seeman, J. Chem. Phys. 87, 1917 (1987). 

24 T. G. Blease, R. J. Donovan, P. R. R. Langridge-Smith, and T. R. Ridley, Laser Chem. 9, 241 (1988). 

25 K. Walter, K. Scherm, and U. Boesl, Chem. Phys. Lett. 161, 473 (1989). 

26 J. I. Selco and P. G. Carrick, J Mol. Spect. 173, 262 (1995). 

27 B. Zhang, U. Aigner, H. L. Selzle, and E. W. Schlag, Opt. Comm. 183, 95 (2000). 

28 F. Gunzer and J. Grotemeyer, Phys. Chem. Chem. Phys. 4, 5966 (2002). 

29 F. Gunzer and J. Grotemeyer, Int. J. Mass Spectrom. 228, 921 (2003). 

30 B. Zhang, U. Aigner, H. L. Selzle, and E. W. Schlag, Opt. Comm. 183, 95 (2000). 

31 A. Held, H. L. Selzle, and E. W. Schlag, J. Phys. Chem. A 102, 9625 (1998). 

32 B. Zhang, U. Aigner, H. L. Selzle, and E. W. Schlag, Chem. Phys. Lett. 380, 337 (2003). 

33 K. Watanabe, J. Chem. Phys. 22, 1564 (1954). 

34 K. Watanabe, T. Nakayama, and J. Mottl, J. Quant. Spectrosc. Radiat. Transfer, 2, 369 (1962). 

35 T. P. Debies and J. W. Rabalais, J. Electron Spect. Rel. Phenom. 1, 355 (1972/3). 

36 M. Klessinger, Angew. Chem. Int. Ed. Engl. 11, 525 (1972). 

37 T. Koenig, M. Tuttle, and R. A. Wielesek, Tetrahedr. Lett. 15, 2537 (1974).  

38 J. E. Wollrab, Rotational Spectra and Molecular Structure (Academic Press, New York, 1967). 

39 R. A. Walker, E. Richard, K.-T. Lu, E. L. Sibert III, and J. C. Weisshaar, J. Chem. Phys. 102, 8718 

(1995). 

40 E. A. Virgo, J. R. Gascooke, and W. D. Lawrance, J. Chem. Phys. 140, 154310 (2014). 

41 P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2nd Ed. (NRCC, Ottawa, Canada, 

1998). 

42 P. R. Bunker and P. Jensen, Fundamentals of Molecular Symmetry (Institute of Physics Publishing 

Ltd, London, 2005). 

43 P. Groner and J. R. Durig, J. Chem. Phys. 66, 1856 (1977). 

44 J. T. Hougen, Can. J. Phys. 42, 1920 (1964). 

45 P. Groner, J. Molec. Spec. 278, 52 (2012). 

46 J. D. Swalen and C. C. Costain, J. Chem. Phys. 31, 1562 (1959). 

47 A. E. W. Knight and S. H. Kable, J. Chem. Phys. 89, 7139 (1988). 

48 M. R. Darafsheh and A. Darafsheh, MATCH Commun. Math. Comput. Chem. 56, 271 (2006). 

49 Y. G. Smeyers and A. Niño, J. Comp. Chem. 8, 380 (1987). 

50 J. Maruani, A. Hernandez-Laguna, and Y. G. Smeyers, J. Chem. Phys. 63, 4515 (1975). 



79 
 

                                                                                                                                                                                     
51 J. Marauni, Y. G. Smeyers, and A. Hernández-Laguna, J. Chem. Phys. 76, 3123 (1982). 

52 Y. G. Smeyers, J. Molec. Struct. THEOCHEM 107, 3 (1984). 

53 Y. G. Smeyers and A. Hernández-Laguna in “Structure and Dynamics of Molecular Systems”, eds. R. 

Daudel, J. P. Korb, J. P. Lemaister and K. Maraunipp23-240 (Dordrecht, Holland D. Reidel,1985). 

ISBN 9027719772/9027722463. 

54 J. T. Hougen, J. Mol. Spectrosc. 256, 170 (2009). 

55 P. Groner, Spectrochim. Acta A 49, 1935 (1993). 

56 R. J. Meyers and E. B. Wilson, J. Chem. Phys. 33, 186 (1960). 

57 H. Dreizler, Z. Naturforsch. A 16, 1354 (1961) 

58 J. R. Durig, Y. S. Li. And P. Groner, J. Mol. Spectrosc. 62, 159 (1976). 

59 J. K. G. Watson, Can. J. Phys. 43, 1996 (1965). 

60 P. Groner, J. Chem. Phys. 107, 4483 (1997). 

61 A. M. Gardner and T. G. Wright, J. Chem. Phys. 135, 114305 (2011). 

62 A. Andrejeva, A. M. Gardner, W. D. Tuttle, and T. G. Wright J. Mol. Spect. 321, 28 (2016). 

63 S. D. Gamblin, S. E. Daire, J. Lozeille and T. G. Wright, Chem. Phys. Lett. 2000, 325, 232. 

64 C. J. Hammond, V. L. Ayles, D. E. Bergeron, K. L. Reid and T. G. Wright,  J. Chem. Phys., 2006, 125, 

124308. 

65 X. Zhang, J. M. Smith, and J. L. Knee, J. Chem. Phys. 97, 2843 (1992). 

66 J. P. Harris, A. Andrejeva, W. D. Tuttle, I. Pugliesi, C. Schriever, and T. G. Wright, J. Chem. Phys. 141, 

244315 (2014). 

67 A. Andrejeva, W. D. Tuttle, J. P. Harris, and T. G. Wright, J. Chem. Phys. 143, 104312 (2015). 

68 A. Andrejeva, W. D. Tuttle, J. P. Harris, and T. G. Wright, J. Chem. Phys. 143, 244320 (2015). 

69 W. Y. Lu, Y. H. Hu, and S. H. Yang, Z. Phys. D 40, 40 (1997). 


