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ABSTRACT 1 

Aims  2 

To investigate the acute and longer term effects of low (LGI) v high (HGI) glycaemic index 3 

diets on hepatic fat and glycogen accumulation and related blood measures in healthy 4 

volunteers.  5 

Methods  6 

Eight healthy males (age=20.1±0.4y, BMI=23.0±0.9 kg/m2) attended a test day before and 7 

after a 7-day macronutrient and energy matched HGI or LGI diet, followed by a minimum 4 8 

week wash-out period, and then returning to repeat the intervention with the alternative diet. 9 

During test days, participants consumed either a HGI or LGI test meal corresponding to their 10 

diet week, and liver fat (1H MRS), glycogen (13C MRS) and gastric content volume (MRI) 11 

were measured. Blood samples were obtained regularly throughout the test day for plasma 12 

glucose and insulin.  13 

Results  14 

Plasma glucose and insulin peak values and AUC were significantly greater following the 15 

HGI test meal compared with LGI test meal as expected. Hepatic glycogen concentrations 16 

increased more following the HGI test meal (P < 0.05) and peak levels were significantly 17 

greater after 7 days of HGI dietary intervention compared to that at the beginning of the 18 

intervention (P < 0.05). Liver Fat fractions increased significantly following the HGI dietary 19 

intervention compared with the LGI dietary intervention (two way repeat measures ANOVA, 20 

P ≤ 0.05).  21 

Conclusions 22 



5 
 

Compared to an LGI diet, a one week HGI diet increased hepatic fat and glycogen stores. 23 

This may have important clinical relevance for dietary interventions in the prevention and 24 

management of non-alcoholic fatty liver disease. 25 

  26 
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INTRODUCTION 27 

Shifts in eating patterns and dietary compositions are believed to be a major contributing 28 

factor to the recent rise in obesity and obesity related problems [1, 2]. Type II diabetes, for 29 

example, has been thought to be a disease of ectopic fat and the development of non-30 

alcoholic fatty liver disease (NAFLD) as well as non-alcoholic steatohepatitis (NASH) have 31 

been considered as key steps in its pathogenesis [3]. Changes in the amount of food 32 

consumed and total energy intake influences long-term energy stores such as adipose tissue 33 

and intrahepatic triglycerides, but the specific influence of individual macronutrients on 34 

ectopic fat in general and accumulation of liver fat in particular are not established.  35 

Recently, glycaemic index has been considered as a potentially important factor influencing 36 

these conditions, and low glycaemic index (LGI) dietary interventions have been shown to be 37 

effective in lowering total fat mass and increasing lipid utilisation in patient studies [4, 5]. 38 

LGI foods have also been linked to more rapid recovery from previous training sessions [6] 39 

and improved satiety with less hunger between meals [7]. Whilst these findings are promising 40 

with potential clinical relevance, work is needed to investigate a wide range of factors 41 

effecting metabolic disorders. This includes both forms of energy storage in the liver, in the 42 

longer term as fats, and in the shorter term as glycogen. Gastric emptying also impacts the 43 

delivery of foods to the small intestines for absorption of nutrients into the blood stream and 44 

previous studies have shown meal timing, volume and fibre content can affect the 45 

postprandial response [8, 9].  46 

Magnetic resonance techniques offer a unique method of investigating some of these 47 

parameters. 1H MRS measurements of liver fat have been validated and used in many 48 

previous studies [10-12] and 13C MRS measurements of glycogen have also been well 49 

validated [13, 14] and provides the only non-invasive measure of hepatic glycogen stores in 50 
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vivo. Fast imaging techniques can also be used to monitor gastric emptying [15, 16]. These 51 

magnetic resonance measures can be obtained alongside blood samples to provide a broader 52 

picture of metabolic response. 53 

Previous studies have focussed on the acute postprandial changes alone, and as such less is 54 

known about the longer term effect of well controlled diets with varying glycaemic index. 55 

The aim of this study was to investigate both the immediate and cumulative effects of varying 56 

glycaemic index on liver metabolic control in healthy volunteers by monitoring hepatic 57 

glycogen and lipid levels in vivo with MRS [14, 17]. Secondary outcomes were related 58 

changes in gastric content volume, blood glucose and insulin and subjective appetite scores.  59 

MATERIALS AND METHODS 60 

Study Design.  Eight male participants underwent two 7-day diet periods separated by a 61 

minimum four-week washout in a randomized cross-over study. The day before (visit 1) and 62 

the day after (visit 2) each diet period, participants attended the Sir Peter Mansfield Imaging 63 

Centre (SPMIC) in Nottingham for a test day. Ethical permission was obtained from the 64 

University of Nottingham Medical School Research Ethics Committee and all participants 65 

provided informed written consent before participation.  66 

Eligibility. Participants were screened for eligibility (male, aged between 18 and 35 years old, 67 

with a BMI between 20 and 25 kg/m2 and no contraindications for MRI). Participants were 68 

excluded if they were on any special diets, weight loss programs or strict physical training 69 

routine (defined as > 5 hours of intense training per week); if they were heavy drinkers (more 70 

than 3 units a day) or smokers; or if they had any metabolic disorders or liver disease. 71 

Participants were block randomized to determine the initial intervention (HGI or LGI). 72 
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Demographics. Mean age of participants was 20.1 ± 0.4 years with a mean BMI of 23.0 ± 0.9 73 

kg/m2. The mean weight of participants at the start of visit 1 was 73 ± 3 kg and at the start of 74 

visit 2 was 73 ± 3 kg. 75 

Test Day. Prior to the test days the participants were asked to refrain from alcohol and to 76 

consume the same evening meal by 9:00 pm the night before visit 1 of both diets. At the end 77 

of each dietary period the final meal was consumed before 9:00pm on the evening before 78 

visit 2. On the morning of each test day participants arrived fasted at the MR centre between 79 

7:30am and 8:00am, and were weighed. After fasted measurements, participants were given 80 

either a high glycaemic index (HGI) or LGI test meal for breakfast (supplementary table 1) 81 

depending on their diet week, which was to be consumed within 10 minutes followed by 82 

regular measurements for 360 mins. 83 

At the start of the day, participants were cannulated in the forearm and samples were taken at 84 

regular intervals throughout the day. Samples were centrifuged, frozen and stored at -800C 85 

for analysis of plasma glucose and insulin (detailed methods in supplementary material).  86 

All MR measurements were acquired using a Philips Achieva 3T system (Philips, Best, The 87 

Netherlands).  88 

13C MRS measurements of glycogen were detected with an adiabatic half passage pulse-89 

acquire sequence (MRS bandwidth = 7 kHz, TR = 959 ms). Spectra were acquired using a 90 

single loop carbon coil with proton decoupling (Pulseteq, Surrey, UK) as described 91 

previously [15, 18, 19] (more details in supplementary material). Measurements were taken at 92 

start of day (fasted) and hourly following the test meal.  93 

1H MRS measurements of liver fat were detected with a respiratory triggered point resolved 94 

spectroscopy (PRESS) sequence (Bandwidth = 2 kHz; TR = 5 s) with varying TE (40, 50, 60 95 
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and 80 ms). Spectra were acquired using a 32 channel Philips XL SENSE torso coil from a 96 

30x30x30mm3 voxel in the lower right hepatic lobe, with and without water suppression. T2 97 

was determined and used to correct fat-to-water ratios to determine liver fat fractions [10, 20] 98 

at start of day (fasted) and 360 mins after test meal (more detail in supplementary material).  99 

MR Images were also acquired throughout the test day and regions of interest were drawn 100 

around the content of the stomach using Analyze9 (Mayo Foundation, Rochester, MN, USA) 101 

and summed across slices to determine Gastric Content Volume (GCV) as described 102 

previously [15, 16]. GCV was therefore a combined measure of both ingested food and 103 

stomach secretion. 104 

Visual analogue scales (VAS) were completed at the same time as blood sampling to assess 105 

subjective appetite ratings using five mixed appetite questions [21-23]. On day 1 (start of 106 

diet), day 4 (middle of diet) and day 7 (end of diet) participants also filled out subjective 107 

appetite ratings. The VAS methods and results are reported in the supplementary material.  108 

Diet Week. Following the test day, participants undertook a 7 day HGI or LGI diet before 109 

visit 2, and returned again after a >4 week washout for the alternate diet. During the diet 110 

week participants were provided with all the food required as adapted from Morgan et al [24] 111 

shown in supplementary table 2. All food was purchased from a single supplier and given 112 

directly to participants. They were also given a booklet describing the quantities of each meal 113 

to be consumed, along with scales and a measuring jug to measure out the required 114 

ingredients for each meal. Participants recorded whether they consumed the full meal, and if 115 

not how much was remained.  116 

Prior to the study, participants completed the international physical activity questionnaire 117 

(IPAQ) and their basal metabolic rate was calculated using the Henry modified Schofield 118 

formula [25, 26]. This was used to scale the amount of food consumed during diet weeks to 119 
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match expected energy expenditure and provide over all energy balance (no weight loss or 120 

weight gain).  The energy intake and macronutrient content was matched for the HGI and 121 

LGI diets (71% carbohydrate, 14% protein, 14% fat per day). Whilst this level of 122 

carbohydrate is greater and level of fat is lower than national standards, these proportions 123 

were based on previous well defined HGI v LGI intervention in healthy volunteers that show 124 

clear glycaemic differences [24], and the diet was deemed suitable for this preliminary proof 125 

of concept study exploring carbohydrate glycaemic index.  As would be expected and is 126 

usually the case, the fibre content was greater during LGI compared with HGI (Fibre: ~22 127 

g/day for HGI and ~42 g/day for LGI) [24] and therefore the term LGI denotes a high-fibre 128 

low glycaemic index diet and HGI denotes a lower-fibre high glycaemic index diet.  129 

Sample size. The exploratory nature of this study with few related publications made sample 130 

size calculations difficult. However, estimates of effect size were made based on previous 131 

studies and used to determine an appropriate sample size using G*power 3.1.5 [27]. An a 132 

priori two way repeated measures F-test (ANOVA) will find a significance interaction with a 133 

power of 0.8 given an effect variance (HGI – LGI) of 2.1% and a within group variance of 134 

2.9% in a sample size of 6 subjects (effect size = 0.84). These variances were based on liver 135 

fat changes observed in a previous study [28] assuming changes only observed on HGI diet. 136 

There are a number of important differences in the present study, such as increased 137 

carbohydrate proportion and iso-energetic intervention, and as such the sample size was 138 

increased to 8 subjects. This sample size would also calculate a significant change of 15% 139 

hepatic glycogen using a matched pair student’s t-test given variability observed in previous 140 

studies [13] 141 

Blinding. On completion of all data acquisition, results were blinded by an uninvolved 142 

colleague and analysed by the first author. Although the first author was present during scan 143 

sessions, spectroscopy data were not viewed in real time and only assessed after blinding. 144 
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Blood samples were analysed by uninvolved colleagues and so were not blinded. Following 145 

initial analysis a blind review meeting was held before data were unblinded. Deviations from 146 

protocol were discussed and data assessed for statistical relevance on a per protocol basis. 147 

Data Analysis.  Methods of analysis are described in more detail in the supplementary 148 

material. Values were calculated for individual time points and hepatic glycogen values were 149 

also calculated as percentage baseline. The total area under curve (AUC) across the test visit 150 

was also calculated for glucose, insulin and glycogen. In addition, the glycaemic index was 151 

calculated using the area above baseline (incremental AUC, iAUC) from t=0 to t=120minutes 152 

from plasma glucose results. Homeostasis model assessment of insulin resistance (HOMA-153 

IR) was also calculated from fasted glucose and insulin values using (𝐺𝐿𝑈𝐶𝑂𝑆𝐸 ×154 

𝐼𝑁𝑆𝑈𝐿𝐼𝑁)/ 22.5 .   155 

Statistical Analysis. Results are reported as mean with standard error, and mean difference 156 

with standard deviation. Parametric testing was performed assuming normal distributions of 157 

lipid and glycogen in tissue, as well as postprandial hepatic glycogen and glucose response, 158 

which is reasonable given the restrictive selection criteria (healthy, male, sedentary, non-159 

smokers etc.).     160 

To assess differences in the acute response between test meals, Postprandial peaks, AUCs 161 

and iAUCs following test meals (HGI v LGI) on visit 1 (prior to diet) were compared using a 162 

matched pair Student’s t test. Measurements taken across the time course on this visit were 163 

also assessed using a two way repeated measures ANOVA and used to evaluate any 164 

significant main effect of diet (LGI v HGI) or time of day (across the test day) and/or any 165 

significant interaction between diet and time of day.  166 

To assess longer term effects of the dietary intervention, differences in fasted values at each 167 

visit were compared using a two way repeated measures ANOVA. Changes across the time 168 
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course between visit 2 and visit 1 in LGI and HGI diet arms independently were also assessed 169 

using a two way repeated measures ANOVA to evaluate any significant main effect of visit 170 

(visit 1 v visit 2) or time of day (across the test day) and/or any significant interaction 171 

between visit and time of day.  172 

All significant main effects were followed up by pairwise comparisons using a matched pair 173 

two-tail Student’s t test and significant interactions were followed up by pairwise 174 

comparisons of change from baseline values. 175 

A Bonferroni adjustment was applied for multiple comparisons. In all cases significance was 176 

attributed to P < 0.05. The statistical package used for analysis was SPSS version 21 for 177 

Windows (SPSS, Inc., Chicago, IL).  178 

RESULTS 179 

Participant recruitment and Flow. The first test day was 13th May 2013 and the final test day 180 

was on 08th October 2013. One participant dropped out early, and as such his data were 181 

removed from analysis and one subject failed to complete the LGI diet week and so his visit 2 182 

data was excluded.  For primary outcomes, this gave a sample size of n = 8 for visit 1 HGI v 183 

LGI comparisons and n = 7 for visit 1 v visit 2 comparisons. Other difficulties arose for 184 

secondary outcomes, such us failure to cannulate, and as such the sample size for each 185 

analysis varies as follows - glucose: n=5; insulin: n=6. 186 

Compliance. Participants reported good compliance across the diet week (beside the one 187 

exception mentioned above). According to the returned volunteer’s booklets, 98 ± 2 % of 188 

meals were consumed during the HGI diet and 97 ± 3 % during the LGI diet (reported energy 189 

intake was 100 ± 0 % as provided for HGI and 99 ± 1 % for LGI). 190 

Fasted Values on visit 1 (prior to diet). HOMA-IR values were similar prior to both diets 191 

(HOMA-IRHGI= 1.91 ± 0.12, HOMA-IRLGI = 1.78 ± 0.05). Fasted liver fat fractions (FF%) 192 
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and fasted hepatic glycogen (GLYC) levels were also similar prior to both diets (FFHGI
% = 1.5 193 

± 0.6 % and FFLGI% = 1.5 ± 0.5 %, P = 0.98; GLYCHGI = 306 ± 37 mmol/l and GLYCLGI = 194 

290 ± 32 mmol/l, P = 0.67) indicating a successful washout period.  195 

Glycaemic and insulinaemic response of diets. Acute changes in plasma glucose and insulin 196 

in response to HGI and LGI test meals on visit 1 (prior to diet) are shown in figure 1a-b. 197 

Plasma glucose rose significantly more following HGI compared with LGI test meal (P < 198 

0.01). Postprandial insulin AUC was significantly more following the HGI compared with the 199 

LGI test meal (INSULINHGI – INSULINLGI: = 19 ± 3 IU/l h, P < 0.05). There was no 200 

significant change in HOMA-IR on visit 2 v visit 1 for either diet (HOMA-IRHGI = 0.42 ± 201 

0.93; HOMA-IRLGI = 0.13 ± 0.43) and there were no significant differences in the glucose 202 

and insulin response to the test meal between visit 1 and visit 2. 203 

Study Outcomes 204 

Effect of dietary intervention on liver fat fraction. There was a significant interaction 205 

between diet and visit for fasted liver fat fractions (P ≤ 0.05) with mean values increasing 206 

following the HGI dietary intervention and decreasing following the LGI dietary intervention 207 

(FFHGI% =1.3 ± 2.0 % and FFLGI% = -0.4 ± 0.7%). In the LGI arm, the main effect of 208 

diet on liver fat fraction was significant, and a subsequent pairwise comparison showed a 209 

significant reduction in liver lipids at t = 360 minutes on visit 2 compared with visit 1 210 

(FFLGI% Visit 2 – Visit 1 = 0.4 ± 0.1, P ≤ 0.001) as shown in figure 2.  211 

Acute effect of test meal on hepatic glycogen. The main effect of test meal on postprandial 212 

glycogen concentration was significant on visit 1 (prior to diet), with values increasing from 213 

fasted concentrations for the first 180 minutes and then beginning to decline until the end of 214 

the test day, as shown in figure 3a (P ≤ 0.01). In contrast, following the HGI test meal, 215 

hepatic glycogen concentrations increased from fasted levels throughout all of the visit, but 216 
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the main effect of test meal on glycogen concentration did not reach significance due to 217 

increased inter-subject variability. The coefficient of variation (CV) post consumption was 218 

significantly greater during the HGI visit compared with LGI (CVHGI = 48%; CVLGI= 20%; p 219 

≤ 0.001). There was no significant interaction between test meal and time of day 220 

Longer term effect of dietary intervention on hepatic glycogen.  Figure 3b shows the 221 

postprandial changes in hepatic glycogen on visit 2. There was no significant increase 222 

following either test meal, and no significant change from visit 1 to visit 2. Figure 3 d, e and 223 

f shows changes in hepatic glycogen at fasted, postprandial peak and AUC between visit 2 224 

and visit 1 for HGI and LGI diets.  There was no significant change in fasted glycogen stores 225 

between visit 1 and visit 2 (figure 3c), but the main effect of diet on peak glycogen 226 

concentration was significant (P ≤0.05) with mean HGI values greater than LGI (figure 3d). 227 

A subsequent pairwise comparison showed HGI peak glycogen concentration on visit 2 was 228 

significantly greater than visit 1 (P = 0.04). The effect sizes of LGI diet on fasted glycogen 229 

and peak glycogen values were small (0.06 and 0.38 respectively), whereas the effect sizes of 230 

HGI diet on fasted glycogen and peak glycogen values were moderate to large (0.67 and 1.15 231 

respectively). The main effect of diet on hepatic glycogen AUC was also significant, with 232 

mean HGI AUC greater than mean LGI AUC (P < 0.02) as shown in figure 3e. 233 

Acute effect of test meal on GCV. The main effect of test meal on GCV on visit 1 (prior to 234 

diet) was significant (figure 4) and a subsequent pairwise comparison showed GCVLGI was 235 

significantly greater than GCVHGI at t = 20 minutes (difference = 116 ± 23 ml, P ≤ 0.001).  236 

Longer term effects of dietary intervention on GCV. Visit 1 and visit 2 GCVs are shown 237 

on figure 4. In the HGI arm, the main effect of diet on GCV was significant (P < 0.03) and a 238 

subsequent pairwise comparison showed gastric content values were significantly greater on 239 

HGI visit 2 compared with HGI visit 1 at t = 20 minutes (P ≤ 0.05), 140 minutes (P ≤ 0.05) 240 
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and 200 minutes (P < 0.05). In the LGI arm the main effect of diet on GCV was not 241 

significant. There was also no significant interaction between diet and visit. 242 

DISCUSSION 243 

Glycaemic Response. The immediate glycaemic responses were as expected and blood 244 

glucose levels were in strong agreement with Morgan et al [24] confirming a variation in 245 

glycaemic index as intended. Plasma insulin responses were also as expected [29], with 246 

greater plasma glucose levels prompting increased insulin secretion. There was no change in 247 

fasting insulin resistance following the diet week (HOMA-IR) which is not surprising given 248 

the short intervention period. Changes in liver fat are expected to precede insulin resistance, 249 

and future studies should explore the longer term impact of HGI and LGI diets on insulin 250 

sensitivity. 251 

Liver Fat Fraction. Results from 1H MRS were striking and of high clinical relevance. 252 

Hepatic fat fractions increased after 1 week of HGI diet and decreased after LGI, suggesting 253 

that reducing dietary glycaemic index has the potential of providing long term health benefits 254 

in the prevention and management of NAFLD, obesity and type II diabetes.   255 

Previous HGI v LGI dietary intervention studies have not controlled for macronutrient 256 

content or total energy intake and energy balance; as such the present study provides new 257 

evidence that glycaemic index and/or fibre content plays an important role in ectopic fat 258 

deposition independent of nutritional composition. In a recent cross sectional analysis, 259 

Valtuena et al reported a strong correlation between steatosis grading and dietary glycaemic 260 

index specifically [30]. Whilst the smaller sample size of the present study limits its direct 261 

applicability to the general population, it does provide preliminary data that supports the 262 

findings of this previous study [30] and suggests that glycaemic index is indeed associated 263 

with liver lipid storage even under iso-energetic conditions.  264 
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A recent 4 way trial comparing glycaemic index (High v Low) and carbohydrate content 265 

(65% v 50%) during a period of weight gain found significant increases in liver fat following 266 

a high carbohydrate diet but no association with glycaemic index [31]. However, in this study 267 

the refeeding phase included excess energy, whereas the present study used a dietary 268 

intervention that provided no energy surplus or deficit in participants and also had a greater 269 

proportion of carbohydrates. Further studies should explore if the significant effects of 270 

glycaemic index found in the present study are driven by the increased carbohydrate 271 

consumption and how this relates to excess energy intake. These results indicate the potential 272 

importance of type of carbohydrate consumed in the prevention of metabolic disorders, for 273 

example in the pre-diabetic population. Whilst excess energy intake will provide the most 274 

significant contribution to fat deposition and metabolic dysfunction [32], glycaemic index 275 

should also be seen as relevant. 276 

Glycogen. As far as the authors are aware, this study showed for the first time increased 277 

hepatic glycogen storage following a HGI breakfast compared with an iso-energetic LGI 278 

breakfast. During the visit prior to the diet, the increase in mean absolute glycogen levels 279 

following the HGI test meal accounted for 25% of the ingested intake of carbohydrates, in 280 

strong agreement with the literature [33, 34]. In contrast to this, the peak LGI hepatic 281 

glycogen response was lower and declined from 180 minutes. Similar findings have been 282 

reported in muscle in a number of studies [35, 36] in which HGI test meals prompted a 283 

greater storage of muscle glycogen. This relationship may be due to increased insulin levels 284 

driving an increased rate of glycogenesis and these effects may differ in patient populations, 285 

such as people with insulin resistance or obesity. 13C MRS provides a powerful non-invasive 286 

method for monitoring these effects in future studies and provides useful insight into 287 

metabolic diseases. Related to this finding was the observation of increased peak glycogen 288 

levels on the visit following the 7-day diet, which was only significant after the HGI 289 
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intervention, although this may be due to the larger proportion of carbohydrates in the dietary 290 

intervention consumed compared with the standard UK diet. Whilst previous studies have 291 

shown longitudinal glycogen MRS measurements have considerable variability [20], there 292 

was a large effect size in fasted and peak measures following the HGI diet. This may be 293 

accounted for by the increased postprandial glycogen levels from the evening HGI meal 294 

before visit 2. Greater glycogen stores at the start of the day would seem beneficial to 295 

individuals who need a sustained postprandial energy release, for example athletes or other 296 

physically active individuals, but have the potential to be broken down through 297 

glycogenolysis and enter lipogenesis for longer term energy stores in more sedentary 298 

individuals. The significantly greater CV following the HGI compared with LGI test meal 299 

also indicates a more variable glycogen response to high glycaemic index food in healthy 300 

individuals and may be relevant to the prevention or treatment of patients with glycogen 301 

storage disease. 302 

Gastric Contents Volume. The present study also showed evidence of changes in postprandial 303 

GCV following the diet week, though could be due to either changes in gastric emptying or 304 

gastric secretion which were not distinguished here. During the visit prior to the diet week, 305 

gastric content was greater for LGI compared with HGI despite meal volumes being matched, 306 

which may be a result of slowed gastric emptying during LGI due to increased fibre content 307 

[9]. However, during visit 2 this was reversed and gastric content was significantly smaller for 308 

LGI visit 2 compared with LGI visit 1. Further work is needed to establish whether these 309 

changes are an adaptive effect of the dietary interventions.  310 

There were a number of limitations with this study. First, the study group was small; given the 311 

multifactorial nature of the study, it would have been preferable to have allowed more for non-312 

compliance and cannulation difficulties while calculating sample size. Whilst eight participants 313 

could be analysed for the proposed primary outcomes, problems with blood samples and 314 
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incomplete response to survey limited our ability to assess some of the secondary outcomes. 315 

Secondly, it was difficult to account for the effect of the variation in fibre content between diets 316 

and this cannot be ruled out as a factor independent of glycaemic index that influenced some 317 

of the outcomes. In addition, obtaining information about eating habits of participants prior to 318 

entry into the study would allow the investigators to more directly compare changes seen in 319 

both diets rather than our assumption that intake reflected average UK dietary intakes. This 320 

could also be used to exclude those with unusual eating habits or to normalize intake in a pre-321 

diet period.  Thirdly, we recruited young healthy Caucasian males with the intention to limit 322 

metabolic and hormonal variability and to improve statistical power given a small sample size. 323 

However, this limits the generalisability of our findings and further work should explore if the 324 

results can be extrapolated to a wider population.  325 

In conclusion, this study provides preliminary data that suggest that iso-energetic HGI diets 326 

compared with LGI diets lead to significant accumulations of liver fat without changes in 327 

body weight. Therefore, low glycaemic index high fibre foods offer significant health 328 

benefits in reducing liver fat fractions compared with high glycaemic index foods, and should 329 

be considered in dietary interventions in NAFLD, obesity and related metabolic disorders. 330 

Future studies should explore the impact of glycaemic index over a longer period, and also in 331 

patients with obesity or metabolic syndromes to assess whether the findings of this study can 332 

be used in the prevention and management of these conditions. 333 

 334 

ACKNOWLEDGEMENTS 335 

The authors wish to thank Katrina MacAulay and Charlotte Walden for helpful 336 

discussions. We acknowledge the support of the National Institute for Health Research 337 

(NIHR) Nottingham Digestive Diseases Biomedical Research Unit at the Nottingham 338 



19 
 

University Hospitals NHS Trust and University of Nottingham. The views expressed are 339 

those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of 340 

Health.341 



20 
 

REFERENCES 

1. Zelber-Sagi, S., et al., Incidence and Regression Rates of Nafld in a Seven Years Follow up of a 
Cohort from the General Population. Journal of Hepatology, 2011. 54: p. S351-S352. 

2. Birkenfeld, A.L. and G.I. Shulman, Nonalcoholic Fatty Liver Disease, Hepatic Insulin 
Resistance, and Type 2 Diabetes. Hepatology, 2014. 59(2): p. 713-723. 

3. Taylor, R., Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. 
Diabetologia, 2008. 51(10): p. 1781-1789. 

4. Bouche, C., et al., Five-week, low-glycemic index diet decreases total fat mass and improves 
plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care, 2002. 25(5): 
p. 822-828. 

5. Solomon, T.P.J., et al., A Low-Glycemic Diet Lifestyle Intervention Improves Fat Utilization 
during Exercise in Older Obese Humans. Obesity, 2013. 21(11): p. 2272-2278. 

6. Stevenson, E., et al., Improved recovery from prolonged exercise following the consumption 
of low glycemic index carbohydrate meals. International Journal of Sport Nutrition and 
Exercise Metabolism, 2005. 15(4): p. 333-349. 

7. Chang, K.V.T., et al., Low Glycemic Load Experimental Diet More Satiating Than High 
Glycemic Load Diet. Nutrition and Cancer-an International Journal, 2012. 64(5): p. 666-673. 

8. Kwiatek, M.A., et al., Effect of meal volume and calorie load on postprandial gastric function 
and emptying: studies under physiological conditions by combined fiber-optic pressure 
measurement and MRI. American Journal of Physiology-Gastrointestinal and Liver 
Physiology, 2009. 297(5): p. G894-G901. 

9. Benini, L., et al., Gastric-Emptying of a Solid Meal Is Accelerated by the Removal of Dietary 
Fiber Naturally Present in Food. Gut, 1995. 36(6): p. 825-830. 

10. Szczepaniak, L.S., et al., Measurement of intracellular triglyceride stores by H-1 spectroscopy: 
validation in vivo. American Journal of Physiology-Endocrinology and Metabolism, 1999. 
276(5): p. E977-E989. 

11. Longo, R., et al., Proton MR spectroscopy in quantitative in vivo determination of fat content 
in human liver steatosis. J Magn Reson Imaging, 1995. 5(3): p. 281-5. 

12. Runge, J.H., et al., Measuring liver triglyceride content in mice: non-invasive magnetic 
resonance methods as an alternative to histopathology. MAGMA, 2014. 27(4): p. 317-27. 

13. Taylor, R., et al., Direct assessment of liver glycogen storage by C-13 nuclear magnetic 
resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal 
subjects. Journal of Clinical Investigation, 1996. 97(1): p. 126-132. 

14. Taylor, R., et al., Validation of C-13 Nmr Measurement of Human Skeletal-Muscle Glycogen 
by Direct Biochemical Assay of Needle-Biopsy Samples. Magnetic Resonance in Medicine, 
1992. 27(1): p. 13-20. 

15. Bawden, S.J., et al., A Low Calorie Morning Meal Prevents the Decline of Hepatic Glycogen 
Stores: A Pilot in vivo 13C Magnetic Resonance Study. Food and Function, 2014. 5(9): p. 2237 - 
2242. 

16. Hoad, C.L., et al., Measurement of gastric meal and secretion volumes using magnetic 
resonance imaging. Physics in Medicine and Biology, 2015. 60(3): p. 1367-1383. 

17. Jue, T., et al., Natural Abundance C-13 Nmr-Spectrum of Glycogen in Humans. Magnetic 
Resonance in Medicine, 1987. 5(4): p. 377-379. 

18. Awad, S., et al., The effects of fasting and refeeding with a 'metabolic preconditioning' drink 
on substrate reserves and mononuclear cell mitochondrial function. Clinical Nutrition, 2010. 
29(4): p. 538-544. 

19. Jovanovic, A., et al., The second-meal phenomenon is associated with enhanced muscle 
glycogen storage in humans. Clinical Science, 2009. 117(3-4): p. 119-127. 



21 
 

20. Stephenson, M.C., et al., Variability in fasting lipid and glycogen contents in hepatic and 
skeletal muscle tissue in subjects with and without type 2 diabetes: a 1H and 13C MRS study. 
NMR in Biomedicine, 2013. 26: p. 1518 - 1526. 

21. Flint, A., et al., Reproducibility, power and validity of visual analogue scares in assessment of 
appetite sensations in single test meal studies. International Journal of Obesity, 2000. 24(1): 
p. 38-48. 

22. Astbury, N.M., M.A. Taylor, and I.A. Macdonald, Breakfast Consumption Affects Appetite, 
Energy Intake, and the Metabolic and Endocrine Responses to Foods Consumed Later in the 
Day in Male Habitual Breakfast Eaters. Journal of Nutrition, 2011. 141(7): p. 1381-1389. 

23. Bellissimo, N., et al., Reproducibility of short-term food intake and subjective appetite scores 
after a glucose preload, ventilation threshold, and body composition in boys. Applied 
Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 2008. 
33(2): p. 326-337. 

24. Morgan, L.M., et al., Effect of meal timing and glycaemic index on glucose control and insulin 
secretion in healthy volunteers. British Journal of Nutrition, 2012. 108(7): p. 1286-1291. 

25. Henry, C.J.K., Basal metabolic rate studies in humans: measurement and development of new 
equations. Public Health Nutrition, 2005. 8(7A): p. 1133-1152. 

26. Dietary reference values for food energy and nutrients for the United Kingdom: report of the 
Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy, D.o. 
Health, Editor. 1991: Her Majesty's Stationary office London. 

27. Faul, F., et al., G*Power 3: A flexible statistical power analysis program for the social, 
behavioral, and biomedical sciences. Behavior Research Methods, 2007. 39(2): p. 175-191. 

28. Johnston, R.D., et al., No Difference Between High-Fructose and High-Glucose Diets on Liver 
Triacylglycerol or Biochemistry in Healthy Overweight Men. Gastroenterology, 2013. 145(5): 
p. 1016-+. 

29. Bligh, H.F.J., et al., Plant-rich mixed meals based on Palaeolithic diet principles have a 
dramatic impact on incretin, peptide YY and satiety response, but show little effect on 
glucose and insulin homeostasis: an acute-effects randomised study. British Journal of 
Nutrition, 2015. 113(4): p. 574-584. 

30. Valtuena, S., et al., Dietary glycemic index and liver steatosis. American Journal of Clinical 
Nutrition, 2006. 84(1): p. 136-142. 

31. Lagerpusch, M., et al., Carbohydrate Quality and Quantity Affect Glucose and Lipid 
Metabolism during Weight Regain in Healthy Men. Journal of Nutrition, 2013. 143(10): p. 
1593-1601. 

32. Taylor, R., Type 2 Diabetes Etiology and reversibility. Diabetes Care, 2013. 36(4): p. 1047-
1055. 

33. Radziuk, J. and S. Pye, Hepatic glucose uptake, gluconeogenesis and the regulation of 
glycogen synthesis. Diabetes-Metabolism Research and Reviews, 2001. 17(4): p. 250-272. 

34. Roden, M., K.F. Petersen, and G.I. Shulman, Nuclear magnetic resonance studies of hepatic 
glucose metabolism in humans. Recent Progress in Hormone Research, Vol 56, 2001. 56: p. 
219-237. 

35. Burke, L.M., G.R. Collier, and M. Hargreaves, Muscle Glycogen-Storage after Prolonged 
Exercise - Effect of the Glycemic Index of Carbohydrate Feedings. Journal of Applied 
Physiology, 1993. 75(2): p. 1019-1023. 

36. Wee, S.L., et al., Ingestion of a high-glycemic index meal increases muscle glycogen storage 
at rest but augments its utilization during subsequent exercise. Journal of Applied Physiology, 
2005. 99(2): p. 707-714. 

 

  



22 
 

FIGURE LEGENDS 

Figure 1. (a) Plasma glucose (n=5) and (b) plasma insulin (n = 6) results on visit 1 for high 

(▲) and low () glycaemic index test days; Values are means, with SEMs represented by 

vertical bars. *P < 0.05 between diets, † P < 0.005 between diets using matched pair 

Student’s t-test. 

Figure 2. Liver fat fractions at fasted state and end of day (t = 360 minutes) on visit 1 and 

visit 2 for HGI () and LGI () dietary interventions (n=7). Values are means, with SEMs 

represented by vertical bars. * P < 0.05 between diets using a two way repeat measures 

ANOVA; ‡ P < 0.05 FF% at t = 360 min on visit 2 compared with visit 1 using matched pair 

Student’s t-test. 

Figure 3. Hepatic glycogen concentration (% baseline) across the time course on (a) visit 1 

(n=8) and (b) visit 2 (n=7) for HGI (visit 1 =▲, visit 2 =) and LGI (visit 1 = , visit 2 = 

) test days; (c), (d) and (e) are fasted, postprandial peak and AUC respectively (n=7). 

Values are means, with SEMs represented by vertical bars. * P ≤ 0.05 between visits using 

matched pair Student’s t-test, † P ≤ 0.05 significant mains effect of diet using two way repeat 

measures ANOVA. 

Figure 4. Gastric contents volume across the time course on visit 1 and visit 2 for HGI (visit 

1 =▲, visit 2 = ) and LGI (visit 1 = , visit 2 = ) test days; x and y-axis are scaled 

equally for both visits and grid lines are included to compare absolute values. † P ≤ 0.001 

between diets using matched pair Student’s t-test $ P < 0.05 between visit 1 and visit 2 HGI 

using matched pair Student’s t-test. 
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