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A B S T R A C T   

Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements 
owing to their strong performance. These techniques also offer advantages over calibration procedures of more 
complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the 
correlation of sensor data to important process information. However, their implementation requires expertise to 
extract and select appropriate features from the sensor measurements as model inputs, select the type of machine 
learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate 
implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on- 
line monitoring of industrial processes and other similar applications. The article first reviews the use of ul
trasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and 
machine learning. We include literature from other sectors such as structural health monitoring. This review 
covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, 
domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations 
for applying machine learning to the reviewed processes are made.   

1. Introduction 

The manufacturing sector is increasingly using the collection and 
interpretation of data to inform decision making and improve produc
tivity, sustainability, and product quality [1]. This is part of the fourth 
industrial revolution, which is projected to culminate in Industry 4.0 
and consist of fully interconnected supply chains, processes, and mar
kets where intelligent, automatic decision-making adjusts to demands in 
real-time [2]. This transformation will be realised through the deploy
ment of industrial digital technologies (IDTs) such as smart sensors, edge 
computing, cloud computing, the internet of things (IoT), and machine 
learning (ML). Sensors underpin this transition by acquiring the real- 
time data required to inform the decision-making process. This neces
sitates in-line and on-line sensors which do not require human operators, 
where in-line techniques directly measure the process stream and on- 
line measurements use automatic sampling methods [3]. Sensors can 
be adapted into smart sensors through additional functionalities such as 
wireless IoT connection or by providing some processing of the acquired 
data to reduce the complexity of the data being transferred [4]. Hard
ware solutions are required for process interconnectedness such as edge 

computing, where compute nodes are located close the end devices, or 
cloud computing, where data is transferred to a centralized cloud loca
tion [5]. ML can be used at all levels, from the individual sensors to the 
centralised data in the cloud, to analyse data and provide automatic 
decisions [6]. 

Discrete manufacturing is leading process manufacturing in IDT 
implementation owing to the much simpler processes to be monitored 
[7]. A wider range of sensor options is needed for process manufacturing 
to monitor more complex and often highly variable operations. The 
process analytical technology (PAT) initiative, first introduced to the 
pharmaceutical industry in 2004 and since spread to other sectors such 
as food, demonstrates the desire for greater process understanding [8,9]. 
PAT focuses on real-time sensor measurements, preferably in-line or on- 
line, which monitor critical process parameters that effect critical 
quality attributes of the products. There are many sensor techniques in 
development, each with different advantages and disadvantages making 
them suitable for specific applications [10]. Low power (intensities 
below 1 Wcm2), high frequency (higher than 100 kHz) ultrasonic (US) 
sensors monitor the interaction of materials with mechanical sound 
waves. They benefit from being low cost, small in size, able to monitor 
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opaque materials, low in power consumption, able to operate non- 
invasively, non-destructive, real-time, in-line, and do not cause 
changes to the structure of the material through which they pass [11]. 
These attributes make US sensors the optimal sensor for certain appli
cations and there use has been demonstrated for monitoring industrially 
relevant processes as reviewed in Section 3. Therefore, their appeal to 
industry can be expected to continue to grow. 

The most commonly used US measurements include velocity, 
attenuation, and acoustic impedance [11]. The US velocity is calculated 
by measuring the time of flight and distance the sound wave has trav
elled. Attenuation is measured as a loss in sound wave energy as it passes 
through a material. Attenuation may be caused by absorption in ho
mogeneous materials due to effects such as fluid viscosity, or by scat
tering due to encountering discontinuities in heterogeneous materials 
[12]. Acoustic impedance, the product of the sound velocity and mate
rial density, is typically monitored by measuring the proportion of a 
sound wave reflected from a boundary between two materials [13]. 
Pulse-echo sensing techniques utilise a single sensor to both transmit 
and receive a sound wave after reflection from an interface. Pitch-catch 
techniques use one sensor to produce the sound wave and another to 
receive it [13]. 

Traditionally, physical inversion models were developed from first 
principles to determine material properties from US measurements [14]. 
However, their development becomes challenging in real-life applica
tions where the paths of the sound wave are often complex or the sound 
wave travels through multiple material interfaces. Furthermore, US 
properties are highly dependent on temperature and the presence of gas 
bubbles causes strong reflection of the sound wave, both of which must 
be accounted for [15,16]. As such, calibration procedures are 
commonplace that correlate ultrasonic measurements (such as the speed 
of sound, attenuation, or acoustic impedance) to desired material 
properties across a range of process parameters without defining the 
underlying paths of the sound wave. Calibration procedures also become 
complicated in industrial processes when many parameter ranges must 
be investigated, such as temperature, gas content, and the content of 
other heterogeneities [17]. ML uses algorithms to learn solutions to tasks 
without requiring explicit instructions. Supervised ML is a type of ML 
that maps inputs (or features) to outputs (or target variables) during 
training with the aim of producing a model that accurately predicts the 
outputs of previously unseen input data [18]. Supervised ML offers some 
distinct advantages over calibration methods: (1) The time investment 
for calibration procedures can be eliminated simply by monitoring the 
desired process across its natural parameter variations, so long as these 
are recorded and a reference measurement is available to label the 
sensor data with target variables. (2) ML typically uses a greater number 
of more complex US waveform features compared with calibration 
procedures allowing more US waveform information to be used in 
determining material properties. (3) ML models typically employ more 
complex fitting procedures to map input data to outputs. This allows 
more accurate predictions while minimising over-fitting to the training 
data through model regularisation and validation procedures. (4) Vali
dation procedures can encourage development of ML models that 
accurately predict on new data from outside the range of process pa
rameters that they were trained on. (5) ML models can be continuously 
retrained as more data becomes available to increase prediction accu
racy. (6) Lastly, ML models can correlate sensor data directly to useful 
process information (such as classifying the state of a process or pre
dicting the processing time remaining) rather than to material 
properties. 

However, a lack of knowledge and experience in applying ML is a 
barrier to its deployment for US measurement analysis. To develop an 
adequate ML model, features must be extracted and selected from the US 
waveform, suitable ML algorithms must be identified and investigated, 
and a satisfactory set of hyperparameters must be chosen or found. 
Hyperparameters are any variables that may be selected by the ML 
model developer. The aim of this article is to facilitate the use of ML in 

combination with US sensors for in-line and on-line industrial process 
monitoring. This article first reviews the ability of US measurements to 
monitor processes before reviewing the combination of US measure
ments and ML including other areas such as structural health monitoring 
(SHM). This review covers feature extraction, feature selection and 
unsupervised learning, algorithm choice, hyperparameter selection, 
data augmentation, domain adaptation, semi-supervised learning and 
ML interpretability. Finally, recommendations are provided for 
combining ML and US measurements for the reviewed processes. 

2. Machine learning background 

This review includes supervised, unsupervised, and semi-supervised 
ML methods. Supervised learning uses features as inputs along with 
corresponding target variables as outputs (also known as labelled data) 
[18]. The ML algorithms then map the inputs to these outputs with the 
aim of accurately predicting the target variables for previously unseen 
data. This may be classification tasks, in which the target variables are 
discrete categories, or regression tasks where the targets are continuous 
variables. Unsupervised learning only uses input data for tasks such as 
finding patterns within the data or reducing its dimensionality. Semi- 
supervised learning is typically employed when a large volume of 
unlabelled data and a small volume of labelled data is available [19]. 
This may be due to the time and expense required to label each data 
point. Semi-supervised techniques may be used to pseudo-label previ
ously unlabelled data points using knowledge from the labelled data. 
Then, a more accurate ML model can be constructed using the labelled 
and pseudo-labelled data compared with using the labelled data alone 
[18]. Fig. 1 displays a pipeline for supervised ML model development. 

Labelled data is required to create the set of model outputs, or target 
variables, for the model inputs to be correlated to by the ML algorithm. 
Labelled data may be collected using: an alternative in-line or on-line 
sensing technique as a reference measurement such as imaging, den
sity measurement, or particle sizer; off-line techniques where material 
samples are periodically collected during the process; stopping or sam
pling the process at stages, collecting data using a reference measure
ment technique, and using semi-supervised learning to pseudo-label the 
unlabelled data; using the US sensor measurements combined with prior 
process knowledge to infer process stages; or by transferring ML models 
between similar processes after domain adaptation [20]. Data labelling 
may be challenging in factory environments and its consideration should 
be taken into account throughout the different development stages of 
sensor and ML combinations. 

During the supervised ML pipeline, the input data is usually divided 
in training, validation, and test sets. The training data is used for model 
training. Multiple trained models can be evaluated on the validation 
data to compare between algorithm choice, model architecture, hyper
parameter and feature selection. Finally, the best performing models on 
the validation set are evaluated (or retrained and evaluated using the 
combined training and validation sets) on the test set to provide an 
assessment of the full ML pipeline. Several validation techniques are 
available such as holdout, k-fold cross validation, stratified k-fold cross 
validation, leave-one-out cross validation, leave-p-out cross-validation, 
and nested cross-validation. For a detailed comparison of these methods, 
readers are encouraged to visit [21]. Choice of the training, validation, 
and test data can also be used to evaluate the ML model’s extrapolation 
capability beyond the process parameter bounds it was trained on [22]. 
This is a useful approach for applications with limited training data 
available or highly variable processes. 

The success of ML tasks is in part dependent on the features used. A 
feature is any measurable property of the process being monitored that 
is inputted into an ML model [23]. Features can originate from the US 
signal or from other process parameters such as temperature or flowrate. 
Features may be extracted from the time domain US waveform, the 
frequency domain (for example after Fourier transformation [24,25]), or 
time–frequency domain following wavelet decomposition [26]. Wavelet 
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analysis uses decaying waveforms as the transform function compared 
with the non-decaying sine or cosine waves used in the Fourier trans
form [27]. The continuous wavelet analysis uses a continuous range of 
frequencies to decompose the US signal whereas the discrete wavelet 
transform and wavelet packet transform use discrete frequencies at each 
decomposition. Wavelet packet decomposition performs successive de
compositions on each branch of the original signal whereas the discrete 
wavelet transform only applies successive decompositions to the higher 
frequency signal content [15,27]. 

Feature selection encompasses methods of choosing which features 
to use in ML models or reducing the number of features by using algo
rithms. A common method is Principal Component Analysis (PCA) as 
used in [27–29] which is an unsupervised ML method that linearly 
transforms input variables into new, uncorrelated features called prin
cipal components (PCs) [30]. Feature selection can be used to improve 
ML model fitting by removing redundant information, reducing the 
likelihood of a model overfitting to its training data, providing simpler 
optimisation problems, and reducing the computational requirement to 
train the model [30,31]. However, some information from the input 
features could be lost leading to a reduction in ML model accuracy. 

According to the No Free Lunch theorem, all optimisation techniques 
are equally as accurate when averaged over all possible problems [32]. 
Therefore, the optimal algorithm to use is dependent on the application. 
However, some knowledge of the procedure of each algorithm can help 
in identifying which to try. For classification tasks, support vector ma
chines (SVMs) find a hyperplane that separates two classes of data by 
maximizing its distance from the closest data points from each category. 
In regression tasks, support vector regressors fit lines to continuous data 
by only accounting for the error from data points outside a set distance 
from the fitted line. SVMs generalise well to new data and, as they are 
effective with high dimensional feature spaces, make use of the kernel 
trick for non-linear fitting [33]. Decision and regression trees (DT) use 
conditions which are successively applied to the input data until an 

output decision is reached. They are simple, interpretable, have low 
computational cost, can be graphically represented, but typically have 
lower accuracy compared to other algorithms [34]. Random forests (RF) 
are an ensemble method that combines the predictive performance of 
multiple DTs by, for example, selecting the most common class predicted 
in classification tasks or the mean output for regression tasks [16]. K- 
nearest neighbours (KNN) uses the distance between data points in the 
feature space and a voting procedure of the K nearest training instances 
to determine the class or regression value of the queried data point [16]. 
Artificial neural networks (ANNs) can create new features in their hid
den layers from combinations of input features to non-linearly fit model 
inputs to the outputs. In ANNs, information flows by feed-forward 
propagation from the input layer, through hidden layers, to the output 
layer. Weight and bias terms connect all units in the previous layer to all 
the units in the following layer. During training, the weight and bias 
terms are iteratively altered through backpropagation of the prediction 
error and gradient descent steps [34]. A deep neural network (DNN) is 
an ANN with more than one hidden layer. Convolutional neural net
works (CNN) have convolutional layers as well as fully connected layers 
and are widely used in image recognition tasks [35]. The convolutional 
layers consist of filters of weights which perform cross-correlation on the 
input data. This enables CNNs to learn their own features from the input 
data at lower computational expense and with simpler optimisation than 
fully connected neural networks of similar size. Furthermore, CNNs are 
spatially invariant meaning that they are robust to changes in feature 
locations, unlike fully connected neural networks. The accuracy of ML 
methods is limited by the choice of features inputted into the models. 
Therefore, CNNs offer the advantage of negating the need for feature 
extraction or selection by automatically learning features important to 
the task (Fig. 2). Long short-term memory neural networks (LSTMs) are 
able to learn sequences of time series data and are widely used in natural 
language processing applications. LSTMs are a development of recurrent 
neural networks (RNNs) that reduce the likelihood of exploding or 

Fig. 1. An exemplar pipeline for developing supervised machine learning models.  
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vanishing gradients, enabling the learning of long-term dependencies 
[36]. LSTMs can store representations of sequences by using gate units 
to update their internal network state. At each time step, LSTMs use the 
input features as well as information passed from the previous time step 
to make their prediction. 

Hyperparameters are variables that may be selected by the devel
oper. This may be through trial and error, using values previously 
employed in other works, through grid-searches of possible hyper
parameter combinations, or through other procedures such as Bayesian 
optimisation. Hyperparameter selection can be evaluated using part of 
the data as a validation set. Hyperparameters may define the structure of 
the algorithm or how it trains. For example, neural networks (encom
passing ANNs, DNNs, CNNs, and LSTMs) often require regularisation to 
prevent them from over-fitting to the training data and limiting their 
ability to generalise to new data. Common regularisation techniques 
include L1 and L2 penalties, early stopping, and dropout layers. L1 
regularisation adds a penalty term to the error value that is the sum of all 
the weight magnitudes, whereas L2 sums the square of the weights [37]. 
Therefore, a model is penalised for having many or large weight values 
depending on the chosen magnitude of these regularisation penalties. 
Early stopping evaluates the current model on a validation set during 
training. After the prediction accuracy on this validation set decreases 
for a specified number of iterations, training is stopped [37]. Dropout 
layers randomly drop network nodes during training according to a 
specified probability. This effectively “thins” the network during 
training, allowing multiple input data propagation paths through the 
network and reducing co-adaptation of the hidden nodes [38]. 

3. Process monitoring using ultrasonic sensors 

The section reviews the use of in-line and on-line ultrasonic mea
surement techniques to monitor processes including cleaning, fermen
tation, crystallisation, mixing, extrusion, injection moulding, curing, 
reactions, tabletting, and membrane fouling. 

3.1. Cleaning 

Cleaning is a process used to remove material from the internal 
surfaces of processing equipment in sectors such as food and drink, 
pharmaceutical and Fast-Moving Consumer Goods (FMCG) [39]. How
ever, cleaning is usually carried out for a predetermined length of time 
which is designed to over-clean the equipment. With real-time moni
toring of fouling removal, time and cleaning resource (e.g. water, en
ergy, and chemicals) use can be minimised. This not only improves 
process economics but sustainability as well [40]. Furthermore, the 
build-up of fouling decreases the efficiency of heat exchangers and so a 
method to detect the presence of this fouling would allow for improved 
scheduling of heat transfer equipment cleaning [41]. 

Wallhäußer et al. [41] combined US measurements and an ANN to 
classify whether a model heat exchanger was fouled by dairy protein 
deposits. A single US sensor monitored waveforms reflected from the 
plate-fouling interface and from the far wall of the heat exchanger. The 
ANN achieved an accuracy of 98.6%. Wallhäußer et al. [42] used ANNs 
and SVMs to classify the presence of protein or mineral fouling. The 
SVMs achieved higher accuracies compared with the ANNs. It is sug
gested that this is due to the ability of SVMs to find global minima, 
opposed to local minima found by ANNs. In actuality, this may be due to 
the ability of SVMs to generalise well to new data and that not enough 
regularisation was applied to the ANNs. This is likely, as no validation 
set was used to evaluate hyperparameters for the ANN. Only features 
from the reflection from the plate-fouling interface was used. The SVMs 
achieved 97.6 % accuracy when the mineral and protein fouling datasets 
were combined, and 100 % and 98.2 % for the protein and mineral 
fouling, respectively, when each dataset was used individually. Wall
häußer et al. [43] monitored the cleaning process of protein fouling 
using a sodium hydroxide solution. Seven US waveform features were 
used along with the process temperature and cleaning fluid mass flow 
rate. The gradients of the US features were also monitored to identify a 
plateau that could indicate the end of cleaning. SVMs achieved greater 
than 94 % accuracy when classifying whether the heat exchanger was 

Fig. 2. A comparison between Artificial Neural 
Networks (ANNs) and Convolutional Neural 
Networks (CNNs). ANNs require feature extrac
tion and, if necessary, feature selection before 
using the model. In contrast, CNNs use convolu
tional filters, and pooling layers to downsample 
the data, to automatically extract features. ANNs 
may be used with feature extraction or selection, 
i.e. the raw data is used as inputs. However, this 
network would not be robust against spatial 
variance of the features, unlike CNNs.   
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fouled or cleaned. Úbeda et al. [40] used a single US transducer to 
monitor cleaning of milk fouling in a model plate heat exchanger. Milk 
protein deposits build up on heat transfer surfaces during thermal 
treatment, reducing their efficiency and necessitating cleaning. Cleaning 
was carried out for 95 min using sodium hydroxide and, subsequently, 
nitric acid solutions. Two sections of the received US waveforms were 
analysed: the start of the waveform corresponding to sound wave re
flections from the plate-fouling interface, and the third echo reflecting 
from the far wall of the plate heat exchanger (after passing through the 
fouling and cleaning fluid or cleaning fluid alone). For the sound wave 
reflections from the plate-fouling interface, three US waveform features 
were monitored: the temporal spread, temporal roll-off, and temporal 
inertia. These features were used in an ANN to classify whether the plate 
was fouled or cleaned. For the third echo, four features were used: the 
maximum amplitude, spectral crest factor, spectral centroid, and tem
poral entropy. Classification accuracies of up to 98 % for the plate- 
interface features and 96% for the 3rd echo features were achieved. 

Escrig et al. [39] monitored the removal of three types of food 
fouling (gravy, tomato paste, and malt) at two cleaning fluid tempera
tures (12 ◦C and 45 ◦C) using a single US sensor. The US sensing method 
monitored the US waveform reflected from the interface between the 
pipe wall and the fouling material. The experiments were conducted in a 
lab-scale pipe section. The pipe section was cuboid with a flat, stainless 
steel bottom plate where the US sensor was attached externally. Three 
features from the received US waveform were monitored: the waveform 
energy, peak-to-peak amplitude, and root mean square error of the 
amplitudes at every sample point in the waveform compared to that of a 
clean pipe. The US sensor could identify differences in the cleaning 
mechanisms between the mechanical removal of the tomato paste and 
gravy compared with the dissolution of the malt. The US technique was 
only sensitive to the area of fouling coverage not the fouling thickness. 
Escrig et al. [16] expanded this study by training classification machine 
learning models to predict whether the pipe section was fouled or 
cleaned. The highest model accuracy was attained when the amplitudes 
at each sample point in the waveforms were used directly instead of 
using any further feature extraction methodologies. A K-best feature 
selection methodology was used to select the number of amplitudes to be 
used. The classifiers used were KNN, SVM, RF and adaboost RF. It was 
found that combining multiple datasets from different fouling materials 
resulted in improved model accuracy. Accuracies up to 99 % were 
achieved. Simeone et al. [15] used the same pipe test section and ma
terials to monitor cleaning by combining US and optical sensors. A three- 
level wavelet package transform using the 3 Daubechies mother wavelet 
was performed on the US waveforms. Afterwards, the mean, standard 
deviation, minimum, maximum, skewness, kurtosis, and energy were 
extracted from the decomposed signals. These features were then input 
into an ANN for a regression task to predict the surface area or volume of 
fouling remaining. Escrig et al. [44] used classification methods to 
monitor tomato paste and malt fouling in plastic (PMMA) and metal 
(stainless steel) cylindrical pipe sections. Accuracies up to 100% were 
achieved for both pipes. Finally, Chen et al. [45] used a single US sensor 
to monitor cleaning of wax deposits from a flat duct section over the 
course of 3 h. A decorrelation coefficient of coda waves compared with a 
clean plate was monitored and cleaning was completed after 2.2 h. 

3.2. Fermentation 

Fermentation processes are conventionally monitored through sam
pling and off-line analysis [46]. However, this has issues of requiring 
manual operation, risking contamination, and lacking timely results 
[17]. There are several types of fermentation that have been monitored 
using US sensors, such as alcoholic fermentation where yeast converts 
sugar into ethanol and carbon dioxide [46], lactic acid fermentation 
where lactose is converted to lactic acid through bacteria metabolism 
[47], and malolactic fermentation in red wines where malic acid is 
converted into lactic acid which is an important process for developing 

sensory characteristics [48]. 
Becker, Mitzscherling, and Delgado [49] used a single externally 

mounted sensor to monitor beer fermentation in a 300 m3 tank under 
industrial conditions for 90 h. The US wave was transmitted across the 
4.5 m diameter vessel and was reflected at the far wall before returning 
to the transducer. The US velocity was monitored and an ANN was used 
to compensate for the effects of temperature. Resa, Elvira, and De 
Espinosa [46] mounted two non-invasive US sensors to a square glass 
bottle (64 mm ID) to monitor the US velocity using a pitch-catch 
transmission method. A water bath was used to keep a constant tem
perature of 30 ◦C. The US velocity decreased with the decreasing density 
of the fermenting medium. Resa et al. [47,50] used similar experimental 
methods to monitor lactic acid fermentation. The US velocity decreased 
throughout fermentation despite no significant change in density. Resa 
et al. [17] monitored wine and beer fermentations and reported a 
decreasing US velocity with the decreasing density. The US amplitude 
was also used to monitor the beer wort fermentation and an increase in 
attenuation was obtained during the start of ethanol production due to 
the production of CO2 bubbles. Similarly, Lamberti et al. [51] used two 
transducers for transmission across a 35 mm diameter square bottle to 
monitor wine fermentation. A decreasing US velocity during ethanol 
production was found. 

Hussein, Hussein, and Becker [24] implemented a single US sensor 
on a circulation line for in-line monitoring of a 60 L (working volume) 
yeast fermentation process. The sensor used a reflector plate to transmit 
through the fermenting liquid. Frequency domain analysis, after Fourier 
transformation, and phase shift correction were used for the time-of- 
flight measurements. The US velocity was combined with nine wave
form features and the temperature and was inputted into an ANN to 
predict the liquid density. The ANN produced a maximum error of 
0.95%. The US velocity increased throughout the fermentation, con
tradicting the previously reported results presented above. Hoche et al. 
[52] also found the US velocity to increase during fermentation and the 
reflection coefficient to decrease. The reason for these results may be 
due to the larger scale process and industrial conditions monitored in 
[24,52] compared with [17,46,47,50,51]. At these specific combina
tions of temperature, along with the content of sugar, ethanol, yeast, and 
CO2, the US velocity may increase during fermentation. [52] used 
invasive sensor probes with a 50 mm reflector plate transmission dis
tance to monitor alcoholic fermentation in vessels up to 2140 L 
(maximum volume) in size. A sound velocity–density–temperature 
calibration model achieved an average root mean square error of 0.53% 
g/g sugar and 0.26% g/g ethanol during the fermentations. However, 
this does require a secondary measurement of the density of the fer
menting wort. Bowler et al. [53] used LSTMs to predict the alcohol 
concentration during beer fermentation in a 30 L vessel. An invasive 
probe with a reflector plate was used. Accurate monitoring of the 
alcohol content was achieved without using the sound wave reflection 
that had passed through the wort or using the process temperature. This 
indicates that a non-invasive, reflection-mode US sensing technique 
could be possible. The energy of the reflection from the probe-wort 
interface increased throughout fermentation although no trend in the 
speed of sound was identified owing to variations in the process 
temperature. 

Ogasawara et al. [54] used two invasive probes in pitch-catch mode 
with a 15 mm transmission distance to monitor yogurt fermentation in a 
beaker. The US velocity was used to detect phase changes of the yogurt 
along with variations in the internal temperature caused by the 
exothermic fermentation reaction. Meng et al. [55] used a single non- 
invasive sensor to monitor yogurt fermentation through the wall of a 
250 ml stainless-steel reactor. The acoustic impedance was monitored 
using multiple reflections from the wall-yogurt interface. The acoustic 
impedance of the yogurt increased between pH 5.6 and 5.3. 

Novoa-Díaz et al. [48] used an invasive US sensor probe with a 
reflector plate to monitor malolactic fermentation in red wine. The US 
velocity increased during the fermentation until reaching a stationary 
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phase after approximately six days. It was proposed that identification of 
the stationary phase could be used to determine the fermentation end 
point. However, temperature compensation would be required to un
cover its masking effect on the velocity. Amer et al. [56] presented a 
temperature compensation strategy by determining the effect of tem
perature at different concentrations of alcohol and Amer et al. [57] 
presented two further temperature compensation methods. Çelik et al. 
[58] presented the design of an invasive sensor probe with reflector 
plate to be installed in the side of industrial vessels for malolactic acid 
fermentation. 

Lastly, Keskinoǧlu and Aydln [59] used two non-invasive trans
ducers in pitch-catch mode to monitor cell growth in a small-scale 
vessel. From the US velocity, growth curves were obtained that could 
identify the lag, growth, and stationary phases. 

3.3. Crystallisation 

Crystallisation is a process predominantly used in the chemical and 
pharmaceutical industries [60]. The most important parameters to 
control are the mean crystal size and the crystal size distribution as these 
determine the properties of the product and effect downstream pro
cessing [61]. Mougin et al. [62] used an invasive probe consisting of two 
pairs of broadband US transducers to monitor the crystallisation of two 
organic compounds. US attenuation spectroscopy using the Epstein and 
Carhart and Allegra and Hawley (ECAH) scattering model was utilised. 
The frequency range of the probe spanned from 1 MHz to over 150 MHz 
and was capable of measuring particle sizes in the range from 0.01 to 
1000 µm. The minimum crystal concentration for size characterisation 
was 0.1% vol. The technique had limited effectiveness for monitoring 
the crystallisation of urea owing to the formation of high aspect ratio 
needle crystals whose long axial length was beyond the sensor mea
surement range. Mougin, Wilkinson, and Roberts [63] went on to 
monitor the particle size of crystals in two different polymorphic forms. 
In this work, the US attenuation spectroscopy method was less sensitive 
than turbidometric measurements for the determination of the onset of 
crystallization. Mougin et al. [61] used a 470 ml stainless steel flow- 
through cell connected to the side-ports of a double-jacketted 2.6 L 
glass reactor to determine the crystal size and solid concentration during 
crystallisation. The method could identify secondary nucleation, growth 
and crystal breakage and the results were used to determine kinetic 
parameters such as the secondary nucleation rate and growth rate. Li 
et al. [64] inputted US attenuation spectroscopy measurements into two 
neural networks. The first ANN was used to predict the mean crystal size 
and crystal size standard deviation. The five inputs were the attenuation 
at four different frequencies along with the process temperature. The 
second neural network was used to predict the US attenuation at a 
reference frequency to determine solids concentration. Its inputs were 
the temperature and the mean crystal diameter and standard deviation 
predictions from the first ANN. Although the authors acknowledge that a 
single ANN could have been used to make both sets of predictions, two 
separate models were used to simplify the ANN training. ANNs were 
used as they did not need knowledge of the solid and liquid physical 
parameters required for the ECAH model. Furthermore, the ANNs could 
be used in-line where as the ECAH model must be completed off-line due 
to the long iterative process required. Lyall et al. [65] was able to 
monitor crystal breakage and the mass and linear crystal growth rates 
were determined from the US measurements. Shukla, Prakash, and 
Rohani [66] employed US attenuation spectroscopy using a single 
invasive sensor with a reflector plate in a jacketed glass reactor of 0.115 
m diameter and 0.25 m height. 

Pertig et al. [67] used an invasive probe and measurements of the US 
velocity and attenuation at a single frequency to determine the mean 
particle size and suspension density. Experiments were performed 
isothermally in a jacketed vessel with a diameter of 115 mm and a height 
of 200 mm. The method could measure particle sizes between 200 and 
800 µm with solids content up to 40 wt%. This method was presented as 

faster, less expensive, and simpler than US attenuation spectroscopy 
which must be conducted across multiple frequencies. Stelzer, Pertig, 
and Ulrich [60] used two invasive probes in a 1 L jacketed glass crys
tallizer to monitor the suspension density, mean crystal size and liquid 
concentration. One sensor was surrounded by a mesh to prevent crystals 
from entering the measurement line so the liquid properties could be 
monitored. Frohberg and Ulrich [68] showed that the same two-sensor 
technique could be used for the determination of the metastable zone 
width, nucleation and growth kinetics, seeding events, and detection of 
phase transitions. Helmdach, Feth, and Ulrich [69] showed that cali
bration transfer using the same sensing technique was possible between 
lab and pilot scale processes so long as the influence of gas was minimal 
in the pilot-plant setup. Morris et al. [70] used a single US sensor with 
reflector plate in a 250 ml reactor. US attenuation spectroscopy and 
monitoring of multiple reflections was utilised. 

3.4. Mixing 

Mixing is a ubiquitous process across manufacturing, such as in the 
food, chemical, and pharmaceutical industries [10]. In many industries, 
mixing is typically carried out for a predetermined length of time 
without monitoring the product quality. Classification of whether the 
materials were mixed or a prediction of when the mixing process will 
finish would enable more consistent product quality, more efficient 
resource use, and better equipment scheduling. Bamberger and Green
wood [71] used an invasive probe to monitor slurry suspension in a 1.91 
m diameter tank. The US attenuation was measured across three trans
mitter–receiver transducer pairs located at different heights along the 
probe and separated by a 10.2 cm distance. Fox, Smith, and Sahi [72] 
and Salazar et al. [73] used single, invasive sensors to monitor air 
incorporation into batters during mixing. Both sensors monitored the 
changing acoustic impedance of the batter by measuring the reflected 
sound wave. Tourbin and Frances [74] used a flow-through cell and US 
attenuation spectroscopy to monitor the suspension and aggregation of 
nanoparticles (mean diameter of 80 nm) in a 1 L capacity stirred tank. 
Liu et al. [75] also used a flow-through cell and US attenuation spec
troscopy in combination with Electrical Resistance Tomography (ERT) 
to monitor crossflow membrane emulsification. The size distribution 
and concentration of droplets was determined using the ECAH inversion 
model. Hunter et al. [76] employed an in-situ, multi-frequency acoustic 
backscatter system to monitor high concentration particle dispersion. 
Homogeneous glass powder dispersions were monitored at small and 
large (2 m3 mixing tank) scale. Transducers with central frequencies of 
1, 2, 4, and 5 MHz were used in pulse-echo mode and the attenuation 
decay with time of the returning signal was dependent on the particle 
concentrations. Bowler, Bakalis, and Watson [27] used single, non- 
invasive US sensors in reflection-mode to monitor two model mixing 
systems: honey-water blending and flour–water batter mixing. Classifi
cation ML models were developed to predict if the materials were mixed 
or not, and regression models were trained to predict the time remaining 
until (or time passed since) the materials were fully mixed. ANNs, SVMs, 
LSTMs, and CNNs were all tested with extensive feature extraction in 
both the time and time–frequency domains (after applying the discrete 
or continuous wavelet transform). Multi-sensor fusion between two 
sensors was also investigated. Classification accuracies of up to 96.3% 
for the honey-water blending and 92.5% for the flour–water batter 
mixing were achieved, as well as R2 values for the regression models of 
up to 0.977 for the honey-water blending and 0.968 for the flour–water 
batter mixing. Each prediction task achieved optimal accuracy using 
different ML algorithms and feature extraction methods. 

3.5. Extrusion 

Using ultrasonic sensors to monitor extrusion processes has appli
cations in industries such as polymer processing and food production 
[77]. Coates et al. [78] used US and spectroscopic sensors to monitor the 
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blending of polyethylene and polypropylene pellets in a 38 mm single 
screw extruder. Two US transducers were used in pitch-catch mode 
across a path distance of 15 mm. The US velocity was more sensitive 
than the spectroscopic measurements in detecting a change of blend 
composition. Barnes et al. [79] monitored the blending of ethylene vinyl 
acetate (EVA) random co-polymers with varying vinyl acetate (VA) 
content. US probes were implemented into dies attached to the end of 
the extruder barrel and the time of flight was measured. Although, 
pressure fluctuations that effected the US velocity measurements did not 
affect the NIR probe measurements. Alig et al. [80] combined US, 
spectroscopic, and rheometry measurements, as well as US and dielec
tric measurements, in slit die extruders. US attenuation was used to 
monitor polymer filler blending. Sun et al. [81] monitored filler 
dispersion during extrusion using two US sensors. An ANN was trained 
using the US velocity and attenuation along with the pressure, temper
ature, filler type and feed rate for prediction of the dispersion index. An 
error of less than 5% was achieved. 

Fischer et al. [82] combined US and spectroscopic measurements to 
monitor additive blending during extrusion. Fischer et al. [83] used NIR 
spectroscopy and US attenuation spectroscopy to monitor the extrusion 
of polymer nanocomposite blends. The measurements were used to 
determine the dispersion extent and the impact strength of the polymer 
product. Schober et al. [84] also used US attenuation spectroscopy to 
monitor dispersion and particle size during polymer melt extrusion. 
Wöckel et al. [85] monitored the reflected sound wave using a single US 
sensor. The standard deviation of consecutive signals was used to 
determine the filler concentration. Halmen et al. [86] used US tomog
raphy to determine filler distribution in polymer melts. The US velocity 
and attenuation from a 60 mm ID sensor ring consisting of 40 trans
ducers were used. 

3.6. Injection moulding 

US sensors have been widely applied to monitor injection moulding 
of polymer materials. For a full review of this area, the interested reader 
is directed to [87]. Recently, Wu et al. [88] presented a T-shaped 
extension nozzle with two integrated high temperature US transducers 
in transmission mode for non-invasive monitoring of injection 
moulding. The US velocity and attenuation could follow the process 
stages and was also correlated to the polymer flow speed. Altmann, 
Praher, and Steinbichler [89] used three US transducers (10 MHz) in 
pulse-echo to monitor melting behaviour in injection moulding. Zhao 
et al. [90] used a single US transducer for in-line monitoring of micro
cellular injection moulding. The duration of the US signals and the 
change in US velocity could be used to monitor variations in cell size and 
thickness of the skin layer. Cheng and Wu [91] used two high temper
ature US sensors in transmission mode to non-invasively monitor in
jection moulding of two types of plastic. Each stage of the injection 
moulding process could be identified from the US measurements, and 
the effect of injection speed on the quality of the final product could be 
monitored using the US velocity. Zhao et al. [92] used the US velocity 
and pressure measurements for in-line temperature measurement during 
injection moulding. Finally, outside of polymer processing, Grob et al. 
[93] used four US transducers (two to transmit US waves and two to 
receive) to monitor the crystallisation, solidification, contraction, and 
mould wall detachment of chocolate products. Detachment from the 
mould wall produced a reduction in the US amplitude. 

3.7. Curing 

Rath et al. [94] used US sensors in a compression mould and 
measured the velocity and attenuation during curing to evaluate the 
effects of different mouldings compounds, elevated temperatures, and 
filler, moisture, and hardener content. Lionetto, Tarzia, and Maffezzoli 
[95] used two air-coupled US sensors to monitor the curing of resin. The 
US measurements were corrected for the variations in air temperature 

caused by the exothermic reaction by periodically switching the US 
sensors from pitch-catch to pulse-echo mode. Lionetto and Maffezzoli 
[96] used the US velocity and attenuation to monitor the curing pro
cesses of thermosetting resins. Both contact and air-coupled US tech
niques were used. Koissin, Demčenko, and Korneev [97] used a 
noncollinear US wave mixing approach to monitor curing of resin. This 
technique uses the interaction of two US waves to produce scattered 
waves with mixed frequencies. Ghodhbani, Maréchal, and Duflo [98] 
used a single US sensor to monitor the liquid viscous, glassy transition, 
and saturation solid stages during curing of an epoxy resin. Dominguez- 
Macaya et al. [99] used an air-coupled US sensor to monitor longitudinal 
and, after the gel point was reached, shear waves during ultraviolet 
curing of a vinyl ester resin. The US system was also used to monitor the 
change in thickness of the resin due to shrinkage. Finally, [100–103] 
measured the velocity and attenuation of US waves to monitor curing of 
carbon fibre-reinforced plastics. 

3.8. Reaction monitoring 

Pawelzyk, Toledo, and Willenbacher [104] monitored US velocity 
and attenuation during styrene emulsion polymerization. However, this 
was conducted using a through-transmission method across a small- 
scale sample volume (15 ml). Buckin and Atlas [105] and Buckin 
[106] demonstrate how non-invasive, through-transmission measure
ment of the US velocity and attenuation can be used to determine many 
phenomena of reactions at small scale. For example, [106] reviews the 
monitoring of substrate and product concentrations, degree of poly
merisation, polymer molar mass, reaction rates, catalyst inhibition, 
reversible and irreversible thermal deactivation, and particle size 
changes in dispersions. Figueiredo et al. [107] used a single 
transmission-based US sensor to monitor the transesterification process 
of biodiesel at small scale (70 mm diameter vessel). Stabilisation of the 
US velocity and amplitude indicated the achievement of the maximum 
yield and that the process should be stopped at this point. Baêsso et al. 
[108] used the US velocity and attenuation to determine the content of 
contaminants or by-products in biodiesel samples. In this way, US sen
sors could eventually be used for in-line monitoring of trans
esterification final products. Schmachtl et al. [109] monitored the 
synthesis of zeolite A and zeolite X using a transmission US sensing 
method a small scale. Decreases in the US velocity and attenuation were 
correlated with gel formation at the start of the process. An increase in 
attenuation and corresponding peak in US velocity indicated zeolite 
crystallisation. Hums, Baser, and Schwieger [110] used an invasive US 
transducer and reflector plate to monitor nucleation and crystal growth 
during the hydrothermal synthesis of zeolite A and X from coal fly ash. 
Van Groenestijn et al. [111] used a US nanoparticle sizer probe to 
monitor the synthesis of spherical silica nanoparticles. The ECAH 
method was used to obtain the size and concentration of particles. 

3.9. Tabletting 

Tabletting involves the compaction of powders into tablet forms 
using punches. Stephens et al. [112] used a single, non-invasive, 
embedded US sensor to monitor the mechanical properties of tablets 
during compaction. The time of flight and reflection coefficient of the 
sound wave reflecting from the interface between the upper punch and 
the powder was monitored. Leskinen et al. [113] used two transducers 
implemented inside the upper and lower punches of a tableting ma
chine. Through-transmission was used to measure the US velocity and 
frequency spectra to monitor the mechanical properties of tablets. 

3.10. Membrane fouling 

US measurements have been widely applied as a non-invasive tech
nique to monitor membrane fouling during micro-, ultra- and nano
filtration separation processes [114,115]. The amplitudes of reflected 
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sound waves from the fouling and membrane layers are measured to 
monitor fouling formation. For example, Li et al. [116] used an in-situ 
US technique to monitor organic and colloidal fouling during nano
filtration. Differences in the fouling process were observed in the US 
measurements when using different mixtures of foulants. 

4. Ultrasonic sensors and machine learning 

This section reviews the use of ML with US sensor measurements 
applicable to industrial process monitoring and other similar applica
tions. Feature extraction, feature selection, algorithm choice, hyper
parameter selection, data augmentation, and domain adaptation is 
reviewed. For reviews on similar areas, the interested reader is directed 
to [117–128]. 

4.1. Feature extraction 

The choice of features to investigate may be decided through either 
understanding of US sensors and the process being monitored, plotting 
features over the course of the process and monitoring their trends, or 
preliminary experiments to evaluate the accuracy of ML models using 
different feature combinations. As explained in Section 2, features can 
be extracted from the US waveform in the time domain, frequency 
domain following the Fourier transform, time–frequency domain 
following wavelet transform, or after other transformations such as 
cosine [25], chirplet [129], or short-time Fourier [130]. Empirical mode 
decomposition has also been widely applied in the SHM community and 
a review of this area can be found in [131]. 

The choice of Mother wavelet and level of decomposition are 
important decisions when applying wavelet transformation to US 
waveforms [25]. For this reason, a review of wavelet methods to analyse 
US signals is provided in Table 1. Typically, the choice of mother 
wavelet is selected as that most visually similar to the received US 
waveform [27]. The number of decompositions and vanishing moments 
can be decided by evaluating ML models using different values [27]. 

Table 2 reviews features extracted from US waveforms and inputted 
into ML models. A US waveform in the time, frequency, or time
–frequency domain is a function composed of amplitudes. Specific am
plitudes in these functions can be monitored, such as the maximum, 
minimum, or peak-to-peak amplitudes. Other features use many of these 

function amplitudes in a single measure. For example: the standard 
deviation or variance monitor amplitude dispersion relative to an 
average magnitude, features such as the temporal slope monitor the rise 
or decrement of amplitudes in a function, features similar to the energy 
provide a measure of the overall magnitude of the function, the crest 
factor measures the dominance of the maximum amplitudes, and 
skewness and kurtosis provide measures of the shape of the function. 
Another set of features can provide measurements of the position of the 
function in its respective domain, such as the time centre, average fre
quency, temporal duration, or bandwidth. Also, all, or a subset of, 
function amplitudes may be used as features directly rather than 
incorporated into other measures [16,27,35,148]. The time of flight 
monitors the distance in the time domain between two waveforms and is 
used to measure the speed of sound in the process material. The variance 
between consecutive waveforms of any of the previously listed features 
may also be monitored for example to monitor the production of CO2 
during fermentation [53] or identify flow regimes [149,150]. Time- 
lagged features or feature gradients can be used to incorporate infor
mation from past time-steps into the ML models for processes that 
progress over time. Finally, additional features, such as the process 
temperature or material mass flowrate can be used to provide extra in
formation to the ML models about the process being monitored. 

4.2. Feature selection 

This section reviews feature selection methods used with US mea
surements and ML. Feature selection encompasses methods to reduce 
the number of features inputted into ML models, however, it is not a 
mandatory step in the ML pipeline. Feature selection can improve ML 
model training by removing redundant information, reducing the like
lihood of overfitting, providing an easier optimisation problem for the 
algorithm, and reducing the computational requirement for model 
training [30,31]. However, some information from the input features 
could be lost leading to a reduction in accuracy. As explained in Section 
2.2, PCA is a common method of feature selection and was employed in 
[27–29,156–159]. Ref. [16] used a K-best predictors method to select 
the sample point amplitudes from waveforms. This involved using a grid 
search of the amplitudes used and an F-test to determine their impor
tance. Ref. [28] used a Garson’s method which calculated feature 
importance from weights of a previously trained ANN. The feature 
importance was scored between 0 and 1 and features scoring below a 
threshold value of 0.35 were discarded. Ref. [25] used the Wilcoxon- 
Mann-Whitney rank test to find class discriminant features. This 
method is usable in binary classification tasks and does not determine if 
features are redundant or not. 

Autoencoders can also be used as unsupervised ML methods for 
feature selection. Autoencoders are a type of neural network that aims to 
reconstruct its inputs after having passed the data through a bottleneck, 
or latent space, in the network. For example, [160] used a convolutional 
autoencoder as a feature extraction methodology. During training, the 
information about the input signal contained in the latent space is 
maximised so that it may be reconstructed. After training, the encoder 
part of the network (from the inputs to the latent space) may be applied 
to new data as a feature extractor. Similarly, [161] used autoencoders as 
a feature extraction method for detecting fatigue damage in structures. 
Autoencoders have also been used for other applications when used with 
US sensor data. For example, [162] used a convolutional autoencoder to 
reconstruct noiseless US signals after artificial noise has been added. In 
this way, the trained autoencoder could then be used to denoise new US 
signals. The input signals consisted of 2048 datapoints and the latent 
space was 256 neurons. Ref. [163] used convolutional denoising 
autoencoders to remove the effects of temperature on US guided waves 
for structural health monitoring applications. Refs. [164,165] applied 
denoising autoencoders for US waveforms to improve the signal to noise 
ratio. As noise is random fluctuations overlaying a US waveform, 
autoencoders are unable to learn a relationship between the noise and 

Table 1 
A review of US waveform decomposition through wavelet analysis as a feature 
extraction methodology for ML models.  

Reference Wavelet 
decomposition 
transform 

Number of 
decompositions 

Mother wavelet and 
number of vanishing 
moments 

[15] Wavelet packet 3 3 Daubechies 
[27] Discrete wavelet 3, 5, 7 Symlet 
[27] Continuous wavelet N/A Morlet 
[132] Wavelet packet 5 5 Daubechies 
[133] Discrete wavelet 4 Daubechies 
[134] Wavelet packet 4 5 Daubechies 
[135] Discrete wavelet 4 5 Coiflet 
[136] Continuous wavelet N/A Various investigated 
[137] Continuous wavelet N/A 3 Morse 
[138] Discrete wavelet 4 1 Debuchet 
[139] Wavelet packet 3 4 Daubechies 
[140] Discrete wavelet 7 Created own mother 

wavelet 
[141] Wavelet packet 3 8 Symlet 
[142] Discrete wavelet 3 5 Coiflet 
[143] Discrete wavelet  10 Daubechies 
[144] Discrete wavelet 5 10 Daubechies 
[145] Discrete wavelet 5 8 Daubechies 
[146] Discrete wavelet 5 8 Symlet 
[147] Continuous wavelet  Gaus  
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Table 2 
A review of features extracted from US measurements in the time, frequency, or time–frequency domain for ML.  

Category of features Features Description References 

Specific amplitudes in function Maximum amplitude The largest amplitude in the investigated function interval [28,40,53,133,140]  
Minimum amplitude The smallest (or largest negative) amplitude in the investigated 

function interval 
[15,53,133,140]  

Peak-to-peak amplitude The difference between the largest and smallest amplitude in the 
investigated function interval 

[28,52,140] 

Dispersion of amplitudes along the 
function 

Standard deviation A measure of the dispersion of amplitude values with respect to 
the mean 

[15,140]  

Variance A measure of the dispersion of amplitude values with respect to 
the mean 

[28,29,133]  

Temporal spread A measure of the dispersion of amplitude values with respect to 
the mean 

[40]  

Temporal entropy A measure of amplitude variability along the function [24,40]  
Spectral standard deviation A measure of the dispersion of frequency amplitudes with respect 

to the mean 
[28]  

Spectral smoothness The variability of frequency amplitudes with respect to their 
neighbouring amplitudes 

[42,43]  

Spectral spread The variance of frequency amplitudes with respect to the average [24]  
Spectral entropy The amplitude variability along a frequency domain function [24] 

Measures of the rise or descent of 
function amplitudes 

Temporal roll-off The time value at which 90 % of the signal energy is concentrated [40]  

Logarithmic decrement The logarithmic decrease of amplitudes in a function [41]  
Temporal slope A measure of the rate of decrease in function amplitudes [28,43]  
Descent time A time value. For example, the time at which the slope of 

amplitude descent crosses zero. 
[28,29,43]  

Lower 25 % of power spectrum Fraction of total energy between lower 25 % level and peak 
frequency amplitude 

[28]  

Upper 25 % of power spectrum Fraction of total energy between peak and upper 25 % level 
frequency amplitude 

[28]  

Rising time The time value for function increase from 25% level amplitude to 
peak 

[29] 

Energy Temporal energy The sum squared amplitude of the waveform interval investigated [15,16,24,27,29,41- 
43,53,151,152]  

Spectral energy The sum squared amplitude of the frequency domain interval 
investigated 

[24]  

Temporal inertia Weighted average of the signal amplitude in time domain [40]  
Mean The mean amplitude in a function [15,28,133,140]  
Sum absolute amplitude A measure that gives lesser weight to large amplitudes compared 

with the energy 
[27]  

Median The median amplitude in a function [140] 
Crest factor Temporal crest factor The magnitude of the maximum signal amplitude in the time 

domain compared to the average 
[24,42,43]  

Spectral crest factor The magnitude of the dominant frequency compared with the 
average 

[24,40,42,43] 

Average frequency Mean frequency The mean frequency value [28,133]  
Spectral centroid The frequency value where half of the waveform energy is 

contained 
[24,28,29,40,133] 

Temporal position Time centre The centre of the function in the time domain [29] 
Temporal duration Pulse duration The length of time between the start and end of the waveform [29,151] 
Bandwidth Measured bandwidth The range of the measured frequency values [28,29,151] 
Skewness Temporal skewness A measure of the lack of symmetry in the waveform [15,151]  

Spectral skewness A measure of the lack of symmetry in the frequency domain [24,29] 
Kurtosis Temporal kurtosis A measure of the tailedness of the waveform [15]  

Spectral kurtosis A measure of the tailedness of the frequency domain function [29] 
Amplitudes at sample points in the 

waveform  
Using the amplitude at each sample point in a waveform as 
individual features 

[16,27,35,148,154] 

Variations in features between 
consecutive waveforms 

Standard deviation of the energy A measure of the dispersion of consecutive waveform energy 
values 

[53]  

Frequency analysis of consecutive 
amplitudes 

A measure of the dispersion of consecutive amplitude values [149]  

Features extracted from velocity 
variations 

Measures of the dispersion of consecutive velocity values [150] 

Time of flight  The length of time for a sound wave to travel through a material [53,81,152,153,155] 
Feature gradients  A measure of the current time step feature with respect to previous 

time steps 
[27,53] 

Other features Temperature The process temperature [24,43,81]  
Mass flow rate The process mass flow rate [43,81]  
Pressure The pressure of the process [81]  
Material type Information about the material being processed [81]  
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Table 3 
Hyperparameters used for ANNs with features from US measurements.  

Reference Number of input 
features 

Number of neurons in 
each hidden layers 

Training algorithm Additional information 

[172] Varied between 
128 and 512 

128  Root mean square error goal of 0.01 during training 
Learning rate and momentum term varied 

[173]  5 Levenberg–Marquardt  
[153] 2 10  Training stopped after mean squared error of 1 × 10-6 or 6,000 iterations 

reached 
Learning rate of 0.6 
Momentum rate of 0.4 

[152] 2 10  Training stopped after 20,000 iterations or 1 × 10-6 mean squared error 
reached 
Learning rate of 0.6 
Momentum rate of 0.4 

[64] 5 50 Levenberg–Marquardt Training stopped after a maximum of 500 iterations or desired minimum mean 
square error of 5.0 
× 10-4 reached 

[64] 4 20 Levenberg–Marquardt Training stopped after a maximum of 500 iterations or mean square error of 5 
× 10-4 reached 

[28] 24 40  Stopping criteria were: maximum epochs 500, minimum error gradient equal 
to 1 × 10-5, minimum mean square error equal to 1 × 10-5 

[144] Varied between 1 
and 7 

Varied between 6 and 22  Learning rate of 0.2 
Additional momentum 0f 0.5 

[145]  12  Learning rate of 0.05 
[174] 2 3, 3, 1 Evolutionary optimisation Learning rate of 0.5, 

Mutation rate of 0.04, population size of 50, and cross over 
rate of 0.2 

[175] 10 10, 2 Levenberg–Marquardt  
[132] 32 100  Training stopped when accuracy of 1 × 10-3 reached 
[143]  32, 12 Scaled conjugate gradient  
[176] 4 3 hidden layers Evolutionary algorithm Population of 50 individuals 

Crossover probability of 0.95 
Mutation probability of 0.01 
200 generations 

[133] 8 8, 25 Scaled Conjugate Gradient Training continued until error goal of 1 × 10-2 achieved 
[41]  5 2   

[146]  10 Scaled Conjugate Gradient  
[24] 6 11   
[42] 5 2   
[43] 9 14   
[177]  10 Scaled Conjugate Gradient  
[40] 3 9  Training continued until error was below 0.1 % accuracy 
[178] 4 5, 2 Bayesian regularization 

Levenberg–Marquardt 
Network trained 100 times and weights with lowest score on the validation set 
were used 
Training was stopped once the Summation of Squared Errors reached below 
102 or 101 depending on the prediction task, or 1000 epochs were reached 

[139] 3 4 Levenberg–Marquardt  
[148] 502 980, 270  3 dropout layers with 0.5 probability 

Trained for 3000 epochs 
[179] 151 10 Levenberg–Marquardt  
[180]  50 Levenberg–Marquardt Trained for 5 epochs 
[35]  3 hidden layers  Dropout layers with 0.5 probability 

Trained for 500 epochs 
[154] 11,501 502  Trained for 500 epochs 
[154] 11,501 4 hidden layers   
[181] 5 5   
[182] 3300 1300, 660, 330, 165 Scaled Conjugate Gradient ReLu activation function 

Learning rate of 0.001 
Trained for 1000 epochs 

[15] 7 7 Bayesian Regularization  
[27] Various Determined through grid- 

search 
Levenberg–Marquardt for 
regression 
Scaled Conjugate Gradient for 
classification 

Early stopping applied with a validation patience of six iterations 
Ten networks were trained and their scores averaged 
A grid search determined L2 regularisation magnitude 

[183]  1024, 512, 265, 128 Adam ReLu activation function used 
Dropout layers with probabilities 0.2, 0.3, 0.4, 0.5 
Learning rate of 0.0001 
Batch size of 8 
Trained for 10,000 epochs 

[183]  2048, 2048, 1024, 1024 Adam ReLu activation function 
Dropout layers with probabilities 0.2, 0.2, 0.2, 0.2 
Learning rate of 0.0001 
Batch size of 8 
Trained for 10,000 epochs 

(continued on next page) 
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the signal and so fail to reconstruct noise during training. Ref. [166] 
used simulations and a small number of experimentally collected sam
ples to train an autoencoder to reconstruct full wavefield data from 
sparsely sampled US measurements. This allows US data to be collected 
at lower sampling frequencies and artificially reconstructed as higher 
sampling frequency waveforms, thus reducing measurement acquisition 
time. Ref. [167] trained autoencoders to reconstruct flawless US signals 
so that when a flaw is detected the autoencoder fails to reconstruct the 
waveform. This allows flaws to be identified even if they overlap the 
initial transducer pulse. Ref. [168] used stacked autoencoders to localise 
and classify acoustic emission sources in riveted panels. 

As comparatively few feature selection methods have been used with 
US sensor measurements, the interested reader is directed to [169–171] 
for further information on techniques available such as wrapper, filter, 
hybrid, and embedded methods. 

4.3. Algorithms 

This section provides a review of the hyperparameters used in ML 
models with US measurements. Table 3 reviews the hyperparameters 
used for ANNs with US measurements. These can determine the struc
ture of the network (e.g. the number of hidden layers and the number of 
neurons in each hidden layer) or the training of the network (e.g. 
training algorithm used and the learning rate). 

Similar to ANNs, CNNs also require hyperparameter selection to 
decide the structure of the network and how it trains. However, the 
hyperparameters in the convolutional layers, which detect features, and 
pooling layers, which downsample the data, must also be chosen. 
Table 4 reviews the hyperparameters used for CNNs combined with US 
measurements. LSTMs also require selection of similar hyperparameters 
to ANNs in addition to the number of LSTM units to employ. Ref. [27] 
used 50 LSTM units, a fully connected layer of 50 neurons, a dropout 
layer with a probability of 0.5. The network was trained for 60 epochs 
using the Adam optimisation algorithm, a learning rate of 0.01, a batch 
size of 2 and a gradient threshold of 1 to prevent exploding gradients. 
Ref. [182] used the Scaled Conjugate Gradient optimisation algorithm 
and a learning rate of 0.01 for 400 epochs. Two dropout layers with 
probabilities of 0.1 and 0.2 were used. Ref. [186] used 32 LSTM units, 
two fully connected layers (with 512 and 128 neurons), and two dropout 
layers with probabilities of 0.25 and 0.2. Training was carried out for 
500 epochs with a learning rate of 5 × 10− 5 and a batch size of 8. 
Ref. [138] used 6 LSTM units and [187] used 7. Ref. [188] combined 
CNNs with two layers of 8 Gated Recurrent Units (GRU) along with 
dropout probabilities of 0.5 to extract temporal features from US 
waveforms. GRUs are similar mechanisms to LSTMs only simpler with 
two gates rather than three and therefore, generally, lower performance 
when learning long sequences. Ref. [189] trained a ConvLSTM encoder- 
decoder DNN on finite element simulations of 2-D US wave propagation. 
ConvLSTMs allow the learning of spatio-temporal dependence in input 
sequences by employing convolutional structures within the LSTM units. 
The trained model was comparable in accuracy to finite element simu
lations but faster to solve by approximately an order of magnitude 
through negating the computation of numerical calculations. Ref. [190] 
used an LSTM layer following a CNN for damage detection of copper 
pipelines using laser ultrasonic scanning. 

CNNs have also been used for other applications such as for B-scan 
US images [208], combining multiple B-scan images [209], C-scan im
ages [210], and guided waves [211]. Ref. [199] used a CNN to decon
volve overlapping US signals and extract the time of flight and 
amplitude. Ref. [212] used 3D CNN for defect detection by using US 
images of wave propagation from multiple time steps. Refs. [213,147] 
presented a 22-layer GFresNet and GFresNET-2D for guided-wave 
focusing defect signal classification, respectively. Ref. [214] employed 
a U-net style CNN for predicting the material thickness of plate-like 
structures using acoustic steady-state excitation spatial spectroscopy. 
Ref. [215] used a CNN for corrosion inspection on an aluminium plate 
using broadband Lamb waves. 

For models using support vectors, the most commonly tuned 
hyperparameters include C, the penalty factor, γ or σ, the influence a 
single training example has, and the type of kernel used, e.g. linear, 
polynomial, or radial. In support vector regression, epsilon defines the 
distance from the fitted function where the error cost of datapoints is not 
counted. Hyperparameters used for support vector models and US 
measurements are reviewed in Table 5. Decision trees can require a 
choice in the number of trees used (500 [16], maximum tree depth (1 
[16], 3 [44], 4 [16], the minimum number of leaf instances (10 [16]), 
the learning rate (1 [16]), or the maximum number of splits (4, 20, 100 
[216]). The type of ensemble method can also be chosen, such as Ada
boost used in [16]. Furthermore, K-nearest neighbour algorithms 
require a selection of the number of neighbours to use, such as 5 [216], 
11 [217], 25 [44], 50 [44], or 105 [16]. 

Gaussian Processes (GP) are an algorithm for classification or 
regression which interpolates datapoints with normal distributions and 
thereby provides confidence intervals for its predictions. GPs have 
recently been applied to measure oil film thickness in journal bearings 
using US measurements [230] and to localise acoustic emission sources 
in SHM by measuring the time of flight with multiple sensor pairs [231]. 
Ref. [232] used data-driven GPs to model guided waves in composite 
materials. Physical knowledge of the system was inputted into the model 
by specifying constraints of the GP’s kernels such as rotational sym
metry, exponential decay for viscoelastic damping, and attenuation due 
to geometric spreading using a polynomial kernel. Ref. [233] used 
Bayesian linear regression to decompose guided wave signals into in
dividual modes to enable damage sixing and localisation following two- 
dimensional Fourier transformation. Ref. [234] used a GP to predict 
thermal barrier coating porosity. Input features to the GP were first 
selected by evaluating a neural network using different feature 
combinations. 

4.4. Out-of-distribution detection 

Out-of-distribution (OOD) detection methods are used to identify 
datapoints that fall outside the range of normally expected values. For 
example, [235] used OOD detection to identify damage in wind turbine 
blades. During feature extraction, DWT, Fast Fourier Transform and PCA 
were used. One-class classification algorithms were used including 
support vector machine data description, K-means, and Euclidean dis
tance measures. Autoencoders are commonly used for OOD detection. If 
anomalous data is passed through as encoder, the distribution of the 
latent space variables will be different to the training data and the 

Table 3 (continued ) 

Reference Number of input 
features 

Number of neurons in 
each hidden layers 

Training algorithm Additional information 

[184] 5000 1000 Learning rate of 0.001 Dropout layers with 0.7 probability before and after each fully connected layer 
ReLu activation function 

[184] 5000 1000, 1000 Learning rate of 0.001 Dropout layers with 0.7 probability before and after each fully connected layer 
ReLu activation function 

[185] 24 6, 10, 2 Levenberg–Marquardt 
Algorithm 

1000 epochs  
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autoencoder fails to reconstruct the input. Ref. [167] used autoencoders 
to allows flaws to be identified even if they overlap the initial transducer 
pulse. Ref. [236] used autoencoders in a similar network structure for a 
Ganomaly approach. Furthermore, they used another generative model, 
normalizing flows, to learn transformations between normal and 
anomalous samples for OOD detection. Ref. [237] used variational AEs 
as an OOD detection system to detect defects from ultrasonic B-scans. In 
this study, a second encoder was added after the decoder and was found 
to provide increased accuracy in detecting defects. Ref. [238] compared 
autoencoders to one-class SVMs, isolation forests, and hidden Markov 
models. 

4.5. Data augmentation 

Data augmentation can be used to artificially increase the size of a 
dataset. This can be particularly useful when training deep learning 
models (e.g. DNNs, CNNs, and LSTMs) which can require many training 
instances to tune all the model parameters. Ref. [35] time-shifted US 
signals forwards and backwards by 5 and 10 µs forward to increase the 
dataset size by four times. Similarly, [162] time-shifted US signals for
wards and backwards by 6 × 10− 3, 10 × 10− 3, 14 × 10− 3, and 20 × 10− 3 

μs. Ref. [239] laterally translated signals and used magnification to in
crease the dataset size by five times. Ref. [205] added six different levels 
of Gaussian white noise to US signals ranging from 20 to 30 dB. 
Ref. [240] rotated samples by 90◦, 180◦, and 270◦ for damage local
isation in plate-like structures. Ref. [204] extracted parts of US wave
forms received from measuring flawed samples and inserted them into 
flawless signals. In this way, virtual data could be created by implanting 
flaws into different locations of a test section. The choice of data 
augmentation techniques, such as lateral translation, magnification, or 
noise addition, must be decided based on the application it is being used 
for. For example, lateral translation could not be used if the time of flight 
is an important parameter to measure during the process being moni
tored. Refs. [35,162] were classifying weldment defects. As such, as shift 
in the time domain would only represent a change in depth of the flaw 
rather than its presence or type. Ref. [239] used data augmentation for 
US waveform feature learning in a CNN. The CNN was trained on an 
auxiliary task to classify the dataset membership of previously collected 
US measurements. The pretrained CNN weights were then used as a 
feature extractor on new US measurement datasets. Therefore, the 
lateral translation and magnification did not represent a change in any 
physical parameters of a system. Ref. [241] doubled the size of an 
experimental dataset by reversing US images of defects around the 
vertical axis. Ref. [207] used time shifting and the addition of white 
Gaussian noise for US flaw classification in weldments. Ref. [202] added 
white Gaussian noise to create three datasets with signal-to-noise ratios 
of 5, 10, and 20. 

4.6. Semi-supervised learning 

[242] used a hierarchical clustering algorithm to detect whether pipe 
sections were damaged or undamaged. This is traditionally an unsu
pervised learning method which divides the input data into the number 
of clusters specified (in this case, two). To label each of the clusters, only 
one labelled instance of an undamaged pipe was required to perform the 
classification. Similarly, [243] used a k-means clustering technique to 
monitor the growth of simulated cracks in pipes. An alarm threshold was 
developed to trigger when the size of the defect becomes critical based 
on the distance of the US measurement from each cluster. Ref. [244] 
presented a semi-supervised Gaussian mixture model which was upda
ted through the expected maximisation algorithm over both the labelled 
and unlabelled data. 

4.7. Active learning 

Active learning uses methods to select unlabelled datapoints that 

would have the most benefit to model performance if labelled thereby 
minimising the total number of datapoints to be labelled. Ref. [245] 
used active learning to improve a probabilistic mixture model initially 
trained on a small sample of labelled data. This approach was evaluated 
on three datasets: Z24 Bridge data, a machining acoustic emission 
dataset, and data from ground vibration aircraft tests. Ref. [246] used 
the expected value of perfect information for SHM on a numerical case 
study and the Z24 Bridge benchmark. 

4.8. Generative models 

Generative Adversarial Networks (GAN) and Variational Autoen
coders (VAE) are methods to produce realistic data from random inputs. 
The generator component of a GAN is trained by aiming to fool the 
discriminator component into determining whether its input data are 
real or synthetic. During training, a VAE learns a probability distribution 
of the input data in the latent space from which new samples can be 
drawn. Ref. [247] used a GAN for generating defects in US B-scan images 
and successfully increased defect detection from 70 % to 76 % when 
combining real and synthetic images. Ref. [248] compared two GAN 
structures to produce images of defects in US signals and confirmed that 
the generated images could not be identified by human experts. 
Ref. [249] used GANs to increase the size of Finite Element simulation 
datasets for welding defect detection. The highest defect detection ac
curacy was achieved by supplementing the generated data with noise 
derived from experiments and extracted using the sliding kernel 
approach. Ref. [250] also used GANs to generate B-scans from simulated 
US data for non-destructive evaluation applications. Ref. [251] used 
GANs to create synthetic acoustic emission spectrograms in the US range 
for detecting cavitation in hydraulic turbines. This increased cavitation 
detection accuracy from 94.2% using CNNs alone to 95.1%. 

4.9. Transfer learning 

Transfer learning encompasses methods which transfer knowledge 
learned from one task to different, but similar, tasks. Ref. [241] trained a 
Faster-CNN to detect defects in US images on simulated datasets first 
before training on a small set of experimental data. This greatly reduced 
the loss function compared with training on the experimental datasets 
alone. Ref. [252] presented an experimental dataset of 7004 ultrasonic 
images collected from 18 stainless steel plates and evaluate the perfor
mance of many pre-trained CNNs. They conclude that their dataset may 
be used by others for pre-training their own CNN models. Ref. [253] 
transferred fixed layers of a neural network trained on easier-to-classify 
tasks to more difficult cases for damage localisation on an aircraft wing. 
Ref. [254,255] used a pre-trained VGG16 to classify acoustic emission 
sources following CWT by training the last convolutional layer, two fully 
connected layers, and output layer, and the output layer only, respec
tively. Similarly, [256] updated the last layer of a pre-trained ResNet34 
model for vibration data for SHM. Ref. [257] pre-trained a CNN on 
compressed vibration data in the form of a histogram of response 
thresholds for an SHM application. This CNN was then fine-tuned using 
extremely compressed, smoothed histogram data in the form of a mean, 
variance, and scale factor. 

4.9.1. Domain adaptation 
An ML model trained on one task (source domain) will predict poorly 

on a second task (target domain) if the feature distributions between the 
domains change. US waveform features may be different across domains 
due to differences in the path of the sound wave or the materials being 
monitored. Even for similar processes, differences in the sensor used, 
attachment procedure, or contact pressure may alter the feature distri
butions [20]. Domain adaptation is a subcategory of transfer learning 
which alters how a ML model trains so that it predicts accurately across 
both domains. Ref. [20] used unlabelled domain adaptation of a single- 
feature waveform feature to apply a trained ML model to new, similar 
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Table 4 
A review of hyperparameters used for CNNs with US measurements.  

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

[134] 2 
16 7 × 5 
32 5 × 3  

2 × 2 max pooling 128 neurons and an 
SVM final layer   

[135] 3 
5 5 × 1 
8 8 × 1 
16 7 × 1 

Max pooling: 2 × 1, stride 1 
× 1 

2 
150 and 75 neurons 

Adam optimisation 
algorithm 
Learning rate varied between 
10-5 and 1 
Trained for 100 epochs 

ReLu activation function  

[135] 2 
6 10 × 2 
16 10 × 2 

2 × 2 max pooling 2 
500 and 250 neurons 

Adam optimisation 
algorithm 
Learning rate varied between 
10-5 and 1 
100 epochs  

[191] 2 
16 10 × 1 
32 10 × 1  

2 
200, 200  

ReLu activation function  

[192] 3 
32 3 × 3 
32 3 × 3 
64 3 × 3 

2 × 2 max pooling 64 neurons Batch size of 8 
3 epochs 

Three dropout layers with 0.5 
probability 
ReLu activation function 

[188] 6 layers 
Combined with GRUs   

Batch size of 512 
300 epochs 
Adam optimisation function 
Initial learning rate of 0.001 
Learning rate reduced every 
50 epochs 
Final learning rate of 0.0001 

ReLu activation function 
Batch normalisation used 
Dropout rate of 0.5 

[35] 2 
32 16 × 1 filter size, 8 × 1 stride 
64 3 × 1 filter size, 2 × 1 stride 

No pooling layer between 
1st and 2nd convolutional 
layers 
Max pooling, 2 × 1 size with 
2 × 1 stride 

300 neurons Trained for 500 epochs Padding: “Same” for convolutional 
layers, “valid” for max pooling layer 
Activation function: Elu in 
convolutional layers, ReLu in fully 
connected layers 
Two dropout layers, 0.25 and 0.5 
probability 

[27] 2 
8 5 × 5 
16 5 × 5  

2 × 2 max pooling  Adam optimisation 
algorithm 
Learning rate 0.01, drop 
factor of 0.33 after 4 epochs 
Trained for 8 epochs in total 
Batch size of 256, shuffled 
every epoch 

“Same” padding 
Batch normalisation 
ReLu activation function 
Single dropout layer, probability 
varied between 0.1 and 0.5 

[162] 2 
32 25 × 1, 8 × 1 stride 
64 3 × 1, 2 × 1 stride 

No max pooling between 1st 
and 2nd convolutional 
layers 
Max pooling: 2 × 1 size, 2 ×
1 stride   

Three dropout layers with 0.7, 0.5 
and 0.5 probability, respectively 

[136] 2 
16 3 × 3 
512 3 × 3 

2 × 2 max pooling SVM final layer Learning rate of 0.1 Batch normalisation 
ReLu activation function 
Single dropout layer with 0.5 
probability 

[193] 7 
Structure based on VGGNet 

3 max pooling layers    

[194] 3 
32 5 × 1 
64 5 × 1 
96 5 × 1 

Max pooling: 2 × 1, stride of 
2 

1000   

[195] 2 
30 3 × 3 in both 

Max pooling: 3 × 3, stride of 
2 

56, 28 Learning rate of 1e-6 

Trained for 5000 iterations 
ReLu activation function  

[196] 21 convolutional layers across three 
channels 
Filters ranging in size from 1 × 1 to 
12 × 20   

Adam optimisation 
algorithm 
Trained for 6 epochs 
Learning rate of 0.001 
Batch size of 32 

Batch normalisation 
Leaky ReLu activation function 

[197] 4 
32 3 × 3 
32 3 × 3 
64 3 × 3 
1 1 × 1 

1 × 2 max pooling   Batch normalisation 
ReLu activation function 

[198] 3 
48 3 × 3 
96 3 × 3 
192 3 × 3 

2 × 2 max pooling 64 Adam optimisation 
algorithm 
Learning rate of 0.001 
Batch size of 128 

10 % dropout rate before and after 
fully connected layer 
ReLu activation function 

(continued on next page) 
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Table 4 (continued ) 

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

400 epochs 
Validation patience of 150 
epochs 

[199] 1 
64 filters   

Stochastic gradient descent 
optimisation algorithm used 
Initial learning rate of 0.005 
and decreased 
logarithmically 
30,000 epochs 

Dropout rate of 0.5 

[200] 1 
8 5 × 5 

3 × 3 max pooling 2 
1024 and 64 neurons 

Adam optimisation 
algorithm  

[201] 5 
Inception blocks with 1 × 1, 3 × 3, 
and 5x5 filters 

3 × 3 max pooling 
Stride of 2 

3 Momentum of 0.9 
Weight decay of 0.0002 
Stochastic gradient descent 
optimisation algorithm 
Initial learning rate of 0.001 
160 epochs 

Batch normalisation and ReLu 
activation function before each 
convolutional layer 
Dropout ratios of 0.5 

[147] 4 ResBlocks   Adam optimisation 
algorithm 
Learning rate of 0.0001 
20 epochs 
Batch size of 30  

[202] 3 convolutional blocks   Adam optimisation 
algorithm 
Learning rate of 0.01 
Batch size of 4 
500 epochs  

[137] 3 
16 3 × 1 
32 3 × 1 
64 3 × 1 

2x1 max pooling 16 neurons Learning rate of 1e-4 

Adam optimisation 
algorithm 
Trained for 250 epochs 
Batch size of 64 

ReLu activation function 

[137] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2x1 max pooling 2 
512 and 128 neurons 

Learning rate of 1e-5 

Adam optimisation 
algorithm 
Trained for 500 epochs 
Batch size of 32 

ReLu activation function 
Two dropout layers with 
probabilities of 0.25 and 0.2, 
respectively 

[203] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2x1 max pooling 128 neurons Adam optimisation 
algorithm 
Learning rate of 1e-5 

Trained for 2500 epochs 
Batch size of 128 

ReLu activation function 
Single dropout layer with 0.25 
probability 

[203] 5 
16 3 × 1 
32 3 × 1 
64 3 × 1 
128 3 × 1 
256 3 × 1 

2 × 1 max pooling 128 neurons Adam optimisation 
algorithm 
Learning rate of 1e-5 

500 epochs 
Batch size of 32 

ReLu activation function 
Single dropout layer with 0.25 
probability 

[204] 4 
96 3 × 3 
64 3 × 3 
48 3 × 3 
32 3 × 3 

Max pooling with varying 
sizes of 7 × 1, 2x8, 3 × 4  

14 neurons  ReLu activation function  

[184] 32 50 × 1, stride of 5 × 1 
64 4 × 1, stride of 2 × 1 

2 × 1 max pooling, stride of 
2 × 1 

1000 neurons Learning rate of 0.001 2 dropout layers, before and after 
full-connected layer, probabilities 
of 0.7 
ReLu activation function 

[205] Dual-headed convolutional neural 
network 
4 convolutional layers in each head 
576 11 × 1 
484 11 × 1 
500 5 × 1 
324 5 × 1 

4 × 1 max pooling 1 fully connected 
layer in each head, 
256 neurons in each 
Final fully connected 
layer with 196 
neurons 

Batch size of 24 
Trained for 70 epochs 

Two dropout layers in each head, 
0.2 and 0.3 probabilities 
ReLu activation function 
L2 regularisation value of 0.01 
Early stopping with patience of 10 
epochs 

[130] 1 
64 3 × 3 

2 × 2 max pooling 512 neurons Adam optimisation 
algorithm 
Learning rate of 0.003 
Trained for 30 epochs 
Batch size of 32 
Momentum of 0.9 

ReLu activation function 

[206] CNN base on WaveNet 
Dilation rate of 3 × 1 filters 
increased to 3, 9, 27, 81 through   

Trained for 900 epochs “Casual”, “valid”, and “same” 
padding used 

(continued on next page) 
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processes (investigated for two mixing and three cleaning processes) 
without needing to label data in the new domain. This is therefore a 
method of eliminating the data labelling burden in a factory environ
ment when applying a US sensor to a new, similar process. Combining 
multiple source datasets or using datasets collected from a wider range 
of process parameters (e.g. temperature variations) enabled the models 
to better adapt to changes in feature distributions. Ref. [258] used 
labelled domain adaptation, where a reference measurement is available 
in the target domain, to use previously collected data from a laboratory 
fermentation process to reduce the development time of accurate ML 
models for an industrial process. Three methods were investigated to 
train DNNs with LSTM layers: simultaneous training over both datasets, 
federated learning using both datasets, and fine-tuning of the previously 
trained models on the target domain dataset. Federated learning was 
investigated as a method for potentially using datasets from multiple 
companies while maintaining data privacy. Federated learning shares 
network weights between a local models from each dataset and a global 
model rather than sharing the real data. All methodologies provided an 
increase in prediction accuracy over solely using the industrial 
fermentation dataset. Federated learning provided the highest increase 
in accuracy by allowing further convergence to minima during training. 
Ref. [259] transferred knowledge from microseismic data of earthquake 
studies to acoustic logging tools for collecting borehole information in 
oil fields. The purpose of this study was to overcome the effects of noise 
on accurate determination of the time-of-flight using pulse-echo trans
ducers. The maximum mean discrepancy was used to align feature 
spaces and a convolutional autoencoder was used to ensure class 
discriminant features were extracted. Ref. [260] used a dictionary 
learning method to use simulated US wavefields to isolate damage 
wavefields in experimental data from plate structures. Firstly, a dictio
nary is learned to optimally reconstruct the simulated wavefields and 
then transferred to the experimental data. Secondly, the reconstructed 
experimental data is aligned with the experimental data to account for 
changes in domain between the simulated and experimental datasets. 

Ref. [261] used Transfer Component Analysis (TCA) to transfer 
damage detectors between experimental datasets from three aircraft 
tailplanes. The data from both domains were matched in a latent space 
and two Transfer Components were extracted. Ref. [262] used metric- 
informed joint domain adaptation to overcome the problem of pre- 
and post-repair changes in data distribution in SHM. Joint domain 
adaptation aligns both the marginal and conditional distributions in a 
latent space using pseudo-labels from the target domain. In this work, 
the Mahalanobis squared distance was used to select the data for pseudo- 
labelling. Ref. [263] used a domain-adapted Gaussian mixture model 
(DA-GMM) to transfer labelled information between two bridge datasets 
for SHM. A linear mapping was used to transform the target domain data 
and the model was optimised using an expectation maximisation tech
nique. Ref. [264] presented a kernelised Bayesian transfer learning 
(KBTL) approach for SHM applications. The approach maps data from 
each domain onto a shared latent space where labelled data from the 
source domain is used to classify the data from the target domain. This 
method may be used to transfer labelled data from uncommon damage 
types from similar structures or simulations to reduce the burden of 
labelling these rare states in the target domain. Ref. [265] used Balanced 

Table 4 (continued ) 

Reference Convolutional layers, number of 
filters, size of filters 

Pooling layers Fully connected 
layers 

Training Additional information 

four residual blocks 
16 filters in each convolutional 
layer 

[207] 19-layer ResNet 1 × 2 max pooling 30o neurons Adam optimisation 
algorithm 
500 epochs 

ReLu activation function 
Dropout probability of 0.5  

Table 5 
Hyperparameters used with support vector models and US measurements.  

References Information 

[218] Radial basis function (RBF) kernel 
C varied between 1 and 32 
γ varied between 0.00049 and 0.5 

[29] C = 1000 
γ = 10 
Gaussian kernel 
Kernel Fisher discriminant used to optimise parameters 

[219] Linear kernel with C = 10 
2nd order polynomial kernel with C = 0.1 
RBF kernel with C = 10 and γ = 1 

[220] RBF and linear kernels 
γ = 20 

[221] Linear kernel, polynomial kernel, RBF kernel, and sigmoid kernel 
Range of C values tested: 1, 101, 102, 103, 104, 105 

[42] Third order polynomial kernels used 
[43] RBF kernel 

γ = 0.7 
[222] Epsilon, C, and γ determined through particle swarm analysis 
[223] Linear, polynomial, and RBF kernels used 

C varied between 0.001 and 100 in increasing powers of 10 
Polynomial degree evaluated between 2 and 5 
γ for RBF kernel evaluated between 0.01 and 100 in increasing powers 
of 10 

[224] Linear, quadratic, RBF, and polynomial kernels tested 
γ values tested: 4, 5, 6, 7 
Polynomial orders tested: 2, 3, 4 

[177] Linear, quadratic, polynomial, multilayer perceptron and RBF kernels 
tested 
A 3rd degree polynomial kernel function was used 

[225] C = 2 
γ = 10,000 
RBF kernel 

[129] Binary tree SVM 
C and γ varied 

[180] Bias = 42.57 
Box constraint = 9.4885 
Epsilon = 0.9489 
Number of iterations = 64 
RBF kernel 

[141] RBF kernel 
C and γ parameters determined using particle swarm optimisation 

[216] Linear, polynomial and RBF kernel tested. Linear kernel performed 
best. 
The best box constraint was found to be 1. 

[181] Linear and RBF kernels investigated 
[226] RBF kernel 

C and γ optimised using Particle Swarm Optimisation 
[227] RBF kernel 

C = 0.1 
γ = 0.3 

[16] C = 0.0001 
[44] C = 0.001 
[27] Bayesian optimisation for 60 evaluations to select box constraint value, 

kernel scale, kernel function, polynomial order, and whether the inputs 
were standardised 
The expected improvement acquisition function was used 

[228] C and γ optimised using Bat Optimisation Algorithm 
[229] Cross-validation to determine C and γ 

RBF kernel  
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Distribution Adaptation to transfer damage localisation models between 
different types of aircraft wings. Three metrics were evaluated to 
determine the structural and data similarities between domains before 
domain adaptation. This was to minimise the risk of negative transfer 
where transfer learning leads to a decrease in model performance. 

4.10. Object detection 

Object detection is a type of image analysis where a CNN identifies 
the presence, location, and class of objects and has been used for defect 
detection in ultrasonic images. Ref. [241] used a Faster R-CNN to 
identify, locate, and size defects using simulated data and a small 
experimental dataset. Ref. [266] presented EfficientDet and a method to 
select anchor hyperparameters for the high aspect ratios expected. They 
achieved a 9 % increase in accuracy (89.6% accuracy overall) compared 
to the YOLOv3 architecture used in [267]. Ref. [268] presented 
DefectDet which uses a lightweight encoder-decoder feature extractor 
and a detection head with custom anchor box aspect ratio and stride to 
detect high aspect ratio defects. Ref. [269] presented two methods of 
using multiple ultrasonic B-scans for defect detection by merging feature 
maps using convolutional and convolutional LSTM layers. 

5. Future directions - interpretability in machine learning 

A particular barrier to implementation of sensor and ML combina
tions is the perceived lack of explainability and interpretability of ML 
models and therefore a lack of trust it their predictions. These issues 
must be addressed to increase buy-in from companies and operators, 
and, furthermore, to meet any potential regulation criteria that requires 
adequate transparency in the ML prediction process. There are three 
points in the supervised ML pipeline where these problems can be 
considered. The first is during feature extraction and selection. Inher
ently explainable features such as the waveform energy (typically a 
measure of the reflection coefficient, and therefore acoustic impedance, 
or attenuation in a system) or the time of flight (a measure of the speed 
of sound through a material) may be preferred over other, more abstract 
features acquired from a US waveform. Feature selection methods may 
be used to reduce the number of features to make models simpler or 
calculate the importance of each feature and thereby make the models 
more interpretable. Secondly, transparent algorithms could be used such 

as linear or logistic regression, decision trees, or k-nearest neighbour 
models [270]. Predictions from linear and logistic regression could be 
accompanied by the weights applied to each feature used to make the 
prediction. In this way, the prediction process can be made fully 
explainable. Similarly, decision trees could produce the hierarchical 
decision process used and k-nearest neighbour models could present the 
k nearest training points used to inform the prediction made. Finally, 
post-hoc explanation of individual predictions can be used to understand 
the decision-making process [271]. Local interpretable model-agnostic 
explanations (LIME) perturb training data around a particular query 
point and build a transparent model (e.g. decision tree) correlating the 
new synthetic training data with model predictions to understand the 
decision-making process around this particular point. Shapley Additive 
explanations (SHAP) calculate the change in predictions by varying 
feature values at a particular data point to understand the impact of each 
feature on the prediction being made. For CNNs, additional techniques 
such as, gradients, class activation mappings, saliency maps, or occlu
sions can be used to indicate the datapoints contributing to a particular 
prediction. 

6. Recommendations 

Tables 6 and 7 contain recommendations for combining ML and US 
sensors for the reviewed process applications. To obtain labelled data in 
industrial environments, other in-line or on-line sensors can be used as a 
reference measurement for all the reviewed processes. Periodic sam
pling combined with off-line analysis could be employed for all pro
cesses other than cleaning, curing, or membrane fouling. Instead, for 
cleaning, the process would need to be ended at different stages, the 
equipment dismantled, and the sensor data labelled. During curing, 
sampling would not be possible due to the toughening or hardening of 
the material. For membrane fouling, no non-disruptive sampling of the 
fouling material could be performed. As such, semi-supervised learning 
could be used in all processes to pseudo-label the unlabelled data except 
for curing or membrane fouling processes where single data points 
cannot be collected. For all the processes reviewed, the US measure
ments could be used to infer process stages (such as the attainment of 
homogeneity during mixing, or the start of ethanol production during 
fermentation), apart from for tabletting. This is because during tablett
ing the final product is monitored opposed to the compaction process. 
For every process, unlabelled and labelled domain adaptation from 
similar processes could be used to reduce the data labelling burden in a 
factory environment. The recommended features include the coarse 
time domain features and convolutional feature extraction methods as 
compared in [239]. Fig. 3 displays the convolutional feature extraction 
method as an unrolled DNN with an LSTM presented in [239]. The 
coarse time domain features include specific amplitudes in the function, 
dispersion of amplitudes along the function, measures of the rise or 
descent of function amplitudes, energy, crest factor, kurtosis, skewness, 
and temporal duration. These features do not misattribute waveform 
variations of narrow frequency band US sensors to changes in frequency 
content as do the Fourier or wavelet transformations [239]. These fea
tures also overcome the problem of lateral sample point shifting of 
waveforms due to temperature changes as suffered by using the ampli
tudes at sample points as features directly [239]. The time of flight can 
be used for all processes to monitor the speed of sound throughout the 
material. The variations between consecutively acquired US waveforms 
can be used to monitor product quality variation in extrusion and in
jection moulding, the degree of homogeneity in mixing processes, or the 
presence of CO2 bubbles during fermentation. Feature gradients along 
with LSTMs can be used for all processes that progress over time to 

Table 6 
An explanation of the recommendations presented in Table 7.  

Recommendations Explanation 

Other sensors Other in-line or on-line sensors as a reference 
measurement 

Semi-supervised Semi-supervised learning to pseudo-label the 
unlabelled data 

Sampling Sampling and off-line sensors as a reference 
measurement 

US measurements US measurements to infer process state 
Unlabelled domain 

adaptation 
Unlabelled domain adaptation from similar processes 

Labelled domain 
adaptation 

Labelled domain adaptation from similar processes 

Coarse time dome features E.g., specific amplitudes in a function, dispersion of 
amplitudes along the function, measures of the rise or 
descent of function amplitudes, energy, crest factor, 
kurtosis, skewness, temporal duration 

Convolutional feature 
extraction 

Convolutional feature extraction methodology as 
presented in [239] 

Feature variations Variations in features between consecutive waveforms  
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Table 7 
Recommendations for combining ML and US measurements with the reviewed processes.   

Cleaning Fermentation Crystallisation Mixing Extrusion Injection moulding Curing Reaction 
monitoring 

Tabletting Membrane fouling 

Obtaining 
labelled 
data 

Other sensors  

Ending the process 
at different stages 
and using off-line 
sensors as a 
reference 
measurement  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Sampling  

Semi-supervised 
learning 

Other sensors  

Reducing 
data 
labelling 
burden 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

Unlabelled 
domain 
adaptation  

Labelled domain 
adaptation 

US measurements  

Unlabelled domain 
adaptation  

Labelled domain 
adaptation 

Feature 
extraction 

Time of flight  

Coarse time domain 
features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type, mass 
flow rate)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction  

Feature 
variations 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction  

Feature 
variations 

Time of flight  

Coarse time domain 
features  

Other features 
available (e.g. 
temperature, 
material type, 
pressure, mass flow 
rate)  

Convolutional 
feature extraction  

Feature variations 

Time of flight  

Coarse time domain 
features  

Other features 
available (e.g. 
temperature, 
material type, 
pressure, mass flow 
rate)  

Convolutional 
feature extraction  

Feature variations 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Other features 
available (e.g. 
temperature, 
material type)  

Convolutional 
feature extraction 

Time of flight  

Coarse time 
domain features  

Feature gradients  

Other features 
available (e.g. 
temperature, mass 
flow rate, material 
type)  

Convolutional 
feature extraction 

Algorithms LSTMs LSTMs LSTMs LSTMs LSTMs for short 
time sequences of 
features  

ANNs or DNNs, 
using US 
waveforms 

LSTMs for short 
time sequences of 
features  

ANNs or DNNs, 
using US 
waveforms 

LSTMs LSTMs ANNs or DNNs LSTMs  
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incorporate knowledge from previous time steps. LSTMs can be used on 
short time sequences of features for extrusion and injection moulding to 
monitor variations in product qualities, or ANNs and DNNs can be used 
on single time-step features. ANNs or DNNs should be used for data that 
is not part of a time sequence due to their ability to construct new fea
tures from input data that correlate to output variables. This ability for 
complex fitting requires adequate regularisation to prevent over-fitting. 
ANNs and DNNs should also be used over CNNs as they allow for 
incorporation of other features such as the time of flight, mass flow rate, 
temperature, pressure, material type, or variations between consecu
tively acquired waveform features. 

7. Summary 

The manufacturing sector is increasingly using data to inform deci
sion making. In-line and on-line sensors underpin this transition by 
automatically acquiring real-time data. Supervised ML techniques can 
be combined with US measurements and provide advantages over cali
bration procedures. However, their implementation is lagging due to 
expertise required to extract and select appropriate features from the 
sensor measurements, select the ML algorithm to use, and find a suitable 
set of model hyperparameters. The aim of this article is to facilitate the 
combination of ML and US measurements for in-line and on-line process 
monitoring or other similar applications. The article first reviews the use 
of US sensors for monitoring processes before reviewing the combina
tion of US measurements and ML including literature from other sectors. 
This review covers feature extraction, feature selection, algorithm 
choice, hyperparameter selection, data augmentation, domain adapta
tion, semi-supervised learning and ML interpretability. Recommenda
tions for applying ML methods for monitoring of the reviewed processes 
are also provided. 
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[4] D.R. Sjödin, V. Parida, M. Leksell, A. Petrovic, Smart factory implementation and 
process innovation: a preliminary maturity model for leveraging digitalization in 
manufacturing moving to smart factories presents specific challenges that can be 
addressed through a structured approach focused on people, processes, and 
technologies, Res. Technol. Manag. 61 (5) (2018) 22–31, https://doi.org/ 
10.1080/08956308.2018.1471277. 

[5] J. Chen, X. Ran, Deep learning with edge computing: a review, Proc. IEEE 107 (8) 
(2019) 1655–1674. 

[6] R.Y. Zhong, X. Xu, E. Klotz, S.T. Newman, Intelligent manufacturing in the 
context of industry 4.0: a review, Engineering 3 (5) (2017) 616–630, https://doi. 
org/10.1016/J.ENG.2017.05.015. 

[7] O. Fisher, N. Watson, L. Porcu, D. Bacon, M. Rigley, R.L. Gomes, Cloud 
manufacturing as a sustainable process manufacturing route, J. Manuf. Syst. 47 
(2018) 53–68, https://doi.org/10.1016/j.jmsy.2018.03.005. 

[8] L.L. Simon, H. Pataki, G. Marosi, F. Meemken, K. Hungerbühler, A. Baiker, 
S. Tummala, B. Glennon, M. Kuentz, G. Steele, H.J.M. Kramer, J.W. Rydzak, 
Z. Chen, J. Morris, F. Kjell, R. Singh, R. Gani, K.V. Gernaey, M. Louhi-Kultanen, 
J. O’Reilly, N. Sandler, O. Antikainen, J. Yliruusi, P. Frohberg, J. Ulrich, R. 
D. Braatz, T. Leyssens, M. von Stosch, R. Oliveira, R.B.H. Tan, H. Wu, M. Khan, 
D. O’Grady, A. Pandey, R. Westra, E. Delle-Case, D. Pape, D. Angelosante, 
Y. Maret, O. Steiger, M. Lenner, K. Abbou-Oucherif, Z.K. Nagy, J.D. Litster, V. 
K. Kamaraju, M.-S. Chiu, Assessment of recent process analytical technology 
(PAT) trends: a multiauthor review, Org. Process Res. Dev. 19 (1) (2015) 3–62, 
https://doi.org/10.1021/op500261y. 

[9] A. Gowen, C. Odonnell, P. Cullen, G. Downey, J. Frias, Hyperspectral imaging – 
an emerging process analytical tool for food quality and safety control, Trends 
Food Sci. Tech. 18 (12) (2007) 590–598, https://doi.org/10.1016/j. 
tifs.2007.06.001. 

[10] A.L. Bowler, S. Bakalis, N.J. Watson, A review of in-line and on-line measurement 
techniques to monitor industrial mixing processes, Chem. Eng. Res. Des. 153 
(2020) 463–495, https://doi.org/10.1016/j.cherd.2019.10.045. 

[11] B. Henning, J. Rautenberg, Process monitoring using ultrasonic sensor systems, 
Ultrasonics 44 (2006) e1395–e1399, https://doi.org/10.1016/j. 
ultras.2006.05.048. 

[12] D.J. McClements, Advances in the application of ultrasound in food analysis and 
processing, Trends Food Sci. Tech. 6 (9) (1995) 293–299, https://doi.org/ 
10.1016/S0924-2244(00)89139-6. 

[13] T.S. Awad, H.A. Moharram, O.E. Shaltout, D. Asker, M.M. Youssef, Applications 
of ultrasound in analysis, processing and quality control of food: a review, Food 
Res. Int. 48 (2) (2012) 410–427, https://doi.org/10.1016/j.foodres.2012.05.004. 

[14] R.E. Challis, M.J.W. Povey, M.L. Mather, A.K. Holmes, Ultrasound techniques for 
characterizing colloidal dispersions, Rep. Prog. Phys. 68 (7) (2005) 1541–1637. 

[15] A. Simeone, E. Woolley, J. Escrig, N.J. Watson, Intelligent industrial cleaning: a 
multi-sensor approach utilising machine learning-based regression, Sensors 20 
(2020) 1–22, https://doi.org/10.3390/s20133642. 

[16] J.E. Escrig, A. Simeone, E. Woolley, S. Rangappa, A. Rady, N.J. Watson, 
Ultrasonic measurements and machine learning for monitoring the removal of 
surface fouling during clean-in-place processes, Food Bioprod. Process. 123 
(2020) 1–13, https://doi.org/10.1016/j.fbp.2020.05.003. 

[17] P. Resa, L. Elvira, F. Montero de Espinosa, R. González, J. Barcenilla, On-line 
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J. Salazar, Ultrasonic monitoring of malolactic fermentation in red wines, 
Ultrasonics 54 (6) (2014) 1575–1580, https://doi.org/10.1016/j. 
ultras.2014.04.004. 

[49] T. Becker, M. Mitzscherling, A. Delgado, Hybrid data model for the improvement 
of an ultrasonic-based gravity measurement system, Food Control 13 (4-5) (2002) 
223–233, https://doi.org/10.1016/S0956-7135(01)00104-9. 
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