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Abstract 

The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum 

species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse 

conditions. Selected CPC accessions, representing the eco-geographical distribution of wild 

potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers 

from five plants of each accession were harvested, bulked and their mineral composition 

analysed. Among the germplasm investigated, there was a greater range in tuber concentrations 

of some elements of nutritional significance to both plants and animals, such as (Ca, Fe and Zn; 

6.7, 3.6, and 4.5-fold respectively) than others, such as (K, P and S; all <3-fold). Significant 

positive correlations were found between mean altitude of the species’ range and tuber P, K, Cu 

and Mg concentrations. The amount of diversity observed in the CPC collection indicates the 

existence of wide differences in tuber mineral accumulation among different potato accessions. 

This might be useful in breeding for nutritional improvement of potato tubers.  
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Introduction 

At least 25 mineral elements are considered essential for the normal functioning of human body 

and mineral malnutrition is considered to be one of the most serious challenges facing the ever-

increasing global population (WHO/FAO 2004; White and Brown 2010). The dietary availability 

of minerals in staple food crops depends on the concentration of minerals in edible tissues and 

their bioavailability for absorption in human body (White and Broadley 2009). The 

bioavailability of minerals in potato tubers is potentially high, because of the presence of high 

concentrations of β-carotene, protein cysteine, ascorbate and other organic and amino acids that 

stimulate micronutrient absorption (White et al. 2009). In addition, potato tubers contain low 

concentrations of anti-nutritional factors such as phytates (Frossard et al. 2000; Phillippy et al. 

2004) and oxalates (Bushway et al. 1984). For these reasons, potato tubers make an excellent 

candidate for biofortification with mineral elements that are lacking in the human diet in 

populations with this as their staple food. The mineral nutritional status of food crops can be 

enhanced through genetic (breeding for efficient cultivars) and/or agronomic means (application 

of mineral fertilisers) (White and Broadley 2009).  

Potato germplasm collections are maintained worldwide (Bradshaw 2000), including at the 

International Potato Centre (CIP, Lima, Peru), the Dutch-German Potato Collection (CGN, 

Wageningen, the Netherlands), the Groß Lusewitz Potato Collection (GLKS, IPK, Groß 

Lusewitz, Germany), the Potato Collection of the Vavilov Institute (VIR, St Petersburg, Russia), 

the US Potato Genebank (NRSP-6, Sturgeon Bay, USA), in addition to the Commonwealth 

Potato Collection (CPC) which is now held at the James Hutton Institute (JHI), Dundee, 

Scotland. Wild potato species represent a diverse gene pool which might be utilized in breeding 

programmes as sources of valuable genes (reviewed by Bradshaw and Ramsay 2006).  

There are good prospects for significant improvements using this diverse potato germplasm for 

many traits (Bradshaw et al. 2006), including, for example, tuber calcium concentrations 

(Bamberg et al. 1993, 1998; Paget et al. 2014), iron and zinc concentrations (Paget et al. 2014). 

Therefore, it is useful to explore the genetic resources of the wild relatives of potatoes as a 

source for the genetic enhancement of tuber minerals, because they may harbour an allelic 

richness for useful traits including tuber mineral concentration. Identifying genes controlling 

these traits in diverse wild and cultivated populations will allow researchers to extend the range 

of variation found in modern cultivars.  

The CPC is one of the major genebanks containing around 1500 potato accessions, of which 

about two-thirds are wild potato species and the rest are cultivated types from South America 

(Bradshaw and Ramsay 2005). The objective of this study was to evaluate the variability of tuber 

mineral concentrations among CPC accessions representing the eco-geographical distribution of 

wild potatoes under greenhouse conditions. 
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Materials and Methods 

Plant material and mineral analyses 

Forty nine selected accessions of potato species (Table 1) from the CPC, originating from 

different habitats and altitudes, were grown in a greenhouse (15 to 20 plants per accession) in 

2007, and tuber samples were obtained from this material for mineral analyses. The individual 

seedlings obtained from true potato seeds (TPS) of selected CPC accessions were sown in 15 cm 

diameter pots containing standard peat-based potting compost in April 2007 and the plants were 

grown to maturity in the greenhouse under natural daylight. The compositions of the potting 

compost and the base fertilizer Sincrostart (William Sinclair, Lincoln, UK) are given in 

Supplementary Tables 1 and 2. 

Tubers from five randomly chosen CPC plants of each accession were harvested in January 2008 

and stored at 4°C for two days. As the tubers from wild species were smaller than selected 

cultivated genotypes, the whole tubers (with periderm) were used for mineral analyses. Five 

medium-sized healthy tubers, one each from the five representative plants, were selected and 

bulked for mineral analyses. The tubers were washed thoroughly under running tap water, rinsed 

in deionised water, and briefly air-dried. The air-dried whole tubers were then chopped into 

pieces measuring less than 1cm across and were frozen at -20°C prior to freeze-drying. Freeze-

drying was carried out in a Millitorr S3921 vacuum freeze-drying unit (Millitorr Engineering 

Ltd, Manchester, UK) for four days. The freeze-dried samples were weighed to determine the 

dry matter content and then ground in a coffee blender (De’Longhi, Treviso, Italy) and were 

stored in re-sealable, air-tight polyethylene bags at -20°C until analysed for their mineral 

concentration. Tuber mineral concentrations were determined on acid-digested material using 

inductively coupled plasma mass spectrometry (ICP-MS; ELAN DRCe; PerkinElmer, Waltham, 

MA, USA), following the method reported by Subramanian et al. (2011).  

Data Analyses 

Differences among taxonomic groups were not tested for statistical significance because some of 

the series and species used in this study contained only a few accessions. Principal component 

analysis (PCA, based on correlation matrix) and Spearman’s correlation analysis were performed 

in GenStat version13.2 (VSN International Ltd, Hemel Hempstead, UK) to determine the 

correlations between tuber dry matter content and mineral concentrations. In the PCA plot, the 

accessions were coded according to molecular groupings of S. acaule, S. demissum, series 

Tuberosa (northern species), series Tuberosa (southern species) and others, and taxonomic series 

according to Hawkes (1990). 

Results 

The CPC accessions grown in the greenhouse showed a wide variation for tuber dry matter (DM) 

and mineral concentrations (Table 2). A detailed summary of the mineral composition of 44 wild 

accessions and five cultivated taxa is presented in Supplementary Table 3. Among the 

germplasm investigated, there was a greater range in the concentration of some mineral nutrients 
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of nutritional significance (Ca, Fe and Zn; 6.7, 3.6, and 4.5-fold respectively) than others (e.g. K, 

P and S all < 3-fold, Table 2).  

To explore the patterns of variation amongst the 49 different accessions, a PCA analysis was 

carried out opting for the correlation matrix method using all the 10 variables (DM and nine 

mineral elements). The first two principal components (PC1 and PC2) accounted for 60.9% 

(46.0% and 14.9% respectively for PC1 and PC2) of the total variability found among the 49 

accessions (Fig. 1). The contributions of each variable (tuber DM and mineral concentrations) to 

the first two PC scores are shown in the biplot in Fig. 2A. 

The PC1 was positively associated with mineral elements (Mn, Cu, Fe, Zn, S, Mg, P, K and Ca), 

and negatively with DM. The PC2, on the other hand, was positively associated with DM, Cu, Fe 

and Mn and negatively with Ca and K. The Spearman’s correlation analysis conducted on these 

accessions also established the negative relationships between DM, and Ca and K (Table 3). This 

trend was clearly evident when the accessions that fall within 15% of low and high extreme 

values for tuber Ca, K and DM were sorted (Supplementary Table 4).  

In addition, PCA analysis was also performed among the nine mineral elements excluding DM 

(Fig. 2B and 3). In this case, the first two principal components explained 63.3% of the total 

variability found among the 49 accessions, with PC1 alone accounting for 50.2% of the 

variability (Fig. 2B). The loadings plot indicated that all minerals were positively associated with 

PC1, whereas PC2 was positively associated with Mn, Ca, Fe, S and Zn, and negatively with Mg, 

K, Cu and P. Comparing the loadings plot with and without DM, the relative positions of most 

minerals are similar with the exception of Ca and Cu which showed an exchange of positions 

with each other. Correlations coefficient matrix (Table 3) show a negative relationship between 

Ca and DM, which may explain the shift in the loadings plot position of Ca. Weak separation of 

groups of accessions was observed in the PCA plots constructed using all mineral traits with 

(Fig. 1) and without (Fig. 3) DM as a variable. There was a strong tendency for the northern and 

southern series Tuberosa species to separate into two groups, and the Acaulia and Demissa 

groups also form their own space shared with a broad spread of other accessions (Fig. 3). 

No clear groupings of accessions were observed in the PCA plot for tuber mineral concentrations 

based on altitude (Fig. 4). However, significant positive correlations between altitude and tuber 

P, K, Cu and Mg concentrations were evident in the Spearman’s correlation analysis (Table 4).  

The highest correlation between tuber mineral concentration and altitude was for phosphorus. 

Discussion 

The CPC accessions used in this study represented different taxonomic series and diverse 

geographical origins within South and Central America (Table 1), making them valuable 

resources for investigating the genetic variation in mineral accumulation in wild potatoes adapted 

to different environments. The greenhouse study demonstrated considerable variability among 

the wild CPC accessions for tuber DM and mineral concentrations (Table 2). The range of values 

(Table 2) shows a relatively narrow spread for some minerals, such as Mg, K, P and S, and a 

greater spread for others, such as Ca, Fe and Zn. This suggests that breeding for high tuber Ca, 

Fe and Zn concentrations might have potential. Furthermore, the heritability of tuber mineral 
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concentrations in potato were found to be moderately high (Brown et al. 2010, 2011, 2012, 2013 

and 2014; Haynes et al. 2012; Paget et al. 2014; Zorrilla et al. 2014), indicating the possibility of 

mineral biofortification by plant breeding. 

Principal component analysis biplots of the accessions for tuber DM and mineral traits (Fig. 1) 

showed much overlap of accessions based on molecular groups and taxonomic series. However, 

when PCA analysis was performed using only mineral elements (Fig. 3), although there was 

some overlap among accessions based on molecular grouping, some groups of accessions did 

form separate clusters. The Mexican hexaploids in series Demissa (DMS) and series Acaulia 

(ACL) accessions formed separate groups. Also, the two main molecular groups within series 

Tuberosa sensu Hawkes (1990), the Peruvian species (Solanum series Tuberosa Northen group, 

TBR-N) and the Bolivian and Argentinian species (Solanum series Tuberosa Southern group, 

TBR-S), also occupied different areas in the biplot of PC1 and PC2. 

Genetic variation was observed in the CPC germplasm collection for tuber DM, Ca and K, and 

these data corroborate those of McCann et al. (2010), Bamberg et al. (1993, 2008) and Paget et 

al. (2014). In the present study, tuber DM content varied from 17–48% (Table 2), which is in 

agreement with the range reported by McCann et al. (2010) in wild Solanum species (18–35% 

DM)  and by Paget et al. (2014) in a breeding population of Andean landrace cultivars (13-36% 

DM). Research by Bamberg et al. (1993) suggests that there is a great genetic variation within 

Solanum germplasm for the ability to accumulate Ca in tubers. Bamberg et al. (1993) screened 

wild Solanum species at adequate (solution Ca concentrations-80 mg/kg) and high (800 mg/kg) 

Ca levels in 21 Solanum species (three accessions per species) in a greenhouse study. They found 

that the tuber Ca concentrations ranged from 0.16–0.74 mg/g  DW with an adequate supply of 

Ca, which is similar to the range reported in this study (0.10–0.67 mg/g DW, Table 2) with a 

comparable Ca supply, and Paget et al. (2014) (0.04–0.78 mg/g DW). Among the Solanum 

species investigated in the current study, S. bulbocastanum (CPC 7638) and S. chacoense (CPC 

3504) exhibited the highest and the lowest tuber Ca concentrations, respectively (Supplementary 

Table 3). Considering the species that were common between the present study and those 

evaluated by Bamberg et al. (1993), the ranking of genotypes were similar such that S. chacoense 

and S. kurtzianum had low tuber Ca concentrations and S. gourlayi and S. tubersoum Group 

Stenotomum (as S. stenotomum) showed high tuber Ca concentrations (Supplementary Table 4; 

Bamberg et al. 1993). Recently, Chung et al. (2016) reported SSR markers associated with high 

tuber Ca content in an F2 population derived from a high- Ca accumulating wild relative, S. 

microdontum and a low-Ca accumulating, S. kurtzianum. 

With regard to K accumulation, S. capsicibaccatum (CPC 3554) exhibited the highest tuber K 

concentrations, whereas S. chacoense (CPC 3504) showed the lowest K concentration 

(Supplementary Table 3), a 1.8-fold range for tuber K concentrations (Table 1). In a study 

assaying tuber K concentrations in different Solanum species, Bamberg et al. (2008) found large 

tuber K concentrations in S. acaule, S. chacoense, S. okadae and S. pinnatisectum.  

In general, accessions with small tuber DM content had large concentrations of Ca and K and 

vice versa (Supplementary Table 4). A negative correlation between tuber dry matter content and 

Ca, Fe, and Zn concentrations, expressed on a dry weight basis, was reported by Paget et al. 
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(2014). About 65–75% of DM content in tubers is made up of starch (Burton 1989). Tuber 

mineral concentrations (including Ca and K) have been found to decrease following DM (starch) 

accumulation during tuber bulking (Kolbe and Stephan-Beckmann 1997). Within the tuber, Ca is 

concentrated around the periphery and decreases towards the centre (Subramanian et al. 2011). 

As Ca is relatively immobile in the phloem (Westermann 2005; Kärenlampi and White 2009), its 

concentration tends to decrease with increasing DM accumulation. On the other hand, K is 

mobile in the phloem and its concentration was found to be higher at the bud end than the stem 

end of the tuber (Subramanian et al. 2011). Within cells K is required for many physiological 

functions, including osmoregulation, enzyme activation and membrane transport processes 

(White and Karley 2010). Nitsos and Evans (1969) first observed that starch synthesizing 

enzymes have a specific requirement for K and about 1.8% of K (as a proportion of DM) is 

critical for high starch concentrations in potatoes (Forster and Beringer 1983; Lindhauer and De 

Fekete 1990). However, tuber K concentrations above 2% DM were found to reduce starch 

content (Marschner and Krauss 1980), which could be explained in terms of an osmotic optimum 

for starch synthesis (Oparka and Wright 1988).  

The association of S and Zn, as evident from PCA plots, might be attributed to the similar 

phloem mobility of these elements (Kärenlampi and White, 2009). On the other hand, neither Fe 

nor Ca have high phloem mobility (Kärenlampi and White, 2009), and the association of Fe and 

Ca might be due to the high entrapment of these minerals by periderm of the potato tuber, since 

the surface layers of potato tubers contain 55% and 34% of total tuber Fe and Ca concentrations, 

respectively (Subramanian et al. 2011). 

Potatoes are adapted to grow in different habitats including high altitudes. There are no studies 

reported on mineral concentrations in potato tubers grown at different altitudes. Results from this 

study showed that tuber P, K, Mg and Cu concentrations increased as the altitude of the habitat 

of a species increased, and that phosphorus is the mineral found to be most strongly linked with 

altitude. Kitayama and Aiba (2002) suggest that trees on Mount Kinabalu, Borneo, maintain net 

assimilation rate with increasing altitude by increasing foliar N and P, where soil P deficiency 

does not inhibit this process. Work in the Andes suggests that P availability may not be strongly 

linked to altitude (Fisher et al. 2013), which would support a mechanism for P accumulation 

which is not driven by adaptation to low P availability. However, whatever the adaptive forces 

driving this trend, the higher concentrations of tuber minerals in high altitude species provide 

useful variation for breeding for these traits. These minerals include those of greatest importance 

to human nutrition (Ca, Fe and Zn) as well as P which has importance for productivity and 

sustainable production. 
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Table 1 Details of the wild and cultivated (*) species from the Commonwealth Potato Collection (CPC) 1 

used in the study 2 

Series Species CPC number Country of 

origin 

Altitude (m) 

Acaulia S. acaule 2109 Bolivia 4100 

Acaulia S. acaule 2113 Bolivia 4100 

Acaulia S. acaule 2456 Argentina 4100 

Bulbocastana S. bulbocastanum 7638 Mexico 1900 

Bulbocastana S. bulbocastanum ssp. partitum 7650 Unknown 1900 

Circaeifolia S. capsicibaccatum 3554 Bolivia 3000 

Conicibaccata S. violaceimarmoratum 7782 Bolivia 3300 

Cuneolata S. infundibuliforme 2477 Argentina 4100 

Demissa S. brachycarpum 2922 Mexico 2500 

Demissa S. brachycarpum 7031 Mexico 2500 

Demissa S. brachycarpum 7027 Mexico 2500 

Demissa S. demissum 1126 Mexico 3250 

Demissa S. demissum 1345 Mexico 3250 

Tuberosa S. demissum 4630 Unknown 3250 

Demissa S. demissum 7524 Mexico 3250 

Demissa S. hougasii 7049 Mexico 2300 

Demissa S. hougasii 7048 Mexico 2300 

Longipedicellata S. fendleri 7214 Mexico 2200 

Longipedicellata S. fendleri 2605 USA 2200 

Longipedicellata S. fendleri 2601 USA 2200 

Longipedicellata S. hjertingii 5697 Mexico 2150 

Longipedicellata S. polytrichon 3987 Mexico 2150 

Longipedicellata S. stoloniferum 2639 Mexico 2400 

Megistacroloba S. megistacrolobum 3273 Bolivia 4000 

Megistacroloba S. megistacrolobum 2482 Argentina 3600 

Pinnatisecta S. cardiophyllum 5908 Mexico 2250 

Pinnatisecta S. trifidum 7124 Mexico 2250 

Tuberosa S. canasense 3059 Peru 3500 

Tuberosa S. gourlayi 7161 Argentina 3500 

Tuberosa S. kurtzianum 6065 Unknown 1950 

Tuberosa S. kurtzianum 3783 Argentina 1800 

Tuberosa S. kurtzianum 5890 Unknown 1950 

Tuberosa S. microdontum 3764 Argentina 3080 

Tuberosa S. microdontum 3757 Argentina 2550 

Tuberosa S. microdontum 3740 Argentina 1730 

Tuberosa S. multidissectum 7180 Peru 4050 

Tuberosa S. multidissectum 7171 Peru 4050 

Tuberosa S. marinasense 6020 Peru 3300 

Tuberosa S. marinasense 7739 Peru 3250 

Tuberosa S. neocardenasii 7612 Unknown 1400 

Tuberosa S. neorossii 7628 Unknown 3000 

Tuberosa S. okadae 7775 Unknown 3100 

Tuberosa* S. tuberosum Group Phureja 3672 Peru - 

Tuberosa* S. tuberosum Group Andigena 61 Bolivia - 

Tuberosa* S. tuberosum Group Andigena 573 Peru - 

Tuberosa* S. tuberosum Group Andigena 7617 Unknown - 

Tuberosa* S. tuberosum Gp Stenotomum 7699 Peru - 

Yungasensa S. chacoense 3732 Argentina 850 

Yungasensa S. chacoense 3504 Unknown 1200 

table Click here to download table Mineral variation_CPC accessions -
NS et al-Tables-11 March 2016.doc
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Table 2 Mean values and ranges for tuber dry matter (DM) and mineral concentrations observed 3 

in CPC accessions 4 

Trait1 Unit Mean Range Ratio2 

DM  % 28.9 17.3–48.4 2.8 

Ca  mg/g 0.2 0.1–0.7 6.7 

K  mg/g 19.6 15.0–26.9 1.8 

Mg  mg/g 1.4 0.8–2.2 2.5 

P mg/g 3.6 2.4–5.2 2.1 

S mg/g 1.6 1.0–2.8 2.9 

Cu µg/g 5.6 2.6–10.8 4.0 

Fe µg/g 22.0 12.2–43.63 3.6 

Mn µg/g 7.1 3.9–11.7 3.0 

Zn µg/g 13.6 5.9–26.9 4.5 
1Mineral concentrations presented on a DW basis; 2.Maximum/minimum trait value; 3.Excluding one outlier (S. 5 
bulbocastanum CPC 7650) with a value 3.8-fold higher than the preceding highest value.  6 

7 
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Table 3 Spearman’s correlation coefficients among the DM content and nine mineral elements 8 

for 49 accessions of CPC potatoes 9 

 DM Ca K Mg P S Cu Fe Mn Zn 

DM -          

Ca -0.44*** -         

K -0.37** 0.38** -        

Mg -0.13ns 0.51*** 0.62*** -       

P -0.10ns 0.34** 0.60*** 0.60*** -      

S -0.22* 0.28* 0.50*** 0.32** 0.41*** -     

Cu 0.15ns 0.16ns 0.49*** 0.62*** 0.61*** 0.34** -    

Fe -0.02ns 0.54*** 0.38** 0.63*** 0.48*** 0.51*** 0.61*** -   

Mn 0.05ns 0.16ns 0.15ns 0.28* 0.12ns 0.33** 0.15ns 0.46*** -  

Zn -0.09ns 0.44*** 0.40*** 0.53*** 0.53*** 0.53*** 0.50*** 0.72*** 0.44*** - 

Significance of the effects is given in three levels: * P≤0.05; ** P≤0.01; ***P≤0.001; ns-non-significant. 10 

 11 

Table 4 Spearman’s correlation coefficients between the altitude (m) and nine mineral elements 12 

for wild species CPC accessions 13 

 Ca K Mg P S Cu Fe Mn Zn 

Altitude 0.35** 0.54*** 0.51*** 0.65*** 0.29** 0.52*** 0.37** -0.10ns 0.37** 

Significance of the effects is given in three levels: * P≤0.05; ** P≤0.01; ***P≤0.001; ns-non-significant. 14 

 15 

 16 
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 1 

Fig. 1 PCA plots for 49 CPC accessions based on tuber DM together with mineral 2 

concentrations. The accessions are coded based on (A) molecular groupings, and (B) taxonomic 3 

series, as per Hawkes (1990). Abbreviations: TBR-S, Solanum series Tuberosa Southern Group 4 

(Argentina and Bolivia); TBR-N, Solanum series Tuberosa Northern Group (Peru); DMS, 5 

Mexican hexaploids in series Demissa; ACL, series Acaulia. Mineral concentrations based on 6 

dry weight basis. 7 

 8 

 9 
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 10 

Fig. 2 Biplots from PCA analysis for 49 CPC accessions based on (A) tuber DM and mineral 11 

traits, and (B) mineral traits alone.  12 

 13 

 14 

Fig. 3 PCA plots for 49 CPC accessions based on tuber mineral concentrations alone. The 15 
accessions are coded based on (A) molecular groupings and (B) taxonomic series, as per Hawkes 16 

(1990). Abbreviations as in Figure 1. 17 
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 18 
Fig. 4 PCA plots for wild species CPC accessions based on tuber mineral concentrations. The 19 

accessions are grouped on the altitude of the site of collection or the mean altitude of the range 20 

for the species. 21 

 22 

 23 
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Supplementary Table 1 Composition of the potting compost used in the glasshouse experiment 23 

Material Quantity 

Sphagnum moss peat  1200 l 

Sand 100 l 

Perlite 100 l 

Mg limestone 2.5 kg 

Ca limestone 2.5 kg 

Sincrostart fertilizer1 1.5 kg 

Polycon2 1.5kg 

Celcote water retaining gel  1 kg 

Intercept insecticide 390 g 
1Base fertiliser, see Supplementary Table 2; 2Controlled release fertilizer (three to four months) blend 17-10-16 plus 24 
sulphur trioxide 6% plus trace elements 25 

Supplementary Table 2 Nutritional composition of the Sincrostart base fertilizer 26 

Mineral element Composition (%) 

Total nitrogen 12.0 

Ammonium nitrogen 5.2 

Nitrate nitrogen 6.8 

Phosphorus pentoxide  14.0 (6.1% P) 

Potassium 19.9 

Potassium oxide  24.0 (19.9% K) 

Magnesium oxide 3.0 (1.8% Mg) 

Boron  0.03 

Copper  0.12 

Iron chelated by EDTA 0.23 

Manganese  0.16 

Molybdenum  0.19 

Zinc 0.04 

EDTA-Ethylenediaminetetraacetic acid 27 
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Supplementary Table 3 Tuber dry matter (DM) and mineral concentration for 49 accessions of CPC potatoes (DW basis) 

No  Series/Species Code* CPC 

accession 

no. 

DM Minerals 

  Ca K Mg P S Cu Fe Mn Zn 

  % mg/g mg/g mg/g mg/g mg/g µg/g µg/g µg/g µg/g 

 Acaulia             

1 S. acaule ACL 2109 31.78 0.19 18.09 1.33 3.99 1.03 5.8 25.34 4.41 13.32 

2 S. acaule ACL 2113 31.19 0.21 17.74 1.46 3.99 1.23 5.6 21.34 3.95 13.40 

3 S. acaule ACL 2456 34.49 0.19 19.41 1.87 4.37 1.51 8.7 29.67 7.37 18.58 

 Bulbocastana             

4 S. bulbocastanum BLB 7638 20.34 0.67 18.03 1.88 3.94 1.46 3.8 28.47 9.96 21.08 

5 S. bulbocastanum BLB 7650 28.71 0.11 17.20 1.18 2.80 1.18 3.6 (166.04) 7.70 7.93 

 Circaeifolia             

6 S. capsicibaccatum CAP 3554 17.32 0.34 26.86 2.15 5.18 2.03 10.0 29.83 4.35 23.91 

 Conicibaccata             

7 S. violaceimarmoratum VIO 7782 26.78 0.31 25.45 1.79 2.89 2.00 4.3 40.23 9.30 11.87 

 Cuneolata             

8 S. infundibuliforme IFD 2477 27.81 0.19 21.05 1.51 3.57 1.03 3.3 16.05 5.31 9.48 

 Demissa              

9 S. brachycarpum BCP 2922 27.58 0.18 17.77 1.29 2.78 1.70 3.8 13.06 6.73 8.05 

10 S. brachycarpum BCP 7031 25.25 0.29 21.77 1.64 3.68 2.29 6.0 27.09 6.25 10.63 

11 S. brachycarpum BCP 7027 24.25 0.16 21.80 1.38 3.71 2.04 5.0 20.72 7.15 12.01 

12 S. demissum DMS 1126 30.07 0.17 20.65 1.48 4.63 2.14 8.9 25.70 8.41 17.43 

13 S. demissum DMS 1345 30.26 0.18 20.81 1.55 4.11 1.79 6.8 17.60 7.39 18.22 

14 S. demissum DMS 4630 30.63 0.18 19.49 1.56 4.57 2.09 7.7 27.89 9.74 12.96 

15 S. demissum DMS 7524 34.02 0.22 16.98 1.28 3.92 1.46 8.0 23.69 6.22 9.33 

16 S. hougasii HOU 7049 34.87 0.14 15.57 0.86 3.10 1.80 2.7 12.15 4.43 7.64 

17 S. hougasii HOU 7048 28.13 0.12 20.97 1.06 3.96 1.78 2.8 14.78 5.07 5.95 

 Longipedicellata             

18 S. fendleri FEN 7214 26.67 0.17 18.47 1.12 4.28 1.50 3.3 14.66 8.89 10.80 

19 S. fendleri FEN 2605 29.94 0.18 16.97 1.34 3.27 1.60 4.8 16.57 5.56 9.42 

20 S. fendleri FEN 2601 29.50 0.13 15.57 1.24 2.71 1.32 4.6 17.89 6.78 9.50 

21 S. hjertingii HJT 5697 31.96 0.19 21.14 1.26 3.49 1.17 4.1 20.50 7.07 11.38 

22 S. polytrichon PLT 3987 27.16 0.21 18.12 1.45 3.07 1.68 5.6 27.62 9.15 12.48 

23 S. stoloniferum STO 2639 30.71 0.20 21.81 1.69 3.48 2.43 7.4 26.10 7.78 18.48 

 Megistacroloba             
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24 S. megistacrolobum MGA 3273 30.09 0.15 21.27 1.95 4.13 1.15 7.2 15.68 5.50 10.83 

25 S. megistacrolobum MGA 2482 22.99 0.30 26.55 1.92 4.80 1.33 8.2 17.37 6.09 14.95 

 Pinnatisecta             

26 S. cardiophyllum CPH 5908 24.90 0.14 15.34 1.22 2.53 1.25 3.7 16.65 6.87 10.63 

27 S. trifidum TRF 7124 28.40 0.18 17.29 0.93 3.18 2.40 4.3 23.05 6.05 20.43 

 Tuberosa             

 Peru (TBR-N)             

28 S. canasense CAN 3059 28.26 0.12 22.36 1.26 3.94 1.90 5.9 20.34 7.39 11.14 

29 S. multidissectum MLT 7180 33.40 0.45 20.74 1.55 4.36 1.89 9.1 29.84 11.56 15.55 

30 S. multidissectum MLT 7171 31.17 0.13 20.91 1.46 3.95 2.41 7.9 27.07 8.68 20.57 

31 S. marinasense MRN 6020 19.39 0.38 26.29 1.74 4.36 2.36 6.1 30.50 8.28 26.89 

32 S. marinasense MRN 7739 39.15 0.21 19.38 1.25 2.90 1.32 4.3 17.99 7.43 13.37 

 Bolivia and Argentina (TBR-S)             

33 S. gourlayi GRL 7161 24.79 0.47 21.28 1.56 3.92 1.85 5.6 20.85 5.97 12.76 

34 S. kurtzianum KTZ 6065 29.70 0.18 15.81 1.17 3.18 1.02 4.1 18.57 6.81 10.77 

35 S. kurtzianum KTZ 3783 48.43 0.11 15.55 1.28 2.76 1.05 4.9 19.96 8.16 12.14 

36 S. kurtzianum KTZ 5890 26.33 0.22 15.52 1.23 2.91 1.04 4.7 20.69 5.79 10.59 

37 S. microdontum MCD 3740 29.26 0.15 20.61 1.45 2.84 1.05 4.7 13.93 5.01 6.66 

38 S. microdontum MCD 3757 31.38 0.12 17.26 1.14 3.04 1.00 5.4 15.45 4.26 8.54 

39 S. microdontum MCD 3764 24.35 0.22 20.13 1.43 3.77 1.32 6.6 23.69 5.48 9.73 

40 S. neocardenasii NCD 7612 20.75 0.17 16.45 0.96 2.63 1.18 3.1 12.71 8.10 9.50 

41 S. neorossii NRS 7628 33.57 0.23 15.94 1.66 3.54 2.11 4.2 29.13 9.08 19.82 

42 S. okadae OKA 7775 38.08 0.17 20.28 1.77 4.06 1.29 9.2 43.61 11.73 18.92 

 Cultivated             

43 S. tuberosum Group Phureja PHU 3672 19.99 0.50 25.11 1.48 3.55 1.56 5.4 21.29 9.54 15.46 

44 S. tuberosum Group Andigena TBRAD

G 

61 26.09 0.19 15.25 1.16 3.17 1.69 3.6 20.20 5.59 16.08 

45 S. tuberosum Group Andigena TBRAD

G 

573 29.53 0.15 21.57 1.33 3.51 2.22 10.9 24.02 6.09 21.81 

46 S. tuberosum Group Andigena TBRAD

G 

7617 24.77 0.31 18.29 1.07 3.04 1.39 2.8 17.24 6.68 12.89 

47 S. tuberosum Gp Stenotomum STN 7699 25.26 0.32 26.58 1.58 4.50 2.89 6.7 26.76 10.03 23.76 

 Yungasensa             

48 S. chacoense CHC 3732 32.10 0.11 16.75 1.28 2.56 1.02 4.2 15.68 7.77 9.86 

49 S. chacoense CHC 3504 34.05 0.10 15.05 1.11 2.45 1.06 5.2 16.52 7.15 9.60 

*Accession code; (166.04)-extreme value. 
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Supplementary Table 4 Accessions that fall under 15% of low and high extreme values for 

tuber calcium (Ca) and potassium (K) concentrations and dry matter (DM) content 

Trait Code CPC number Species Ca (mg/g) K  (mg/g) DM (%) 

Low Ca CHC 3504 S. chacoense 0.10 15.05 34.05 

 BLB  7650 S. bulbocastanum 0.11 17.20 28.71 

 CHC 3732 S. chacoense 0.11 16.75 32.10 

 KTZ 3783 S. kurtzianum 0.11 15.55 48.43 

 MCD 3757 S. microdontum 0.12 17.26 31.38 

 HOU 7048 S. hougasii 0.12 20.97 28.13 

 CAN 3059 S. canasense 0.12 22.36 28.26 

High Ca STN 7699 S. tuberosum Gp Stenotomum 0.32 26.58 25.26 

 CAP 3554 S. capsicibaccatum 0.34 26.86 17.32 

 MRN 6020 S. marinasense 0.38 26.29 19.39 

 MLT 7180 S. multidissectum 0.45 20.74 33.40 

 GRL 7161 S. gourlayi 0.47 21.28 24.79 

 PHU 3672 S. tuberosum Gp Phureja 0.50 25.11 19.99 

 BLB7 7638 S. bulbocastanum 0.67 18.03 20.34 

       

Trait Code CPC number Species K (mg/g) DM (%) Ca  (mg/g1) 

Low K CHC 3504 S. chacoense 15.05 34.05 0.10 

 TBRADG 61 S. tuberosum Gp Andigena 15.25 26.09 0.19 

 CPH 5908 S. cardiophyllum 15.34 24.90 0.14 

 KTZ 5890 S. kurtzianum 15.52 26.33 0.22 

 KTZ 3783 S. kurtzianum 15.55 48.43 0.11 

 FEN 2601 S. fendleri 15.57 29.50 0.13 

 HOU 7049 S. hougasii 15.57 34.87 0.14 

High K CAN 3059 S. canasense 22.36 28.26 0.12 

 PHU 3672 S. tuberosum Gp Phureja 25.11 19.99 0.50 

 VIO 7782 S. violaceimarmoratum 25.45 26.78 0.31 

 MRN 6020 S. marinasense 26.29 19.39 0.38 

 MGA 2482 S. megistacrolobum 26.55 22.99 0.30 

 STN 7699 S. tuberosum Gp Stenotomum 26.58 25.26 0.32 

 CAP 3554 S. capsicibaccatum 26.86 17.32 0.34 

       

Trait Code CPC number Species DM (%) Ca  (mg/g) K (mg/g) 

Low DM CAP 3554 S. capsicibaccatum 17.32 0.34 26.86 

 MRN 6020 S. marinasense 19.39 0.38 26.29 

 PHU 3672 S. tuberosum Gp Phureja 19.99 0.50 25.11 

 BLB 7638 S. bulbocastanum 20.34 0.67 18.03 
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 NCD 7612 S. neocardenasii 20.75 0.17 16.45 

 MGA 2482 S. megistacrolobum 22.99 0.30 26.55 

 BCP 7027 S. brachycarpum 24.25 0.16 21.80 

High DM DMS 7524 S. demissum 34.02 0.22 16.98 

 CHC 3504 S. chacoense 34.05 0.10 15.05 

 ACL 2456 S. acaule 34.49 0.19 19.41 

 HOU 7049 S. hougasii 34.87 0.14 15.57 

 OKA 7775 S. okadae 38.08 0.17 20.28 

 MRN 7739 S. marinasense 39.15 0.21 19.38 

 KTZ 3783 S. kurtzianum 48.43 0.11 15.55 

 

 

 




