
Eccleshare, Selzer, Woodward – Manuscript for Tetrahedron Lett. 

An Efficient Synthesis of Substituted Chrysenes 

Lee Eccleshare*, Sean Selzer, Simon Woodward[a] 

 [a] L. Eccleshare, S. Selzer, Prof. Dr. S. Woodward, School of Chemistry, University of Nottingham, 

University Park, Nottingham NG7 2RD (United Kingdom) 

E-mail: Lee.Eccleshare@outlook.com 

Supporting information for this article is available (end of manuscript) 

Abstract:  Substituted chrysenes have been swiftly synthesised by the 6-endo-dig cyclisation of 

ethynylnaphthalenes using platinum(II) chloride. Cyclisation precursors were directly prepared from 

commercially available 2-bromoaldehydes in a telescoped synthetic procedure involving a Cannizzaro 

triggered cascade and subsequent dehydration and desilylation. This short synthetic procedure allows 

rapid access to derivatives of biologically active molecules with useful electronic properties.  

 

 

Introduction 

Chrysene (C18H12) is a polycyclic aromatic hydrocarbon (PAH) that is formed during incomplete 

combustion of carbon rich fuels[1] and was the first PAH to be discovered in uncontaminated soil 

samples.[2] Whilst several studies have shown that chrysene and its metabolites,[3] trans-1,2-

dihydroxy-1,2-dihydrochrysene and trans-3,4-dihydroxy-3,4-dihydrochrysene (Scheme 1a) are 

carcinogenic and mutagenic,[4] it has also been reported that some substituted chrysenes, due to their 

DNA intercalating nature, show anticancer activity.[5] Due to their electronic properties chrysenes also 

have synthetic uses as single electron transfer mediators,[6] mechanistic probes[7] and have 

applications in the field of organic electronics.[8, 9] The two most common synthetic routes to chrysenes 

are the photochemical cyclisations of styrylnaphthalenes[10] and metal catalysed cyclisations of 

aromatic acetylenes.[8,11] Our efficient synthesis allows the rapid formation of substituted chrysenes, 

under simple, benign conditions from readily available commercial materials. As we are able to design 

chrysene substrates with substitution on both terminal rings and also access substitution patterns that 

are difficult to control with other synthetic methods[10] (controlled substitution in the 2- and 4- 

positions), this work is perfectly complimentary to that which has already been published. 
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Scheme 1. a) The numbering of chrysene and a carcinogenic metabolite; b) Compounds from the 

preliminary investigation. 

Results and Discussion 

Recent work carried out within our group[12] highlighted how cascade reactions based around an 

unusual Cannizzaro like 1,5-hydride transfer[13] can be used to rapidly develop complex molecules, 

such as 1 (Scheme 1b), from commercially available 2-bromoaldehydes. We envisaged using a 

platinum(II) chloride catalysed, 6-endo-dig cyclisation[8, 11a] to attain a substituted chrysene from 

ethynylnaphthalene 1. Under our initial conditions, heating to reflux with 5 mol% platinum(II) chloride 

in toluene, for a protracted reaction time of 65 hours, we observed 58% conversion to the desilylated 

chrysene 3a (Scheme 1b). Formation of the silylated chrysene was not observed. Unsatisfied with the 

long reaction times and incomplete conversion, more efficient reaction conditions were sought. The 

rate of reaction could be significantly increased by microwave heating to 150 °C in a sealed tube. As 

the formation of silyl-3a was not observed, it was considered that the sluggish annulation could be 

due to a slow desilyation of naphthalene 1 followed by the much faster annulation of the resultant 

terminal acetylene. When terminal acetylene 2a, the desilylated derivative of 1, was subjected to 150 

°C microwave heating in the presence of 5 mol% platinum(II) chloride, complete consumption of the 

starting material was achieved within 1 hour. 

In order to generalise this new synthetic route to chrysenes as efficiently as possible, we telescoped 

the synthesis of ethynylnaphthalenes using our Cannizzaro cascade procedure (Scheme 2). The 

cascade procedure[12] affords crude 1,2-dihydronaphthalen-1-ol 7 which could be directly dehydrated 

using Amberlyst 15® to give silylated ethynylnaphalene 8. Subsequent addition of 

tetrabutylammonium fluoride solution to the reaction mixture followed by a single purification leads 

directly to ethynylnaphthalene 2 in up to 70% yield in a single synthetic session.    
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Scheme 2. Telescoped synthesis of ethynylnapthalene 2. 

The scope of the telescoped route is shown in Table 1 by the synthesis of a range of 

ethynylnaphthalenes (2a-f). When the R2 substituent is an electron withdrawing p-trifluoromethyl 

group (2a-c) the aromatic aldehyde can tolerate electron withdrawing, electron donating and electron 

neutral substitution and achieve yields of 45-67%. Functional groups are also tolerated in the R2 

position with p-methyl ester (2d) and m-nitrile (2f) substitution giving yields of 61% and 70%, 

respectively. Only when using a mildly electron withdrawing R2 substituent, o-fluoro (2e), was a 

significant drop in yield observed. This is mainly due to a competing reaction pathway in which the 

Cannizzaro cascade forms a fused 8-membered ring in place of the 1,2-dihydronaphthalen-1-ol. This 

observation was not unexpected and is in line with our previous work. [12] 

Table 1. Scope of the telescoped Cannizzaro cascade procedure. 
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Reaction conditions: i) LiC≡CTMS (6.9 mL of 0.50 M THF-hexane solution) treated with 2-

bromoaldehyde (3.24 mmol) at -50 °C; ii) nBuLi (3.40 mmol); iii) CuBr●SMe2 (1.63 mmol); iv) 

R2ArCClC≡CH, warmed to 0 °C; v) Amberlyst 15® and 3 Å molecular sieves at room temperature; vi) 

TBAF solution (1 M in THF, 6.5 mmol). [a] Full description of reaction conditions available in 

supplementary data. [b] isolated yield. 

Substrates 2a-f were used to assess the generality of the platinum(II) chloride catalysed synthesis of 

substituted chrysenes. Using the optimal conditions from our preliminary work, chrysenes 3a-f were 

synthesised in 31-81% yield (Table 2). Substrates 2a-b, with the p-trifluoro methyl R2 substituent, 

perform well in the cyclisation giving 3a-b in 71% and 66% yields respectively. The closely related 3c 

has a slightly lower yield of 51%, this could be in part due to its very poor solubility making purification 

challenging. Ester 3d was synthesised in 65% yield, albeit with an extended reaction time of 2 hours 

needed to achieve full consumption of the starting material. The highest yielding chrysene was 4-

fluoro substituted 3e attained in an impressive 83% yield. 

 

Table 2. Formation of substituted chrysenes 3a-f. 
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[a] Isolated yield. [b] Microwave heating was continued for a total of 2 hours to achieve complete 

consumption of starting material. [c] Product was isolated as a 12:1 mixture of regioisomers favouring 

substitution at the 3 position versus the 1 position. 

Substrate 2f was chosen for this study to assess the regioselectivity of the cyclisation as both 

possible chrysene products have published 1H NMR spectroscopic data. [10a] Gratifyingly, inspection 

of our own sample showed that we obtained high regioselectivity with a 12:1 ratio favouring the 

formation of 3-nitrile substitution over 1-nitrile substitution. The lower yield of chrysene 3f is 

thought to be caused by a competing polymerisation pathway involving the nitrile group. 

Conclusion 

We have developed a new, step efficient, synthetic route to substituted chrysenes. Application of a 

one-pot Cannizzaro cascade procedure followed by telescopic dehydration and desilylation gives 

swift access to ethylnylnaphthalenes from very simple precursors. Formation of chrysenes can be 

achieved via platinum(II) chloride catalysed annulation under microwave heating. This overall 

synthetic sequence shows how one-pot reactions can be used to rapidly build up molecular 

complexity and access derivatives of valuable biologically active targets.  
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