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Excess visceral adiposity, in particular that located adjacent to the heart and coronary arteries is associated with
increased cardiovascular risk. In the pathophysiological state, dysfunctional adipose tissue secretes an array of
factors modulating vascular function and driving atherogenesis. Conversely, brown and beige adipose tissues
utilise glucose and lipids to generate heat and are associated with improved cardiometabolic health. The cardiac
and thoracic perivascular adipose tissues are now understood to be composed of brown adipose tissue in the
healthy state and undergo a brown-to-white transition i.e. during obesity which may be a driving factor of
cardiovascular disease. In this review we discuss the risks of excess cardiac and vascular adiposity and potential
mechanisms by which restoring the brown phenotype i.e. “re-browning” could potentially be achieved in
clinically relevant populations.

© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Excess adiposity is amajor independent risk factor for cardiovascular
disease (CVD) [1,2] and the associated metabolic syndrome. Pathologi-
cal changes in white adipose tissue with obesity directly contribute
to both metabolic abnormalities and the atherosclerotic process [3,4].
Visceral adiposity, compared to subcutaneous fat accumulation, is
recognised to have a greater impact on cardiovascular disease (CVD)
whichmay be due in part to its close proximity to the heart. In contrast,
brown adipose tissue (BAT) is a thermogenic organ that expresses
the unique uncoupling protein (UCP)1 on the inner mitochondrial
membrane, enabling it to circumvent ATP production and dissipate
chemical energy as heat [5]. In humans reduced BAT function is
closely associated with obesity, compromised metabolic health and
cardiovascular risk [6–8]. The activation of existing BAT, through the
recruitment of brown adipocytes or the ‘browning’ of white adipocytes
to ‘beige’ cells could be a new therapeutic target for combating
cardiometabolic disease.

The purpose of this review will be to a) give an overview of the
health risks of excess cardiac and vascular adipose tissues b) discuss
how this may be related to a transformation from brown to white
adipose tissue (“whitening”) and c) highlight potential interventions
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to ‘brown’ these depots with the specific intent of improving cardiovas-
cular health.

2. Defining the cardiac adipose tissues

Terms to describe cardiac adipose tissue vary in the literature
and are used interchangeably. It is therefore important to clarify the
specific anatomical location and origin of each fat depot as despite
their close proximity they have distinct differences in embryological
origin [9] (Fig. 1).

2.1. Paracardial adipose tissue

Often termed intra-thoracic [10], mediastinal [11] or pericardial, is
situated on the external surface of the fibrous layer of the pericardium,
vascularised by non-coronary arteries and consists of adipocytes
originating from the thoracic mesenchyme [9].

2.2. Epicardial adipose tissue (EAT)

EAT is considered to originate from the splanchnic mesoderm,
however, recently it is shown to be derived from mesenchymal
transformation of cells in the epicardium [12,13]. It is vascularised
by branches of the coronary arteries. EAT is located between the
myocardium and the visceral layer of the pericardium [12] account-
ing for ~20% of total heart weight [14], covering 80% of the cardiac
surfaces [15] and present in the atrioventricular and interventricular
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Anatomical location, physiological and pathological roles of paracardial, epicardial and perivascular adipose tissues.
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grooves, within and along the myocardium and surrounding the
coronary arteries [14,16]. Importantly, there is no fibrous layer
separating EAT from the underlying myocardium and coronary
vessels hence the theory that EAT locally modulates CVD risk by
secreting factors acting in a paracrine fashion on both cardiomyocytes
and the vasculature.
2.3. Pericardial adipose tissue

Pericardial adipose tissue is a broad term used when referring to the
total mass of both epicardial and paracardial adipose tissues.
2.4. Intramyocardial adipose tissue

This term is given to the adipocytes located within the myocar-
dium itself. Classically these have been hypothesised to spill over
into the myocardium from the adjacent hypertrophic EAT due to
the absence of muscle fascia putatively contributing to lipotoxicity
in adjacent cardiomyocytes [17]. More recently however it has
been shown that intramyocardial lipid accumulation occurs when
adipocytes are generated both from the developing endocardium
[18] and by the differentiation of atrial cardiac mesenchymal
progenitors [19].
2.5. Perivascular adipose tissue (PVAT)

PVAT is defined as the adipose tissue situated outside the blood
vessels being structurally distinct from the adventitia and also not
separated from it by a fibrous layer. Present in varying amounts around
all arteries bar the cerebral artery and microcirculation [20].
3. Physiological roles of the cardiac and vascular adipose depots

3.1. Paracardial adipose tissue

Little is known about its precise role with most studies predomi-
nantly focussed on either perivascular or EAT due to their close proxim-
ity to the vasculature. Its gene expression profile is closer to that of BAT
than subcutaneous adipose tissue [11] and its transcriptome is also
similar to EAT [21] in men with CVD. Paracardial adipose tissue
expresses a pathogenic profile characterised by increased expression
of glucocorticoids and macrophage infiltration during CAD [22,23].
Hypothetically, it may be both thermogenic and a metabolically active
endocrine organ capable of contributing to systemic inflammatory
processes modulating CVD progression.

3.2. EAT

It serves amultitude of roles essential to both survival and cardiovas-
cular function. As the depot of fat that surrounds the coronary arteries,
EAT acts in a similar fashion to PVAT providing mechanical protection
during the contraction from neighbouring tissues [9,24] such as the
myocardium. Similarly, as a perivascular depot EAT plays a key role in
modulating coronary vascular tone and function through the secretion
of numerous vasoactive factors such as leptin [25,26], adiponectin
[27], nitric oxide [28] and angiotensin (1–7) [29] among others [20].
Metabolically, EAT has the highest rate of lipogenesis and free fatty
acid (FFA)metabolism of all fat depots [30], although this was observed
in adult guinea pigs and has not been replicated in other animal models
or humans. EAT is hypothesised to store intravascular FFA to protect
cardiomyocytes from excess exposure when raised in plasma, but also
releases them to provide energy for the myocardium [30,31]. The
storage hypothesis of excess FFAs as a protective function against
myocardial lipotoxicity has not been rigorously tested because this
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would require the coronary arteries to perfuse EAT before they
penetrate the myocardium as distinct vessels which is not normally
the case. Physiologically the propensity to rapidly synthesise and
metabolise FFA is vital given that in humans they are the primary fuel
of themyocardium [32]. EAT expresses thermogenic genes typically as-
sociatedwith BAT and beige adipose tissue [33,34]. It has been proposed
to provide direct heat to the myocardium conferring a survival advan-
tage by protecting the heart during hypothermia, ischaemia or hypoxia
[34]. There is no direct evidence however to suggest that these adipo-
cytes produce heat and given their location adjacent to the contracting
myocardium it is feasible they may function in non-thermogenic roles
such as to alter myocardial and/or vascular redox state [33], a hypothe-
sis supported by evidence that the ‘browning’ process modulates redox
state [35] and also by the recent finding that components of the
mitochondrial electron transport chain in PVAT are essential to vascular
function [36]. Expression of thermogenic genes in this depot however
are associated with systemic lipid homeostasis [37] and EAT may also
contribute to the uptake of intravascular FFA and protect the coronary
vasculature fromhypertriglyceridemia associated damage. Furthermore
the distribution of putatively thermogenic EAT around the coronary ar-
teries suggest the possibility that it might be involved in maintaining
myocardial temperature by heating blood in the coronaries en route to
the heart [38].

3.3. PVAT

In healthy adults the secretory profile of PVAT is essential in the
regulation andmaintenance of vascular tone, remodelling and endothe-
lial function [39]. Under pathophysiological conditions such as obesity
PVAT becomes dysfunctional and compared to subcutaneous and
other visceral depots expresses a higher inflammatory profile [40],
releasing angiogenic factors [41] and inducing the proliferation of
vascular smooth muscle cells [42] leading to endothelial dysfunction
and atherosclerosis [39]. Similar to both paracardial and EAT, PVAT is
phenotypically brown though their appearance depends on anatomical
location such that PVAT surrounding the thoracic aorta exhibits brown
characteristics and PVAT surrounding the abdominal aorta is a mixture
of brown and white [43–45]. Interestingly, the ablation of PVAT in
mice and the subsequent loss of its thermogenic properties impairs
triglyceride clearance rendering them unable to regulate intravascular
temperature [44] implicating PVAT as a key player in the maintenance
of thermal homeostasis.

4. Excess cardiac and vascular adiposity and CVD risk

Despite Mazur et al. [46] stating in 2010 that EAT is not an indepen-
dent predictor of metabolic syndrome in children and adolescents and
that the prognostic value of this tissue may differ comparative to the
adult population, cross-sectional epidemiological imaging data using
echocardiography demonstrates a clear direct relationship between
EAT and CVD risk. In obese adolescents with metabolic syndrome EAT
thickness (EATT) was raised and positively correlated with fasting
plasma glucose and triglycerides, HOMA-IR, carotid IMT and a range of
parameters of cardiac dysfunction including left ventricular mass and
myocardial performance index [47]. Similar results between lean and
obese adolescents were shown by Boyraz et al. [48]who further divided
the obese group intomild–moderate and severe obesitywhere EATwas
only positively correlated with the majority of metabolic and clinical
parameters in the latter group. Conversely, in both overweight and
obese adolescents, EAT was significantly correlated with parameters
of lipid metabolism i.e. triglycerides, HDL-C and ApoB in addition to
uric acid and alanine aminotransferase indicative of a possible link
between increased EAT and non-alcoholic fatty liver disease [49]. The
accumulation of excess EAT has a clear associationwith cardiometabolic
parameters in obese children and adolescents and as such makes this
depot a particularly attractive target as interventions that can reduce
or prevent excess cardiac adiposity in early life may be more relevant
in modulating cardiovascular risk in adulthood.

The association between EAT or volume continues through to
adulthood where it becomes even more pronounced and is strongly
correlated with the progression and severity of CAD [50–53]. The
most commonmethod to quantify EATT has traditionally been echocar-
diography which has some major limitations in its accuracy. For in-
stance, typical measurements include quantifying EATT over the just
one location i.e. the anterior right ventricle [50–52] or the thickness
of extra-pericardial and EAT combined [53] and therefore do not
constitute a true representation of the association of coronary EAT and
cardiovascular risk and/or coronary atherosclerosis. Multi-detector
computed tomography (MDCT) however, by way of a higher resolution
and 3D views is able to accurately quantify the exact amount of EAT in
various locations based on tissue density and has the ability to specify
the tissue directly around the coronary arteries [10]. Similar to echocar-
diography studies, peri-coronary EAT (pc-EAT) is increased in CAD
patients [54] and is also associated with other risk factors such as coro-
nary artery calcium, hypertension and diabetes [55]. More detailed
analysis demonstrates that vessels with coronary plaque show in-
creased pc-EAT and that is further increased in vessels containing
mixed plaques supporting the relationship of excess EAT to the
atherosclerotic process. Similarly, after calculating the average
thickness of pc-EAT surrounding all three coronary arteries it was
shown to be thicker in those vessels with obstructive atherosclerosis
[56]. These human cross-sectional studies do not prove a causal role
for EAT in the pathogenesis of CAD. However, evidence for causality
was generated in a pig model of coronary atherosclerosis, in which
the resection of EAT from the anterior descending coronary artery
ameliorated atherosclerotic plaque progression within the vessel but
only at the site of adipectomy [57].
5. Cardiac and vascular adipose tissue dysfunction

It is hypothesised that pathological changes occurring in cardiac and
vascular adipose tissues as they become hypertrophic from positive
energy balance cause their association with CVD risk. During both
ageing and chronic overnutrition, white adipose tissues expand by
hypertrophy of existing adipocytes and hyperplasia of adipocyte
pre-cursors [58,59] with the concomitant recruitment of immune
cells, activation of inflammatory signalling pathways, leading to adipose
tissue dysfunction and a pro-inflammatory phenotype [60]. Similar to
white adipocytes with the onset of obesity, multilocular lipid droplets
in BAT accumulate lipid becoming hypertrophic and outstrip the
vascular supply. This creates a hypoxic microenvironment leading to
diminished mitochondrial function, adrenergic signalling, increased in-
flammation and insulin resistance [61–63]. Data from rodents [43],
sheep [64,65] and humans [11] indicate that the cardiac and vascular
adipose tissues are phenotypically brown during the early stages of
life and despite whitening with age retain brown characteristics in
adulthood [11,21,33]. It could be hypothesised that further whitening
of cardiac and vascular adipose tissues in obesity and the subsequent
dysfunction that occurs could drive a hypoxic, inflammatorymicroenvi-
ronment affecting the vasculature and driving coronary atherosclerosis
(Fig. 2). In support of this theory is evidence that the EAT of individuals
with CAD is associated with a brown-to-white trans-differentiation
characterised by significant decreases in thermogenic genes and upreg-
ulation of white adipogenesis [66]. This brown-to-white phenotype is
associated with a significant increase in EAT reactive oxygen species
production [66] whilst the EAT transcriptome is also characterised by
markers of inflammation [67]. Furthermore, the association between
EAT expression of UCP1 and circulating HDL/triglycerides suggests
that functional brown adipocytes in this depot could modulate lipid
metabolism in humans [37]. Given dyslipidaemia is a major contributor
to atherogenesis this may be another mechanism whereby the brown-



Fig. 2. Summary figure. In the healthy state cardiac and vascular adipose tissues resemble BAT. During obesity these tissues become hypertrophic, inflammatory and dysfunctional driving
endothelial dysfunction and atherogenesis. Maternal and early life (intra/extra-uterine environment), Cold exposure (SNS mediated norepinephrine release), exercise (myokine/
cardiomyokine secretion), Pharmacological activation (β3 agonists and GLP1 receptor agonists) and dietary factors (nitrates/fatty acids) may modulate cardiovascular health by
restoring the brown phenotype in these tissues.
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to-white switch in cardiac and vascular adipose tissues drives disease
progression.

Brown and beige adipose tissues have generated significant scientif-
ic interest due to their unique ability to oxidise large amounts of glucose
and lipids during UCP1 mediated thermogenesis. It is now postulated
that increasing brown and/or beige adipose mass and activity is a
feasible target to prevent obesity and related cardiometabolic disease
[68,69]. Adult humans retain significant amounts of metabolically
active BAT which is inversely associated with BMI, age and metabolic
health and importantly can be activated by either cold exposure or a
B3-agonist administration [6,70–74]. BAT can modulate glucose and
lipid homeostasis in addition to insulin stimulated glucose disposal,
insulin sensitivity and diet induced thermogenesis [75–78] with
substantial benefits seen in the insulin sensitivity of Type 2 diabetics
[79] thus highlighting its potential clinical importance. Further evidence
for a beneficial role of BAT from rodent studies demonstrates that its ac-
tivation corrects hyperlipidemia [80], reduces hypercholesterolemia
and protects from the development of atherosclerosis [81]. Transplanta-
tion of BAT apparently, improves not only whole body metabolism
but the function of the heart and other WAT depots [82,83]. Mean-
while beige adipocytes are functionally thermogenic and their
induction is also associated with metabolic benefits [84,85] sugges-
tive that ‘browning’ white depots may promote similar cardiometa-
bolic benefits.

6. ‘Browning’ cardiac and vascular adipose tissues to reduce
cardiovascular risk

Modulation of the cardiac and vascular adipose tissue to increase the
proportion of thermogenic brown or beige adipocytes could be a
feasible way to improve local inflammation and reduce cardiovascular
risk. However whilst there are an array of methods to ‘brown’ fat in ro-
dents, few of these are at a stage where they could be translated to the
humanpopulation, thuswewill discuss only those thatmay have an im-
mediate clinical application.

6.1. Pregnancy and early life

It is now understood that both maternal health and factors during
early life have a direct influence on the phenotype of offspring adipose
tissues [86,87]. We have recently shown (in press) that EAT of the
human neonate (0–29 days age) is phenotypically brown consisting of
multilocular, UCP1 positive adipocytes. During the progression to
infancy (1–12 months) and childhood (1–8 years) EAT undergoes a
transition to primarily unilocular, UCP1 negative adipocytes with only
a subset in these older age-groups having discrete islands of UCP1
positive cells. Interestingly, and similar to anorexic individuals who
exhibit a reduction in the thermogenic activity of BAT [88,89] subjects
underperforming in growth scores exhibited a downregulation of
thermogenic gene expression in EAT. This suggests that where nutrient
availability is compromised the thermogenic machinery is reduced to
maintain metabolic homeostasis. Whilst it is important to remain
cautious when extrapolating results from children with various
comorbidities the brown-to-white transition in early life and regulation
of tissue composition during nutrient scarcity supports our previous
work in sheep.

Similar to humans sheep are bornwithmaximal, fully functional BAT
to defend against hypothermia at birth making them an ideal large
animal model to study the development of brown adipose tissues in
early life [90]. Similar to the human neonate a clear morphological



Fig. 3.Histological brown-to-white transition of ovine paracardial adipose tissue at 1(A), 7 (B)and 28 (C) days after birth and epicardial adipose tissue at 1 (D), 7 (E) and 28 (F) days after
birth. Scale bar =150 μm
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transition can be seen to occur in epicardial and paracardial AT of sheep
where it resembles BAT at birth but is WAT by 28 days of age (Fig. 3).
The adverse effects of the intra uterine environment during
undernutrition and concomitant low birth weight have long been
hypothesised to result in an increased risk of CVD [91]. Maternal
nutrient restriction during late gestation in the sheep [64] down regu-
lates the expression of thermogenic, adrenergic and mitochondrial
genes in paracardial AT suggestive that reduced nutrient availability to
the growing foetus compromises the thermogenic capacity of the
cardiac adipose tissues. Interestingly, nutrient restriction earlier in
pregnancy followed by ad-libitum feeding upregulates both UCP1 and
genes involved in both white (i.e. C/EBPa and HoxC9) and brown
(i.e. BMP7) adipogenesis [65] in pericardial AT. In rodents, the offspring
of obese dams demonstrates that there is a diminished anti-contractile
effect of PVAT occurring prior to both obesity and hypertension [92].
These studies highlight the importance of maternal nutrient status as
it has the ability alter the thermogenic and adipogenic potential of car-
diac adipose tissueswhilst also programming offspring for hypertension
in the absence of measureable changes in adiposity or blood pressure.
Further investigations in both small and large mammals and children
with CVD should be conducted to investigate the influence of maternal
and early life factors on the function of these tissues. From a clinical and
public health perspective it is essential towork to improvematernal and
offspring health to prevent deleterious effects to the cardiac and
vascular adipose tissues early in life.
6.2. Cold exposure

Cold exposure is the most well established activator of BAT and the
browning of WAT [93,94], which in mice also increases lipid clearance
from the circulation [95] and ameliorates hyperlipidaemia [96]. Cold
exposure improves the lipid profile of humans; for example, patients
with hypercholesterolaemia exposed to 14 °C water over a period of
90 days had decreased LDL and total cholesterol [97]. In young healthy
human volunteers undergoing controlled overnight exposure at 19 °C,
improvements were seen in insulin sensitivity concomitant with an
increase in BAT abundance [78].
These beneficial effects of cold exposure and BAT activation are,
however, in contrast to the increased incidence of acute myocardial in-
farction (AMI) mortality reported in the winter months in European
countries [98] and the USA [99]. Elderly individuals exposed to cold
are most at risk [100] and also may lack BAT which could have a role
in increased sensitivity to cold. Paradoxically increasedwintermortality
from AMI has also been reported in countries such as Portugal where
the temperature shows relatively little seasonal variation but has higher
winter AMI mortality compared to those in Northern Europe [98],
indicating that factors other than temperature may also be involved.
For example, it is also known that respiratory infections are increased
in winter and can increase the risk of AMI [101]. Due to possible con-
founding factors it is difficult to elucidate the mechanism between
cold exposure and possible adverse or beneficial effects on CVD risk in
epidemiological studies.

Associations between cold exposure, BAT activity and atherosclero-
sis have been examined in controlled conditions using animal models
but have reported conflicting results. A possible mechanism for cold
exposure and increased AMI was proposed by Dong et al. who reported
that in ApoE−/− Ldlr−/−mice exposed to 4 °C, atherosclerotic plaque
growth and instability increased but was not observed with UCP1 dele-
tion [102]. However these mice lack functional hepatic lipid clearance
and cold exposure improves lipid profile in APOE*3-Leiden·CETP mice
where hepatic lipid clearance is conserved [81]. A more recent study
has reported however that ApoE−/− mice have increased atheroscle-
rosis at thermoneutrality (30 °C) compared to 22 °C [103]. This raises
interesting questions about the severity of cold challenge and CVD
risk. It is known that mild cold exposure is sufficient to activate
human BAT [78] and could therefore be activated without possible
adverse effects occurring in severe cold. Therefore the beneficial
adaptations to cold challenge with BAT activation still remain topics
that warrant further investigation and particular caution in clinical
populations with manifest CVD.

6.3. Pharmacological activation

Very few of the pharmacological agents used in pre-clinical research
to induce browning are at a stage where they could be used in clinical
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studies. Fortunately, however, there exist twowhich are in use clinically
at present and have recently been shown to induce a brown phenotype
in WAT. The first of these is a new selective β3-agonist (Mirabegron)
developed using cloned human β3 receptors that is currently licenced
in the UK for the treatment of incontinence [104]. Previous β3-
agonists mimic the effects of cold-exposure and activate beige adipo-
cytes [93,105] in animal models but only produce short-term improve-
ments in heat production, insulin sensitivity and fat oxidation in
humans [106–109]. These discrepancies between efficacy are due to dif-
ferences in receptors, pharmacokinetic properties and bioavailability
between species [110] with various undesirable off-target effects on
the cardiovascular system reported [111]. When given to BAT-positive
healthy males Mirabegron acutely activates BAT thermogenesis and
increases resting metabolic rate [112] though the dose used was four
times (200 mg vs. 50 mg) that recommended for alleviating symptoms
of overactive bladder and was associated with increased heart rate and
both systolic and diastolic blood pressure. Efficacy of this agent at lower
doses and during chronic administration still needs to be determined.
Should a safe dose be established that can ‘brown’ adipose tissues it
would become a good candidate to induce browning of cardiac and
vascular adipose tissues by pharmacological means.

Glucagon-like peptide 1 (GLP-1) agonists Exenatide and Liraglitude
are currently in clinical use for the management of hyperglycaemia in
type 2 diabetes. They have been shown in both animal studies and dur-
ing post-hoc analysis of phase-3 studies, as well as in the randomised
double-blinded prospective Leader trial [113] to have benefits on the
cardiovascular system and, in the Leader trial, major adverse cardiac
events. In mice it has recently been shown that the metabolic benefits
of GLP-1 agonists may occur in part through the activation of BAT and
the ‘browning’ of WAT depots [114–116]. When delivered through in-
tracerebroventricular injection, GLP-1 [114] and its analogue exendin-
4 [115] increase BAT thermogenesis, mediated via an increased uptake
of TG-derived FA's and plasma glucose in addition to browning WAT,
effects which may occur by activation of hypothalamic AMPK [116].
Similar results have been demonstrated when GLP-1 agonists have
been administered peripherally [117–119] with the browning of
WAT suggested to occur via upregulation of SIRT1 [120]. Whilst
these effects remain to be confirmed in humans it is feasible that
GLP-1 agonists could be suitable candidates to induce browning of
visceral adipose tissues.

6.4. Exercise

Exercise is a key modulator of cardiometabolic health [121] and
elicits a number of benefits on adipose tissues including a reduction in
cell number/size and inflammation [122], upregulated angiogenesis
[123] and mitochondrial biogenesis [124]. In recent years it has
emerged that anothermechanismbywhich exercise improvesmetabol-
ic health in rodents is by the browning ofWATwherebymyokines, pro-
duced during muscular contractions, are secreted into the circulation
and act in an endocrinemanner on adipose tissues [125,126]. A number
of these factors are also secreted from cardiomyocytes andwe speculate
that these ‘cardiomyokines’ act on local cardiac and vascular adipose
tissues to induce ‘browning’ and modulate cardiovascular health. Of
these secreted factors, FGF21 is understood to be a potent ‘browning’
agent in rodents though its significance in humans is a topic of much
debate [127]. FGF21 however is induced following exercise [127],
secreted by cardiomyocytes [128] and regulates cardiac physiology
[129]. It is therefore feasible that this cardiomyokine acts in a paracrine
manner on EAT to induce a brown phenotype and modulate cardiovas-
cular health. Similarly, though the subject of much debate, irisin [130] is
an exercise induced PGC1-α dependent myokine that induces the
browning of WAT [126,131] whilst meteorin1, a PGC1-α4 regulated
myokine induces a brown phenotype in WAT by promoting IL4/IL13
production from eosinophils and alternative M2macrophage activation
[125]. Interestingly both irisin and meteorin1 are produced by cardiac
tissue and the pericardial connective tissue [132,133]. If these are fur-
ther upregulated post-exercise it is feasible that they could modulate
the phenotype of the local adipose depots. Natriuretic peptides are clas-
sically secreted cardiac factors well known for their role in modulating
cardiovascular homeostasis and browning adipose tissues [134] which
are also upregulated post-exercise [135,136]. The existence of a
paracrine axis between beige EAT as the target and natriuretic peptides
released from the atria and ventricles into the ventricular blood and
then the aorta and coronary arteries seems possible but remains to be
proven. Other factors that may play a role include IL-6 [137] and the
metabolite lactate which is significantly increased during exercise and
has recently been postulated to brown WAT to modulate tissue redox
state [35]. In summary, there are an array of factors postulated to induce
browning which are secreted from cardiac tissues and may act on the
local adipose tissues to improve their phenotype. The effect of increas-
ing physical activity prior to cardiac surgeries on the function of these
adipose depots should be investigated in future clinical studies.

6.5. Nutritional intervention

Diet induced thermogenesis was initially reported by Rothwell and
Stock where an upregulation of UCP1, increased BAT mass and reduced
energy cost of weight gain occurred in rats fed a cafeteria diet [138].
Although diet induced thermogenesis is more controversial than
cold induced thermogenesis [139] there have been several reports
of nutrients and dietary compounds capable of BAT activation.
Interestingly, some of these are also known to have cardio-protective
effects that could be speculated to involve the browning of vascular
adipose tissue depots.

Dietary nitrates, found in green leafy vegetables and beetroot have
been found to have beneficial effects on lowering blood pressure and
improving endothelial function in several human intervention studies
[140,141]. This is thought to be through the metabolism of nitrates to
nitric oxide which is known to cause vasodilation of resistance vessels
[140]. At least in some humans, dietary nitrates have also been found
to increase platelet cyclic GMP [142], a signalling molecule involved
in brown adipocyte thermogenesis and mitochondrial biogenesis
[143,144]. A recent study has found that feeding nitrates to rats and
mice results in the upregulation of thermogenic and beta oxidation
genes and UCP1 abundance in both white and brown adipose tissues
through the cyclic GMP/protein kinase G pathway [145]. These
browning effects were augmented in hypoxic conditions, similar to
those in adipose tissue of obese individuals [145], which provides
further promise for beneficial effects of dietary nitrate. This evidence
provides the rationale for studies in humans to assess BAT activation
with dietary nitrate which to date have not been conducted.

Conjugated Linoleic Acid (CLA) exists as a group of isomers of
linoleic acid (C18:2n−6), of which the two main biologically active
isomers are the cis-9, trans-11 and the trans-10, cis-12. The cis-9,
trans-11 isomer is naturally the most abundant (up to ~90% of total
CLA [146]) and is found in ruminant dairy and meat products, where
the trans-10, cis-12 isomer makes up a small percentage (~0.03–1.5%
of total CLA [146]). These isomers are also commercially available as a
supplement, where the isomers are generally mixed in varying levels.

Animal and, to a lesser extent, human studies have shownpromising
results for CLA supplementation in the prevention of atherosclerotic
plaque development and improvements in lipid profile [147,148].
There have also been several studies suggesting that CLA supplementa-
tion in humans can favourably alter body composition, by reducing
body fat percentage [149–151], however, other studies have not ob-
served this [152,153]. Clear mechanisms for these cardioprotective
and body compositional effects of CLA are yet to be fully identified,
and there is potential that BAT could be involved in both although
there are no human studies that indicate that browning can be induced
by CLA. In mice the trans-10, cis-12 isomer increases energy expendi-
ture, which correlated with increases in UCP1 mRNA [154,155],
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with other studies finding that the trans-10, cis-12 isomer alone, or as a
mixed isomer with cis-9, trans-11 causes browning of WAT and in-
creased UCP1 [156], however other studies have failed to show this
[157]. Work in our laboratory has shown that suckling sheep receiving
milk from a mother supplemented with dietary fatty acids, which
increased concentrations of total and cis-9, trans-11 CLA, exhibited an
increase in UCP1 [158]. It is possible that the observed increase in
UCP1 could be caused by an increase in noradrenaline, which has been
reported in mice fed a mixed CLA supplement [159] and is a known
activator of UCP1 [160].

There have been some negative side effects of CLA supplementation
including low grade inflammation [156], however a longer term trial
in humans showed no difference in adverse events between CLA
supplemented and placebo groups [151]. The variable results seen
between studies could be explained by the differing concentrations
and doses of individual CLA isomers administered in each study. These
variations make comparisons difficult and conclusions as to the role of
CLA are hard to draw. More studies using a pure isomer supplementa-
tion are needed to establish causation, and whether CLA promotes
adipose tissue browning in humans.

Diets rich in omega 3 polyunsaturated fatty acids, particularly long
chain eicosapentaenoic acid (C20:5 n−3, EPA) and docosahexaenoic
acid (C22:6 n−3, DHA) from marine sources or fish oil supplementa-
tion have been shown to reduce the risk of cardiovascular disease in
human epidemiological studies [161] and have beneficial effects on
decreasing blood pressure [162], inhibiting the progression of athero-
sclerosis [163], lowering plasma triglycerides and de novo lipogenesis
[164]. A recent study has found that feeding mice fish oil enriched in
either DHA (DHA 25%, EPA 8%) or EPA (EPA 28%, DHA 12%) induces
UCP1 in both BAT and WAT through TRPV1, although browning of
vascular adipose tissues in particular was not investigated. The
beige marker Tbx1 and thermogenic genes such as FGF21 were also
upregulated in the inguinal WAT depot [165]. An earlier report in
mice however suggested that dietary supplementation with EPA/DHA
to a high fat diet decreased visceral AT mass but no change in UCP1
[166]. These differing resultsmay be, at least in part, due to the different
dietary macronutrient compositions and varying amounts of EPA and
DHA fed to the mice as Kim et al. used DHA (25%, EPA 8%) or EPA
(EPA 28%, DHA 12%) and Janovska et al. used 46% DHA, 14% EPA.
Ambient temperature also differed between the studies as Kim et al.
utilised a temperature of 23 °C whereas Janovska et al. adopted
thermoneutrality (30 °C) which may affect brown adipose activation.
The optimum dose of EPA/DHA and conditions to promote browning
in rodents is still unknown.

A recent in vitro study has shown promising results in human
primary pre-adipocytes, where treatmentwith EPA but not DHA caused
pronounced upregulation of UCP1 and mitochondrial function in
pre-adipocytes and mature adipocytes [167]. Interestingly, arachidonic
acid (C20:4, n−6) treatment upregulated the white adipocyte marker
TCF21. A low dietary omega 3:6 fatty acid ratio has been associated
with increased CVD risk [168], it can be speculated that an increased
white adipogenesis with impaired browning due to lack of omega 3
fatty acids may play a role. The effects of these fatty acids on adipose
tissue browning have not yet been determined in vivo and require
further investigation.
7. Summary

Human cardiac and perivascular adipose tissues are phenotypically
brown early in life but whiten with age and obesity, becoming dys-
functional and contributing to atherogenesis in the local vasculature.
Whilst active BAT may offer protection from metabolic disease,
re-inducing a brown phenotype in the cardiac and vascular adipose
tissues i.e. “re-browning” may be a more direct way of reducing
cardiovascular risk as it likely reduces local inflammation and
hypoxia adjacent to the vascular wall thus attenuating endothelial
dysfunction and the atherogenic process.

This re-browning of cardiac and vascular adipose tissues may be
achieved using a variety of dietary, environmental and pharmacological
strategies. Future clinical trials should be considered to investigate
the effects of the most appropriate interventions on the adipose
tissues prior to cardiac surgeries as has been done previously when de-
termining the effect of various treatments on vascular and myocardial
tissues [169–172]. If the brown phenotype can be induced in these tis-
sues in clinical populations it will facilitate longer studies to determine
if they can attenuate the atherosclerotic process. Future pre-clinical
work could be directed at a) investigating the precise role each of
these depots play in driving atherogenesis and other cardiovascular dis-
eases b) determining how manipulation of the intrauterine and early
life environment affects long-term function of these depots and
c) develop new methods to brown these depots in adulthood.
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