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Abstract: This paper describes traceable measurements of the dielectric permittivity and loss tangent of a multiphase material 

(particulate rock set in epoxy) at micron scales using a resonant Near-Field Scanning Microwave Microscope (NSMM) at 

1.2 GHz. Calibration and extraction of the permittivity and loss tangent is via an image charge analysis which has been 

modified by the use of the complex frequency to make it applicable for high loss materials. The results presented are obtained 

using a spherical probe tip, 0.1 mm in diameter, and also a conical probe tip with a rounded end 0.01 mm in diameter, which 

allows imaging with higher resolution (≈10μm). The microscope is calibrated using approach-curve data over a restricted 

range of gaps (typically between 1% and 10% of tip diameter) as this is found to give the best measurement accuracy. For both 

tips the uncertainty of scanned measurements of permittivity is estimated to be ±10% (at coverage factor k=2) for permittivity 

⪝ 10. Loss tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements 

is estimated to be ±20% (at k=2). The reported measurements inform studies of how microwave energy interacts with 

multiphase materials containing microwave absorbent phases. 

 
Keywords: Scanning microscopes, permittivity measurement, loss tangent measurement, microwave heating, multiphase 

materials, mineral characterisation, imaging. 

 

1. INTRODUCTION 

 

This paper describes imaging of permittivity and loss tangent using a resonator-based Near-Field Scanning 

Microwave Microscope (NSMM) [1][2]. NSMMs can be used to study multiphase materials, such as composite 

and functional materials [3][4], biological materials [5] and minerals [6]. In this paper, this is demonstrated by 

measurements on particulate rock set in an epoxy and polished. The specimen was prepared at the Microwave 

Process Engineering Research Group at the University of Nottingham, which has strong interests in investigating 

interactions between microwaves and matter and in developing industrial processes based on microwave 

heating [7]. The design and test phase of such processes utilises extensive numerical modelling techniques, which 

are underpinned by the accurate knowledge of the dielectric properties of materials at microwave frequencies. 

Techniques that are suitable for measurement of permittivity and loss tangent of bulk specimens of rock [8][9][10] 

have long been available, but NSMMs allow the mineral phases within the rock to be imaged and measured 

individually. They also make it possible to obtain accurate measurements on mineral phases that can only be found 

in small volumes. The NSMM described in this paper is based on a microwave resonator that is coupled to a wire 

probe. Permittivity and loss tangent of a specimen placed at the probe tip are determined from measured shifts in 

resonant frequency and Q-factor. An alternative type of microwave microscope based on an AFM cantilever has 

recently been applied to measurements on haematite [6]. 

 

The main components of the microscope are shown in Fig. 1. A detailed account of the design and construction 

of the microscope has recently been published [11]. In the present paper, calibration and imaging measurements 

are made with a spherical tip 0.1Ø mm manufactured by electro-discharge machining (EDM) [12], and a conical 

tip manufactured by electrochemical etching (Everbeing T20-100) – see Fig. 2. The conical tip has a rounded end 

Traceable Measurement and Imaging of the Complex 

Permittivity of a Multiphase Mineral Specimen at Micron 

Scales using a Microwave Microscope 

http://dx.doi.org/10.1016/j.ultramic.2016.11.001
mailto:andrew.gregory@npl.co.uk


 

 

with average diameter of 0.01Ø mm. Optical microscopy (see Section III(b)) shows that the end of the tip is axially 

symmetric, but ovoid rather than spherical as a result of the electrochemical etching process. Both probe tips are 

made from tungsten. Conical tips have a more robust construction than the spherical tip and can be made in smaller 

sizes to give higher imaging resolution, however, the tip geometry is an important consideration in the model used 

for calibration and measurement. The shape of tips also has an effect on spatial resolution, which is studied in 

reference [13]. 

 

A mathematical model for the system is required to allow the complex permittivity of measured specimens to be 

calculated. The resonator must be an integral part of whatever model is used as the relation between complex 

permittivity and the observed perturbations in frequency and Q-factor must be established. Accurate models that 

incorporate the tip geometry have been developed for use in Electrostatic Force Microscopy (EFM) experiments 

for measuring permittivity [14], but these are not directly applicable. It is well established [11] that cavity 

perturbation theory and an electrostatic model [2] (with modifications that will be summarised in Section III) can 

be used to obtain accurate measurements of permittivity and loss tangent using spherical tips. Measurements on 

polar liquids [11] have demonstrated that accurate measurement is possible even for high loss materials. The 

electrostatic model is developed for an isolated sphere in proximity to a dielectric surface. Computational 

overheads associated with the electrostatic model are low, so results can be obtained in real time. One of the aims 

of this paper is to outline a strategy for using this model with the conical tip which gives comparable measurement 

accuracy to that obtained using the spherical tip. The resonator and probe tip could instead be modelled using the 

Finite Element Method (FEM), which might in principle be more accurate for the conical tip. However, the large 

difference in scale between the resonator and the probe tip (for which very fine meshing is needed) limits the 

accuracy of FEM techniques [15].  

 

Measurements presented in Section VI show that E-fields are not closely confined around probe tips. They are 

observed to be significant at up to ≈1 mm from the tip. Measurements are sensitive to both local variations of 

permittivity at a scale smaller than the tip diameter, and also to large-scale dielectric boundaries that are much 

farther away. This fundamental limitation of a monopole probe tip has important implications for measurements 

on multiphase materials. Several papers demonstrate that a smaller sensing volume can be obtained using probes 

based on parallel-plate lines [16][17][18] or miniature bow-tie antennas [19]. These types of probe can be difficult 

to fabricate to the ideal level of precision, and so problems such as air gaps between the probe tips and specimens, 

and poor edge definition of metal plating, are likely to occur. To obtain precise measurements of permittivity and 

loss tangent generally requires implementation of calibration schemes that are tolerant of manufacturing 

tolerances [17]. Imaging data available in the current literature obtained using such probes is limited. 

 

This paper is structured as follows: In Section II an overview of the design of the microscope is presented. 

Techniques developed for calibration against dielectric reference materials and extracting the permittivity and loss 

tangent are summarised in Section III. Measurements by Mineral Liberation Analysis (MLA) that were used to 

identify the different phases of the rock specimen are described in Section IV, and in Section V NSMM 

measurements on the rock specimen are presented. The effect of dielectric boundaries is studied in Section VI, 

and conclusions are presented in Section VII. 

 

 

 

 
 

Fig 1: Simplified schematic of the NSMM. 



 

 

 

 

 
 

 

Fig. 2: Tungsten probe tips. These are attached to the inner-conductor using 

silver paint. For the spherical tip, the assembly is rather delicate. A jewel hole 

can be used to make the attachment more secure. 

 

 
 

Fig. 3: Inter-changeable inner-conductor assembly 

 

II. DESIGN OF THE NSMM 

 
There are a number of published NSMM designs based on quarter-wave coaxial cavities [1][2][20][21], strip-line 

[22] and dielectric resonators [23]. The instrument described (Fig. 1) uses a quarter-wave coaxial cavity. This has 

the advantage that a high coupling coefficient between the wire tip and the cavity is easily obtained, so specimens 

cause comparatively large shifts in the resonant frequency. The cavity is designed to resonate at ≈1.2 GHz. The 

Q-factor and resonant frequency of the cavity are obtained via swept-frequency measurements of transmission 

coefficient (S21) which are fitted in the complex S21-plane by a numerical model – see Fig. 4. These measurements 

are made on a Rhode and Schwarz ZVB20 Vector Network Analyser (VNA). The VNA is used uncalibrated but 

the magnitude of a direct ‘thru’ correction is used as a normalisation factor to allow unloaded Q-factor to be 

obtained. Q-factor measurement and the fitting algorithm are described in detail in reference [24]. As the insertion 

loss of the resonator is high (⪞30 dB) the VNA can be used at a higher source power setting (10 dBm) than the 

default to reduce noise while still remaining in its linear range. When measuring high-permittivity specimens at 

small gaps, the effect of environmental vibrations on measurements is much increased (see Section III) and, in 

consequence measured S21 Q-circles may have outlying points. The authors’ software for fitting resonant 

frequency and Q-factor allows the largest outliers to be excluded. During calibration, 101 frequency points were 

used for Q-factor measurement, but this was reduced to 51 during image scans to shorten experiments. Several 

specimens may be attached to a microscope slide, which is held in place using small magnets to allow it to be 

removed easily. Motor stages allow scanning over an area of up to 5x5 mm, and also enable switching between 

specimens to be carried out under computer control. 



 

 

 

Complex permittivity image scans on specimens are made with a minimal gap (estimated to be ≈10 nm) at which 

inter-molecular interactions between the tip and the specimen give rise to a shear force which can be detected with 

sensitive instrumentation. In this paper this is termed ‘contact mode’. In the present instrument design, contact 

mode is detected by means of an optical beam-deflection system based on excitation of a low-frequency (1.3 to 

1.4 kHz) mechanical resonance in the cavity inner-conductor by means of a piezoelectric actuator (referred to as 

the ‘dither piezo’). The inner conductor (Fig. 3) is split by means of a saw cut (width 0.3 mm) to give a tuning-

fork structure that resonates with a Q-factor of approximately 400. Deflections of the shadow of the probe (in 

laser illumination) are detected with a position-sensitive photodiode and a lock-in amplifier. The probes are 

secured with silver paint. The optical beam-deflection method enables the length of the wire probe that protrudes 

beyond the cavity to be short (<1 mm), which improves sensitivity and reduces error caused by stray field effects. 

This is a significant advantage compared to an alternative method of obtaining contact mode based on a tuning 

fork [25]. A measurement of the response of the output voltage of the lock-in amplifier as a function of the Z-axis 

setting of the piezo stage is shown in Fig. 5. A subsystem based on a feedback circuit drives the Z-axis of the 

piezo stage so that contact mode can be maintained at the lock point marked in Fig. 5 during scanning. The 

excitation voltage of the dither piezo can be controlled to ensure that the S21 data is not modulated at the dither 

frequency. In the work presented the excitation voltage is ≤ 100 mV. Technical aspects of design of the NSMM 

are considered in greater detail in reference [11]. 

 

 

 

 
 

Fig 4: Plots of S21 as the frequency is swept across a resonance are circles 

in the complex plane, referred to as Q-circles [24]. Measurements on a 

specimen of lanthanum aluminate (LAO) in contact mode and with a 

5-mm gap are shown. These sets of data were obtained using the conical 

tip. The VNA is used uncalibrated but the data shown is normalised to the 

magnitude of a direct ‘thru’ connection in place of the resonator. 

 

 



 

 

 
 

Fig 5: Output voltage from the lock-in amplifier as a function of the Z-axis 

setting of the piezo stage measured using the conical tip. These 

measurements were made with the dither-piezo drive voltage set to 25 mV. 

 

 

III. THE CALIBRATION AND MEASUREMENT PROCEDURE 

 

A modified version of the model developed by Gao and Xiang (GX) [2] is used for calculating complex 

permittivity of a specimen-under-test. This is based on an electrostatic image-charge calculation for a spherical 

tip. A calibration procedure to determine various calibration coefficients is required. This uses measurements of 

Q-factor and resonant frequency as a function of the separation gap g between the probe tip and specimen reference 

materials – referred to as approach curves. While it is possible to calibrate using only one reference specimen, 

better accuracy can be obtained using two or three with a range of permittivity values. To obtain an approach 

curve, the first stage is to establish contact mode and read the position sensor of the Z piezo. Measurements of the 

resonant frequency and the Q-factor can then be made at a range of gaps. For the smallest gaps (g <10 μm), the 

movement is generated by the piezo stage in closed-loop mode as this has high positioning accuracy (5 nm). A 

motor-driven Z stage enables the resonator and probe tip assembly to be lowered (Fig. 1) to allow larger gaps to 

be obtained. Calibration measurements at g = 5 mm (sufficient to ensure that specimens have negligible perturbing 

effect on the resonance) are recorded as these allow drift in later measurements to be corrected for. The complex 

permittivity of a specimen-under-test at a single location can be obtained by fitting to approach curve data, or to 

contact-mode data only. Images are always acquired in contact mode, but even so this is a slow process. It takes 

the microscope approximately 30 hours to acquire a 200x200 point image, so it is necessary to update the drift 

correction periodically by re-measuring the frequency and Q-factor at g = 5 mm. The gap between the probe tip 

and specimens (≈10 nm) is an input parameter for the calibration and measurement process, but in practice has a 

negligible effect as the probe tips used are comparatively large. 
 

 

(a) Reference materials 

 

The NSMM is calibrated [11] from approach curve measurements on isotropic and reproducible materials for 

which traceable measurements of permittivity are available. High-purity polished fused silica (FSIL), undoped 

single-crystal yttrium aluminium garnet (YAG) and lanthanum aluminate (LAO) are used in the work described. 

These materials all have very low loss, which implies that the real part of their permittivity can be taken to be 

independent of frequency in the range of interest [26]. FSIL and YAG are ideal reference materials, while LAO 

(ε´=23.9) is less than ideal but useful because of its comparatively high permittivity. LAO can vary in constitution 

as rare earth elements are difficult to separate [27]. It is also reported as being slightly anisotropic [27] and to 

show non-uniformity at a submicron scale due to crystal twinning [28]. High-loss solid materials that are suitable 

as calibration reference artefacts would have to be homogeneous at the micron scale and have consistent 

properties, but no such suitable materials have yet been identified. Nevertheless, the loss tangent of high loss 

materials can be determined by using only low-loss reference materials for calibration and a modified calibration 



 

 

model (discussed below). This important finding was an outcome of a study of measurements on polar reference 

liquids presented in reference [11]. 
 

 

(b) Optical inspection of the probe tips 

 

One probe tip of each type was examined using an Olympus OLS3100 LEXT confocal microscope system (see 

Figs. 6 and 7). The spherical tip was observed to be quite accurately shaped (fitted radius ≈55 μm) but had surface 

irregularities (approximately ± 2 μm). The end of the conical tip was axially symmetric but not spherical. If only 

data within 3 μm of the end of the tip is considered the fitted radius is ≈ 3 μm. Using data within 6 μm of the end 

of the tip gives the fitted radius as ≈ 7 μm. 

 

 

 
 

Fig 6: Optical image of the spherical tip. 

 

 

 
 

Fig 7: Optical image of the conical tip.

 

 

 

(c) The GXCF model – a modification of the GX model to use complex frequency 

 

The GX model [2] allows the real part of permittivity to be obtained from the perturbation to the cavity resonant 

frequency as a function of gap. A relation for calculation of the loss tangent, tanδ, from changes in 1/Q is also 

derived, but this is only applicable for low-loss materials. In reference [11] a ‘complex frequency’ implementation 

of the GX model is demonstrated (referred to as the GXCF model). This replaces frequency by ‘complex 

frequency’ and allows measurements of complex permittivity () for high and low loss materials. The complex 

resonant frequency (𝑓𝑟) of the cavity is defined by 

 

 𝑓𝑟 = 𝑓𝑟
′  (1 +

j

2𝑄
) .     (1) 

 

where 𝑓𝑟
′
 and 𝑄 are the measured (real) resonant frequency and Q-factor. According to the GXCF model, approach 

curves are described by the equation 

 

𝑓𝑟 = 𝑓∞ (1 − 𝐴 ∑
𝑏𝑡𝑛

1+
𝑔

𝑅𝑜
+𝑎𝑛

∞
𝑛=1 ) ,   (2) 

 

where A is an amplitude factor, g is the gap between the probe tip and specimen, Ro is the tip radius, b is a complex 

quantity given by b = ( -1)/( +1) and 𝑓∞ is the complex resonance frequency unperturbed, i.e. extrapolated to 

g=∞. The quantities 𝑡𝑛 and 𝑎𝑛 are calculated by simple formulas – see reference [2] for details. The calibration 

fits the coefficients 𝐴 (real or complex), an effective value for the radius 𝑅𝑜 (real) and 𝑓∞ (complex) to the data. 

In the measurements presented in this paper 𝐴 is taken to be complex (rather than real) as observations [11] show 

that improved accuracy for measurements of the loss of low loss materials is obtained. The complex frequency 

approach enables the loss of specimens to be determined following calibration against LAO, YAG and FSIL, 

which are low loss materials. This was demonstrated in measurements on BK7 glass (tanδ ≈ 0.006) and polar 

liquids (tanδ ≈ 1.0) that are also reported in reference [11]. 

 

 



 

 

(d) Calibration data for the spherical and conical tips 

 
Figs. 8 and 9 show measured approach curves for both tips. In all cases the probe tip is aligned with the centre of 

the specimens in the XY plane. These graphs also show approach curves calculated from the fitted calibration 

coefficients using the GXCF model. These use approach curve data for at least two materials over specified gap 

ranges (points marked by red squares) that are fitted by least squares. The following features can be observed: 

  

(i) Calibrations that are accurate over an extended gap range from contact mode up to 5-mm cannot be 

established for either probe tip, but much better agreement is obtained for the spherical tip than for 

the conical tip. Such limitations occur because the GX and GXCF models use a simplified geometry 

[11]; an electrostatic image charge analysis applied to an isolated perfectly-spherical tip in proximity 

to a plane dielectric boundary. Experiments have shown that calibrations are more accurate for 

shorter tips (i.e. ones that do not project far outside the cavity) which suggests that stray field effects 

are a significant factor. To obtain optimum accuracy for measurement of complex permittivity in 

contact mode, calibrations should be based on approach curve data at gaps ⪝ 10% of the tip diameter 

for the spherical tip, and ⪝ 5% for the conical tip. 

 

(ii) Measurements of Q-factor on LAO diverge significantly from the fit at small gaps (⪝1% of the tip 

diameter). This can be attributed to sensitivity to mechanical vibrations associated with the optical 

beam deflection system: when the probe tip is in close proximity to a high permittivity specimen the 

complex frequency (eqn. (2)) becomes highly sensitive to small changes in the gap, and hence to 

vibrations. Repeatability measurements (Fig. 10) demonstrate that this is the case. An increase in 

noise tends to reduce the apparent averaged Q-factor (i.e. a systematic dependence exists) which is 

attributed to the non-linear dependence of S21 on the gap. This interpretation is supported by the 

observation that if S21 data is modulated by increasing the drive voltage to the dither piezo to ⪞ 1 V 

the fitted Q-factors reduce if the probe tip is in close proximity (g ⪝ 1 μm) to a high-permittivity 

material (e.g. LAO). The effects of environmental noise can be minimised by adjustment of the 

feedback loop settings (e.g. time constants). Improvements brought by such adjustments are most 

easily discerned when measuring high permittivity materials. 

 

The gap ranges of the approach measurements used for calibration need careful consideration on account of the 

above observations. The most useful range for calibration is small (e.g. between 1% and 10% of the tip diameter). 

Tables 1 and 2 show measurements of the real part of permittivity (εʹ) and to the loss tangent (tanδ) fitted to the 

calibration data shown in Figs. 8 and 9. In addition, resonant-frequency data for a BK7 glass specimen is presented 

(it is omitted from the Q-factor graphs Fig. 8(B) and 9(B) for reasons of clarity). An independent measurement 

using a split-post dielectric resonator (SPDR) [29] on a disc specimen of BK7 at 4 GHz gave tanδ = 0.006. The 

slightly-lower values of tanδ obtained with the NSMM at 1.2 GHz are not inconsistent as some variation with 

frequency is to be expected. The accuracy of results obtained from contact mode and approach curves are 

comparable, and the resolution of tanδ measurements is observed to be approximately 0.001. 

 

The effective radius fitted by the calibration using the spherical tip was 70 μm, which is quite good agreement 

with the optical measurement (55 μm). For the conical tip, the effective radius fitted by the calibration was 14 μm, 

which is significantly greater than values estimated optically (3 to 7 μm), but a plausible result given that the 

GXCF model assumes a spherical geometry. 

 

 

 

  



 

 

 

 
A – Cavity resonant frequency 

 

 
B – Cavity unloaded Q-factor 

 

 

Fig 8: Approach curves measurements on the reference specimens obtained with the spherical tip. The microscope was 

calibrated by fitting the GXCF model to the data points marked in red. The calibration coefficients [11] are Ro (70 μm), f∞ 

(1224.018 + j0.408 MHz) and A (0.002194 - j0.000006). The unloaded Q-factors in contact mode for this data set are: 1482.2 

(FSIL), 1465.5 (YAG) and 1446.9 (LAO). The quantities fe and Qe are the differences between measured frequency and Q-

factor at a 5-mm gap and f∞ and Q∞  fitted by the calibration. 

 

† Calculated from ε* fitted to the approach curve (points in range 0.5 to 9.5 μm only) using the calibration data.  

‡ Calculated from the reference value of ε* (Table 1) using the calibration data. For clarity, points at gaps > 200μm are 

omitted. Q-factor data for the BK7 specimen is omitted as reference data for tanδ is only available at 4 GHz.  
 

  



 

 

 

 
 

A – Cavity resonant frequency 

 

 
B – Cavity unloaded Q-factor 

 

 
Fig 9: Approach curves measurements on the reference specimens obtained with the conical tip. The microscope was calibrated 

by fitting the GXCF model to the data points marked in red. The calibration coefficients [11] are Ro (14 μm), f∞ 

(1200.583 + j0.389 MHz) and A (0.000941 - j0.000009). The unloaded Q-factors in contact mode for this data set are: 1535.4 

(FSIL), 1530.3 (YAG) and 1522.4 (LAO). The quantities fe and Qe are the differences between measured frequency and Q-

factor at a 5-mm gap and f∞  and Q∞  fitted by the calibration. 

 

† Calculated from ε* fitted to the approach curve (points in range 0.15 to 0.5 μm only) using the calibration data.  

‡ Calculated from the reference value of ε* (Table 2) using the calibration data. For clarity, points at gaps > 50 μm are 

omitted. Q-factor data for the BK7 specimen is omitted as reference data for tanδ is only available at 4 GHz.  

  



 

 

 
 

Fig 10: Histograms of 500 Q-factor measurements made with the conical probe tip for the LAO calibration reference 

specimen in contact mode and at 5 mm gap. The increase in the width of the distribution of Q-factor measurements at small 

gaps and in contact mode is largely due to pickup of environmental vibrations by the optical beam deflection system. 

Sensitivity to vibrations is much increased for high permittivity materials such as LAO. The measurements shown were 

obtained using a Rhode and Schwarz ZVB VNA with 101 swept frequency points, averaging factor 1, IF bandwidth 100 Hz, 

source power 10 dBm. The insertion loss of the resonator was approximately 31 dB. 

 

Table 1: Measurements on reference materials for the spherical tip from fits to Approach Curves (AP) and Contact Mode 

(CM) data. The calibration reference specimens were YAG and LAO (gap range 0.5 μm to 8.0 μm) and LAO (gap range 

1.0 μm to 8.0 μm). The AP fits were all made with approach curve data from 0.5 μm to 9.5 μm. 
 

Spec. Nom. ε' ε' (run 1) ε' (run 2) ε' (run 3) 

AP CM AP CM AP CM 

FSIL 3.80 3.59 3.65 3.38 3.45 3.45 3.53 

BK7 6.36 6.19 6.25 5.85 5.94 5.90 6.01 

YAG 10.59 10.63 10.68 10.60 10.59 10.60 10.74 

LAO 23.9 24.01 24.23 24.11 24.00 24.01 24.66 

 

 

Spec. Nom. tanδ tanδ (run 1) tanδ (run 2) tanδ (run 3) 

AP CM AP CM AP CM 

FSIL 0.0001 0.0005 0.0003 0.0008 0.0005 0.0006 0.0003 

BK7 †0.006 0.0049 0.0047 0.0046 0.0045 0.0046 0.0045 

YAG 0.00001 0.0001 0.0001 0.0003 0.0012 0.0000 0.0001 

LAO 0.0001 0.0005 0.0003 -0.0002 0.0008 0.0002 0.0006 
†Reference value obtained at 4 GHz. At the frequency of the NSMM measurements (1.2 GHz) a change of the order of ~0.001 

is plausible so the NSMM results are consistent. 



 

 

 
Table 2: Measurements on reference materials for the conical tip from fits to Approach Curves (AP) and Contact Mode (CM) 

data. The YAG and LAO were used for calibration (gap range 0.15 μm to 0.5 μm) and LAO (gap range 0.2 μm to 0.5 μm). 

The AP fits were all made with approach curve data from 0.15 μm to 0.5 μm. 
 

Spec. Nom. ε' ε' (run 1) ε' (run 2) ε' (run 3) 

AP CM AP CM AP CM 

FSIL 3.80 3.70 3.61 3.66 3.58 3.62 3.52 

BK7 6.36 6.51 6.23 6.53 6.19 6.53 6.24 

YAG 10.59 11.12 10.33 11.30 10.31 11.48 10.68 

LAO 23.9 23.10 22.39 22.90 21.89 22.00 21.00 

 

 

 

Spec. Nom. tanδ tanδ (run 1) tanδ (run 2) tanδ (run 3) 

AP CM AP CM AP CM 

FSIL 0.0001 0.0002 0.0001 0.0005 0.0004 0.0001 0.0001 

BK7 †0.006 0.0040 0.0039 0.0044 0.0043 0.0043 0.0043 

YAG 0.00001 -0.0001 -0.0001 -0.0005 -0.0006 0.0001 0.0001 

LAO 0.0001 0.0006 0.0014 0.0002 -0.0002 0.0003 0.0004 
†Reference value obtained at 4 GHz. At the frequency of the NSMM measurements (1.2 GHz) a change of the order of ~0.001 

is plausible so the NSMM results are consistent. 
 

IV. CHARACTERISATION OF THE ROCK SPECIMEN USING A MINERAL LIBERATION ANALYSER 

 

A Mineral Liberation Analyser (MLA) was used to characterise the rock specimen [30][31][32][33] so that the 

phases that were present could be identified prior to measurement with the microwave microscope. MLA is an 

automated SEM technique which uses the back-scattered electron (BSE) and X-ray signals. The hardware consists 

of a large chamber SEM with standard peripheral detectors. The MLA at Nottingham comprises an FEI Quanta 

600 SEM with an EDAX detector using Genesis 4000 software. The MLA software interfaces with the relevant 

microscope control software for automated measurement and processing of sequential frames. The MLA 

measurements are undertaken on polished cross sections of epoxy mounted ore particles.  These are generally 

carbon coated, but low resolution measurements can be made on uncoated surfaces in low vacuum mode.  

 

The first step in measurement is BSE image capture. The BSE image contrast is a function of mean atomic number, 

allowing ‘on-line’ background (epoxy) subtraction, and segmentation of mineral areas into areas of differing 

brightness. In the simplest type of measurement, an X-ray spectrum is collected from each of the greyscale-

resolved mineral segments.  In complex composites, including minerals of similar greyscale, a grid of X-ray 

spectra are collected over a certain greyscale range to enhance the ultimate mineral segmentation. The 

measurement file includes background subtracted, segmented image files for each frame, and one or more X-ray 

spectra associated with each mineral segment. Off-line classification software pattern-matches the measurement 

spectra with a pre-determined library of mineral spectra to produce colour classified images for each frame. By 

analysis of the images, parameters such as mineral percentage, mineral grain size distribution and mineral 

liberation can be deduced. 

 

The rock specimen used in this study contains a number of different mineral phases set in an epoxy matrix 

(dimensions 10x10x1 mm). The phases were identified using an MLA. They include apatite, baddeleyite, calcite, 

chalcopyrite, dolomite, magnetite, olivine and serpentine. Chalcopyrite (CuFeS2) and magnetite (Fe3O4) are 

copper-iron and iron minerals that are mined for metal extraction. Baddeleyite is an uncommon zirconia (ZrO2) 

mineral with monoclinical crystal structure. The remaining phases are common rock-forming minerals. Several 

1x1 mm areas of the specimen that contain examples of the different mineral phases of reasonable size (⪞ 0.2 mm) 

were identified as being appropriate for measurement using the NSMM. One of these is shown in Fig. 11.

 

 

 



 

 

 
 

 

 

 

 

 

 

 

Fig. 11: Mineral phases in a 1x1 mm area. 

 

 

V. NSMM MEASUREMENTS ON MINERAL PHASES 

 

Naturally occurring minerals show great variation in both morphology and impurity content. Serpentine is actually 

a group of minerals that have widely-varying constituents. Sources of dielectric data in the literature for minerals 

are quite limited, and no data could be found for baddeleyite, olivine and serpentine. For minerals for which 

literature data is available, a wide range of values for permittivity and loss tangent are reported. The data presented 

in this paper may be useful as a broad indication of the dielectric properties of the types of mineral that have been 

measured. 
 

An initial large-area scan (5x5 mm) was made to enable features on the specimen to be matched with the MLA 

results. The largest mineral phases of each type were identified and measured in 1x1 mm (200x200 points) contact-

mode scans. Scans over one of these areas using both probe tips are shown in Fig. 12. The drive voltage for the 

dither piezo was 25 mV (conical tip) or 100 mV (spherical tip) – in neither case sufficient to cause significant 

modulation of S21 measurements. The scales of the plots have been chosen to show a chalcopyrite phase, which 

is of particular interest as it has much greater loss than any of the other phases. The observed ranges of permittivity 

and loss tangent, and literature data, are shown in Table 3. For the magnetite phases, the Q-circle is observed to 

be acutely sensitive to vibrations. This is a clear indicator that magnetite is a conductor; the same observation was 

made when a metal plate was measured. Repeatable measurements of resonant frequency and Q-factor were not 

obtainable for magnetite, so permittivity and loss tangent data is not presented. All other phases are assumed to 

be non-magnetic insulators for which the GX/GXCF theory is devised. It may however be noted that chalcopyrite 

is reported to be a partial conductor [34]. 

 

Fig. 13 shows linear plots in the Y direction to show the ε' and tanδ of the chalcopyrite phase. Data is shown for 

both tips at approximately the same location. The data is extracted from the same data sets used to create the 

images shown in Fig. 12. It can be observed that the conical tip shows an improved level of detail. Measurement 

noise is however increased as smaller changes in resonant frequency and Q-factor are measured.  

 

It is interesting to note that the data for the conical probe has spikes at the boundary between the chalcopyrite 

phase and the surrounding epoxy matrix. This effect was replicated in experiments in which the probe was moved 

under manual control: locations along the boundary were found at which stable readings of Q-factor as low as 100 

could be identified. The evidence shows that this is not a spurious instrumentational effect, but that these are 

regions of increased loss that the conical tip is able to resolve better than the spherical tip. The reason why tanδ is 

anomalously high at many points on the boundary is not known. No such phenomenon was observed for any of 

the other mineral phases. Fig. 14 shows a scan across a baddeleyite phase. Table 3 presents a summary of observed 

ε' and tanδ data for selected phases. 
 

A sample of the epoxy matrix material (epofix from Struers, UK) was prepared for measurement using a split-

post dielectric resonator [29] at 4 GHz. This gave ε' = 2.94 ± 0.03 and tanδ = 0.031 ± 0.001 (uncertainties 
given at coverage factor k=2). 
 



 

 

Table 3: Dielectric measurements on the mineral phases in the rock specimen showing variations. These measurements are 

made in contact mode at 1.2 GHz. One example of each mineral phase is measured (those chosen are among the largest 

particles, typically 0.3 to 0.5 mm across). These results are obtained from measurements on several areas of the specimen; 

not only the 1x1 mm area shown in Figs. 11 and 12. 
 

Phase Tip Observed ε' Observed tanδ  Literature values 

ε' tanδ Freq. & Ref. 

Apatite Spherical 6.6 – 7.7 0.013 – 0.016 9.43 

 

0.81 1 GHz [35] 

Conical 7.3 – 7.6 0.014 – 0.016 

Baddeleyite Spherical 10.5 – 11.5 †0.015 – 0.02 ‡24  1 MHz [36] 

Conical 10.5 – 11.5 †0.015 – 0.025 

Calcite Spherical 7 – 7.5 0.024 – 0.027 8.91 0.47 1 GHz [35] 

Conical 6.4 – 7.7 0.021 – 0.023 

Chalcopyrite Spherical 15 – 16 0.5 – 0.6 10.38  

12.2 

0.223 

0.8 

1 GHz [34] 

1.2 GHz [9] Conical 12 – 13 0.5 – 0.7 

Dolomite Spherical 6.0 – 6.2 0.017 – 0.018 7.41 2.42 1 GHz [35] 

Conical 5.9 – 6.6 0.016 – 0.020 

Olivine Spherical 6.8 – 7.0 0.015 – 0.017    

Conical 7.3 – 7.4 0.017 – 0.019 

Serpentine Spherical 6.3 – 6.5 0.03 – 0.05    

Conical 6.0 – 6.7 0.022 – 0.024 
†The large peak in tanδ shown in Fig 14 is ignored. This is believed to be a vein of another mineral. 

‡ For pure monoclinic zirconia.  



 

 

 
 
A – Spherical tip 

 

 
 

B – Conical tip 

 

Fig. 12: 200x200 point image scans on a 1x1 mm area of the rock specimen using the spherical and conical probe tips. Fig. 9 

can be used to identify the mineral phases. Chalcopyrite can be seen to have particularly high loss. The data is clipped so points 

above and below the scale ranges are plotted in white and black respectively. Readings on magnetite areas are subject to large 

variations due to noise, especially for the conical tip (see text for further discussion). Calcite and apatite phases have low loss, 

and are not visible on the Q-factor and tanδ plots using the scales used. 

 



 

 

 
 

 

 
 

Fig 13: Linear scans across a chalcopyrite phase. 

 

 

 

 

 
 

 

 
 

Fig 14: Linear scans across a baddeleyite phase. This phase has a vein running through it which 

has substantially elevated loss (which is shown with better resolution by the conical tip).  



 

 

VI. The effects of dielectric boundaries 
 

     The approach curve and imaging data show local changes in permittivity can be measured with high resolution. 

However, calculations are based on a modelling assumption that the measured phases occupy an infinite half 

space. Observations show that it is generally sufficient for the thickness of specimens to be ⪞10x the tip diameter. 

For calibration reference specimens a slightly greater thickness (e.g. ⪞15x the tip diameter) ensures that the best 

calibration accuracy is obtained [11]. Thin specimens can sometimes be measured using the two-layer binary-tree 

model [37] if the complex permittivity of the substrate that supports them is known [11]. However, if a specimen 

is too thin in comparison to the diameter of the probe tip, the binary tree becomes so large that the calculation is 

unviable. 

 

     The effect of dielectric boundaries was evaluated by making scans on reference specimens from the centre of 

specimens until the tip reaches the edge (at which point the scanning is interrupted). The conical tip was used for 

these tests. The results (Fig. 15) show that, while the microscope has the ability to resolve details at a scale of 

≈10 μm, a measurable reduction in apparent permittivity occurs when the distance is ⪝1 mm from the boundary 

with air. The spatial range of this effect is comparable to the diameter of the hole in the top of the cavity and to 

the exposed length of the monopole probe (see Fig. 2). For lossy materials a similar boundary effect on tanδ would 

be expected; however none of the reference specimens had sufficient loss to enable this to be observed. Effects 

on measurements caused by dielectric boundaries at these large distances are an inherent disadvantage of probing 

using a wire monopole – refer to Section I for more discussion. In the case of the rock specimen, the measured 

areas (Table 3 and Figs. 12–14) were at least 1 mm away from the edge of the specimen, so the proximity with 

the boundary with air should have minimal effect. The boundaries of the mineral phases within the rock sample 

must also have an effect, but this will be smaller because the permittivity of the epoxy matrix (ε' = 2.94) is higher 

than that of air. Linear scans such as Figs. 13 and 14 show that there is negligible effect at distances ⪞ 0.1 mm 

inside the boundary with the surrounding epoxy matrix. 

 

 

 

 

 
 

Fig. 15: Linear scans from the centre to the edge of the reference specimens. These 

were made using the conical tip. The curves show the effect of boundaries. 

Environmental vibrations have an increased effect for high permittivity specimens 

(Section III(d)) which is very evident for the LAO data. 

 

 

VII. Conclusion 

 
Calibration and imaging experiments with a microwave microscope that has spherical and conical probe scanning 

probe tips were performed. The calibration model, which is based on an electrostatic model for a spherical tip, is 

found to be a less accurate fit for the conical tip; nevertheless accurate measurements of permittivity and loss 

tangent can be obtained. The conical tip geometry enables robust small diameter tips to be used, so the image 

resolution can be improved. Calibration and measurements were accomplished using a theoretical approach (based 

on complex frequency) that can be applied to the measurement of the permittivity and loss tangent of high loss 

materials. Scanned dielectric property images of the multiphase rock specimen were correlated with Mineral 



 

 

Liberation Analyser (MLA) results that identify the phases. Measurements on a multiphase material have been 

demonstrated on a scale of the order of 10 μm. The NSMM system described is best suited to measurements on 

materials with ε'< 25 and 0.005 < tanδ < 1. It is unsuitable for measurements on conductive materials, such as 

magnetite and doped semiconductors. Uncertainties in  can be evaluated on the basis of measurements on 

reference specimens (Tables 1 and 2). For uniform solid specimens are large enough to avoid significant boundary 

effects, the uncertainty [38] in measured  for either tip is estimated to be ±10% (at coverage factor k=2) for 

 ⪝ 10. This corresponds to a confidence level of 95% assuming that results have a normal distribution. Solid 

lossy materials that are uniform on a small scale and so could be used as reference materials have not been 

identified, which makes it more difficult to evaluate the uncertainty of measurements of tanδ. In previous work 

[11] in which lossy polar liquids were measured, it was found that measurement errors (%) in tanδ were typically 

twice as large as those in  (which in the authors’ experience is typical for measurements by resonance). Loss 

tangent can be resolved to approximately 0.001. Subject to this limit, the uncertainty of loss tangent measurements 

is therefore estimated to be typically ±20% (at coverage factor k=2). 

 

   An apparent reduction in permittivity is observed at locations ⪝ 1 mm from the edges of uniform reference 

specimens. This is a result of the poor localisation of the E-fields between the monopole probe and the cavity lid. 

The size of the through-hole in the wall of the cavity (1 Ø mm) and length of the probe outside the cavity were 

determined by practical considerations but clearly are limiting factors; if these dimensions were reduced the E-

fields would extend less far into space and the resolution would be improved. Similarly, measurements on one 

phase in a multiphase specimen are affected by penetration of E-fields into the surrounding (epoxy) matrix and 

other nearby phases. In general, phases ⪞ 0.2 mm across can be measured with minimal error provided that (i) the 

phase is located at least 1-mm away from the edge of the specimen and (ii) measurements on individual phases 

are made at least 0.1 mm inside the boundary with the epoxy matrix. 
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