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We describe a symmetron model in which the screening of fifth forces arises at the one-loop level
through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a
theory can avoid current constraints on the existence of fifth forces but still has the potential to give rise to
observable deviations from general relativity, which could be seen in cold atom experiments.
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The mystery of dark energy has motivated much study of
scalar-tensor theories [1,2]. However, the associated scalar
fifth force has not been detected to date, and so either the
matter couplingmust be fine-tuned or this fifth forcemust be
screened in local environments. This has attracted significant
experimental interest, with proposals to test screening
models being made across cosmology [3], astrophysics
[4], and the fields of cold atoms [5–7] and high-precision
optics [8]. In existingmodels, this screening arises at the level
of the classical action, and one has to worry about radiative
stability [9]. In this Letter, we consider a screening mecha-
nism that emerges instead at the one-loop level by virtue of
radiative corrections, and we demonstrate that additional
loop corrections are subleading. Nevertheless, the behavior
of the scalar fifth force is analogous to the symmetronmodel,
first introduced in Refs. [10,11].
In the original symmetron model, the scalar fifth force is

screened from local tests of gravity as a result of tree-level
spontaneous symmetry breaking. This theory has the
classical potential

~VðφÞ≡ VðφÞ − Lm½g� ¼ −
1

2
μ2φ2 þ 1

4
λφ4 − Lm½g�; ð1Þ

with the scalar field φ coupled universally to matter fields,
having Lagrangian density Lm, through the Jordan-frame
metric gμν. The latter is related to the Einstein-frame metric
~gμν via the conformal transformation gμν ¼ A2ðφÞ~gμν,
where the coupling function AðφÞ is

AðφÞ ¼ 1þ φ2

2M2
þO

�
φ4

M4

�
; ð2Þ

and the scale M determines the matter coupling. Earlier
work studied a similar model but with different motivation
[12,13], and string-inspired models, with similar phenom-
enology, have also been proposed [14,15].
The classical equation of motion for the symmetron is

□φ ¼ dV
dφ

þ ~T
dA
dφ

; ð3Þ

where ~T is the trace of the Einstein-frame energy-
momentum tensor of the local matter fields. When this
matter is static and nonrelativistic, we can treat it as a
pressureless perfect fluid. In this case, the classical
Einstein-frame potential of the symmetron becomes

~VðφÞ ¼ 1

2

�
ρ

M2
− μ2

�
φ2 þ 1

4
λφ4; ð4Þ

where ρ is the local matter energy density. Whether the
coefficient of the quadratic term is positive or not and, as a
result, whether the Z2 symmetry (φ → −φ) is spontane-
ously broken or not depends on the relative values of ρ=M2

and μ2. Thus, taking μ2 > 0 and λ > 0, the symmetry is
spontaneously broken in regions of low density and
restored when the local density is high enough.
On a test particle of unit mass, the symmetron field

mediates a fifth force

~Fsym ¼ ~∇AðφÞ ¼ φ

M2
~∇φ: ð5Þ

Thus, if the Universe is always sufficiently dense such that
the Z2 symmetry is everywhere restored, we have φ ¼ 0,
and the classical symmetron-mediated force vanishes.
Instead, if the Universe is in the symmetry-broken phase
today, dense concentrations of matter can be enough to
restore the symmetry locally.
Inside a spherically symmetric source of radius R and

density ρin > μ2M2, the classical potential can be approxi-
mated around the minimum at φ ¼ 0 as

~VðφÞjφ∼0 ≈
1

2
m2

inφ
2; ð6Þ

where m2
in ¼ ρin=M2 − μ2 > 0. Outside the source, where

the background density is ρout < μ2M2, the classical
potential can be approximated around the true minima as

~VðφÞjφ∼�v ≈
1

2
m2

outðφ ∓ vÞ2; ð7Þ
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where

v≡mout=
ffiffiffi
λ

p
; ð8Þ

m2
out ¼ 2ðμ2 − ρout=M2Þ > 0, and we have neglected a

constant shift in the potential.
In Ref. [11], the symmetry-breaking scale is chosen close

to the cosmological density today, i.e., μ2M2 ∼H2
0M

2
Pl,

where H0 is the present-day Hubble scale, and the
symmetron force in vacuum is required to have approx-
imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
Newton’s gravitational constant. Assuming moutr ≪ 1, we
can find the general form of the symmetron field around the
source,

φðrÞ ¼ �v
minr

8<
:

sinhminr
coshminR

; 0 < r < Rh
sinhminR
coshminR

þminðr − RÞ
i
; R < r:

ð9Þ

When the size of the source is much bigger than the
Compton wavelength of the symmetron field in its interior,
i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
in the screened regime. For r ≫ R, the symmetron-
mediated force is then given by

Fsym

FN
¼ 6v2

ρinR2

�
MPl

M

�
2
�
1 −

R
r

�
≪ 1; ð10Þ

whereFN is the Newtonian gravitational force. On the other
hand, if minR ≪ 1, we do not reach the symmetry restored
phase as r → 0 and are instead in the unscreened regime,
and (for r ≫ R)

Fsym

FN
¼ 2v2

M2

�
MPl

M

�
2

≈ 2: ð11Þ

The symmetron force between test particles in vacuum can
have gravitational strength while still evading current
bounds from observations on solar-system scales so long
as the matter coupling M ≲ 10−4MPl [11,16].
The symmetron model described above exhibits sym-

metry breaking at tree level in regions of lowmatter density.
We now consider a symmetron model in which the
symmetry breaking arises radiatively in regions of low
matter density via the Coleman-Weinberg mechanism [18].
We begin with the following classical action [19]:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
FðϕÞR − Λþ Lþ Lm

�
; ð12Þ

where R is the Ricci scalar, Λ is the bare cosmological
constant, which we hereafter neglect, and we work in units
of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
stated. In order to remain in the regime of validity of the

Coleman-Weinberg mechanism, the symmetry-breaking
vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
are induced through a coupling to a massless scalar field
XðxÞ≡ Xx,

−L ¼ 1

2
ϕ;μϕ

;μ þ 1

2
X;μX;μ þ λ

4
ϕ2X2 þ κ

4!
X4; ð13Þ

where λ; κ > 0. We employ the signature convention
ð−;þ;þ;þÞ. For technical simplicity in what follows,
we have set to 0 a quartic self-interaction for the field ϕ.
Finally, Lm is the matter Lagrangian, and we take a
nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2

M2
; ð14Þ

motivated by Eq. (2).
We choose to work in the Jordan frame within an

effective field theory (EFT) framework, neglecting the
direct couplings to the standard model (SM) degrees of
freedom that are generated via graviton exchange. These
couplings appear in the Einstein frame after the Weyl
transformation of the matter action and are suppressed
by at least the ratio of the electroweak scale [which we
take to be of the order of the Higgs vacuum expectation
value vh ¼ 246 GeV] to the scale M. In spite of the
absence of explicit couplings to matter fields in the
Jordan frame, the geodesic equation still contains terms
that can be interpreted as a scalar fifth force, reflecting
the classical equivalence of the Einstein and Jordan
frames. Moreover, in the small-field regime, φ=M ≪ 1
(φ≡ hϕi), the canonically normalized Einstein-frame
field ~φ is equal to the Jordan-frame field φ at leading
order,

~φ¼
Z

~φ

0

dφ

�
FðφÞ þ 3

2
F02ðφÞ

F2ðφÞ
�1

2 ¼ φ

�
1þO

�
φ2

M2

��
: ð15Þ

Working in the Jordan frame has the advantage that
we can keep physical scales distinct and more clearly
identify our approximations. It should be stressed,
however, that strictly identical results would be
obtained in the Einstein frame at the same level of
approximation. The EFT treatment remains predictive
so long as v=M < 1 and the couplings of the scalar
sector λ, κ > v2H=M

2.
In order to derive the one-loop effective potential, we

make the following simplifying approximations: (i) The
gravitational sector is treated as a classical source; i.e., we
neglect classical and quantum gravitational perturbations.
(ii) We assume a Minkowski space-time background with
constant field configurations φ≡ hϕi and χ ≡ hXi when
performing the loop integrals. As such, we neglect non-
renormalizable operators generated by gravitational inter-
actions, which is appropriate within the EFT description,
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and the effect of field gradients, which is negligible so long
as the size of the source is not comparable to the Compton
wavelength of the symmetron.
We require the functional Hessian matrix of the scalar

sector of the action, whose elements are

Δ−1
ϕϕðx; yÞ≡ δ2S

δϕxδϕy

����
ϕ¼φ
X¼χ

¼ δ4xyð□ −m2
φÞ;

Δ−1
ϕXðx; yÞ≡ δ2S

δϕxδXy

����
ϕ¼φ
X¼χ

¼ δ4xyð−λφχÞ;

Δ−1
XXðx; yÞ≡ δ2S

δXxδXy

����
ϕ¼φ
X¼χ

¼ δ4xyð□ −m2
χÞ; ð16Þ

where

m2
φ ¼ m2

T þ λ

2
χ2; m2

T ¼ −
1

2
R∂2

φFðφÞ;

m2
χ ¼

λ

2
φ2 þ κ

2
χ2; ð17Þ

and δ4xy ≡ δ4ðx − yÞ is the Dirac delta function.
In order to find the explicit form of the background-

dependent mass m2
T , we make use of the Jordan-frame

Einstein equations, which take the form

FðφÞGμν ¼ F;μνðφÞ − gμν□FðφÞ þ T μν; ð18Þ

where Gμν ¼ Rμν − 1
2
gμνR is the Einstein tensor, and

T μν is the energy-momentum tensor of the scalar
and matter sectors. From the trace of the Einstein
equations, we find (for the constant background field
configurations)

−FðφÞR ¼ T ; ð19Þ

giving

m2
T ¼ T

FðφÞ
∂FðφÞ
∂φ2

: ð20Þ

Neglecting the contribution to the trace of the energy-
momentum tensor from the scalar sector and treating
the matter degrees of freedom as a pressureless perfect
fluid (Lm ¼ ρ), we have T ¼ ρ. For φ=M ≪ 1,
FðφÞ ∼ 1, and the background-dependent mass is
given by

m2
T ≃ ρ=M2: ð21Þ

Thus, in vacuum, m2
T ¼ 0, and we have a classically

scale invariant theory, whose one-loop corrections
suffer logarithmic infra-red divergences. In order to
regularize these divergences, we introduce a mass scale

m, which is, via dimensional transmutation, translated
to a symmetry-breaking scale v by the Coleman-
Weinberg mechanism [18].
The one-loop contribution to the effective potential [20]

(ℏ ¼ 1) is given by

Vð1ÞðφÞ ¼ i
2V

Tr ln detΔ−1 þ δV; ð22Þ

where V is a four-volume factor, the determinant runs over
the elements of the functional Hessian matrix in Eq. (16),
and δV contains the counterterms. These take the general
form

δV ¼ δΛþ 1

2
δFRþ δL; ð23Þ

where δΛ ∼ Λ4
UV and δF ∼ Λ2

UV are constant functions of
φ, and δL contains the counterterms of the scalar sector
[21]. We choose to fix the latter by the following
renormalization conditions, which leave the mass and
couplings unchanged at the renormalization points:

∂4V
∂φ4

����
φ¼0
χ¼m

¼ 0;
∂4V

∂φ2∂χ2
����
φ¼0
χ¼m

¼ λ;
∂4V
∂χ4

����
φ¼0
χ¼m

¼ κ;

∂2V
∂φ2

����
φ;χ¼0

¼ m2
T ;

∂2V
∂χ2

����
φ;χ¼0

¼ 0: ð24Þ

Given the approximations listed earlier, the trace in
Eq. (22) can be performed conveniently in momentum
space by first Wick rotating to Euclidean space and
then introducing the ultra-violet (UV) cut-off ΛUV on
the three-momentum integral. One then finds that the
global minima of this one-loop effective potential lie
along the line χ ¼ 0 [see Ref. [22], where an
OðNÞ-symmetric generalization of this model was
analyzed in the context of vacuum decay]. Hereafter
setting χ ¼ 0, the mass matrix, whose elements appear
in Eq. (16), has eigenvalues

m2
φ ¼ m2

T ; m2
χ ¼

λ

2
φ2: ð25Þ

The contribution from the first eigenvalue yields one-
loop corrections that are a function of R. However,
these terms do not carry any explicit dependence on φ.
Since we are interested only in contributions that have
such a dependence, these terms may be neglected along
with contributions to the cosmological constant. The
relevant renormalized one-loop terms are then

Vð1ÞðφÞ ¼
�

λ

16π

�
2

φ4

�
ln

φ2

m2
− Y

�
; ð26Þ

where

PRL 117, 211102 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

211102-3



Y ¼ 1

ð1 − yÞ3
�
4½3 − yð2yþ 13Þ�

þ ð3þ yÞ½3þ yð6 − yÞ�
�
ln yþ 3

2

��
; ð27Þ

and y≡ κ=λ is the ratio of the couplings. Having used
an auxiliary field to induce the symmetry breaking, we
obtain dependence on the ratio of the couplings only,
with the exception of an overall scaling of the one-loop
term. Hence, so long as κ ∼ λ, we remain always in the
region of validity of the one-loop approximation. In
addition, within the regime of validity of the EFT,
matter loops only contribute corrections to MPl and the
cosmological constant Λ. As such, this mechanism can
be regarded as radiatively stable in the sense that the
one-loop results presented here are predictive.
Taking κ → λ, Y ¼ 17=6, and the relevant part of the

renormalized one-loop effective potential simplifies to

VðφÞ ¼ 1

2
FðφÞRþ

�
λ

16π

�
2

φ4

�
ln

φ2

m2
−
17

6

�
: ð28Þ

The partial derivative of this potential with respect to φ is
given by [23]

V 0ðφÞ ¼ m2
T φþ

�
λ

8π

�
2

φ3

�
ln

φ2

m2
−
7

3

�
: ð29Þ

Equation (29) has five roots: we find an extremum at φ ¼ 0,
two minima at

φ ¼ �vminðzÞ≡�me7=6
�

z
W0ðzÞ

�
1=2

; ð30Þ

where W0 is the principal branch of the Lambert W and

z≡ −e−7=3
�
8π

λ

mT

m

�
2

; ð31Þ

and two maxima at

φ ¼ �vmaxðzÞ≡�me7=6
�

z
W−1ðzÞ

�
1=2

; ð32Þ

where W−1 is the lower real branch of the Lambert W.
In the limit mT → 0, we have two symmetry-breaking

minima at

φ ¼ �v≡�me7=6 ð33Þ
and a “flat maximum” at the origin. Around the minima, the
potential is approximately

VðφÞjφ∼�vminðzÞ ≈
1

2
m2

minðzÞ½φ − vminðzÞ�2; ð34Þ

where

m2
minðzÞ ¼ −2m2

T

�
1þ 1

W0ðzÞ
�
: ð35Þ

Hence, in the cosmological vacuum today, we find
m2

min ≈ λ2v2=32=π2, corresponding to a Compton wave-
length

�
lComp

cm

�
≃ 10−30

λ

�
MPl

v

�
: ð36Þ

When mT is large, we have one minimum at φ ¼ 0, and
the symmetry is restored. This occurs at the branch point of
the LambertW when z ¼ −e−1. Thus, symmetry is restored
when mT > λv=8=π or, equivalently,

ρ >

�
λ

8π

�
2

e4=3m2M2: ð37Þ

The field ϕ acts as a symmetron, the behavior of which is
determined radiatively.
In order to illustrate this behavior, we define a shifted

potential VðφÞ by integrating Eq. (29) with respect to φ
subject to the condition Vð0Þ ¼ 0. This is shown in Fig. 1
for the symmetry-broken and symmetry-restored phases, as
well as at the “critical point,” where the minima and
maxima given by Eqs. (30) and (32) merge into inflection
points. Figure 1 also shows the form of the potential at the
“degenerate point”

ρ ¼ 1

2

�
λ

8π

�
2

e11=6m2M2; ð38Þ

at which there are three degenerate minima. Below the
critical point, the presence of the potential barrier between
local and global minima allows for density-driven first-
order phase transitions in the low-temperature regime.

FIG. 1. Plot of the shifted one-loop potential V̄ðφÞ, normalized
to its minimum value, as a function of φ=m in the symmetry-
broken phase (dotted green) for mT → 0, at the degenerate point
(dash-dotted blue), at the critical point (dashed magenta), and in
the symmetric phase (solid red).

PRL 117, 211102 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

18 NOVEMBER 2016

211102-4



In the high-temperature regime, thermal corrections
dominate, and we must replace Eq. (28) by the thermal
effective potential. Its high-temperature expansion is [24]

VðφÞ ¼ λT2

48
φ2 −

λ3=2T
12π

�
φ2

2
þ T2

12

�
3=2

þ
�

λ

16π

�
2

φ4

�
ln
32π2T2

λm2
−
17

6

�
; ð39Þ

where T is the temperature. This potential exhibits a
first-order thermal phase transition [25] with a critical
temperature

Tc ≃ e11=4

4
ffiffiffi
2

p
π
λ1=2m ∼

1

4
λ1=2v: ð40Þ

Moreover, the ratio vc=Tc ∼ λ−1=2 > 1 for λ < 1, where vc
is the value of the field in the critical minimum, signifying
that the phase transition is strongly first order, having the
potential to produce relic gravitational waves [26–28].
An analogous calculation for the original symmetron model
yields a critical temperature Tc ≃

ffiffiffi
2

p
v, parametrically

larger than that of the present model (for small couplings).
In addition, the original symmetron model, having
vc=Tc ∼ λ1=4 < 1, can yield a strong first-order phase
transition only if matter loops can deliver a sufficiently
large cubic self-interaction.
Having chosen κ ¼ λ, the model has three free param-

eters: the coupling λ, the symmetry-breaking scale v, and
the coupling scale M. These parameters can be further
constrained. (i) Since φ ∈ ½−v; v� and assuming a SM
matter sector, predictivity of the EFT requires

v
MPl

<
M
MPl

; λ >
�
vH
M

�
2

: ð41Þ

(ii) We may parametrize the strength of the fifth force
relative to Newtonian gravity (for r ≫ R) by

α≡ v
M

MPl

M
: ð42Þ

Following Ref. [11], constraints on parametrized post-
Newtonian (PPN) parameters from lunar laser ranging
and time-delay experiments made by the Cassini spacecraft
then require

10−6 ≳ αffiffiffi
3

p max

�
1; 2

ffiffiffi
5

p M
MPl

�
sinh

�
X
Rs

R�

�

×

�
sechX; moutR� ≪ 1;

XcschX; moutR� ≫ X;
ð43Þ

where X ≡ ffiffiffiffiffiffiffiffi
6Φ�

p
MPl=M, Φ� ≃ 10−6, and R� ∼ 100 kpc

are the gravitational potential and radius of the Milky Way,

and Rs ∼ 10 kpc is our distance from the Galactic center.
We note that ϕ-mediated effective interactions between the
field X and matter fields ψ , i.e., X2ψψ , are suppressed by
λv2=M2. (iii) In order to be in the symmetry-broken phase
today, the cosmological density (ρ ¼ 3H2

0M
2
Pl) must be

below the degenerate point in Eq. (38),

�
H0

MPl

�
2

<
1

6

�
λ

8π

�
2

e−1=2
�

v
MPl

�
2
�

M
MPl

�
2

: ð44Þ

These constraints are illustrated in Fig. 2. By virtue of (i),
the maximum Compton wavelength for which this analysis
remains predictive is tied to the electroweak scale (or, more
generally, the scale of new nongravitational physics).
Saturating the constraints, we find

lComp

cm
<

100

α
; ð45Þ

giving the generic prediction lComp ≲ 1 m for α ∼ 1. We
remark that it would be of interest to include bare portal-
type interactions with the SM Higgs field of the form
gϕ2H†H=2 (see, e.g., Refs. [29–31]), as well Yukawa
interactions with SM fermions. By tuning these bare
couplings against those generated via graviton exchange
(and neglected in this analysis), it may be possible to relax

FIG. 2. Constraints on the scales v and M. The upper (blue)
region, v=M > 1 [Eq. (41)], lies outside the validity of the EFT.
In the lower (green) region the fifth force is weaker than
Newtonian gravity ðα < 1Þ [cf., Eq. (42)]. The overlapping grey
regions in the top right are excluded by constraints on PPN
parameters [Eq. (43)]; dark and light grey correspond to
moutR� ≪ 1 and moutR� ≫ X, respectively. For a given value
of λ, the cosmological vacuum is in the symmetry-broken phase
today over the region of the v-M plane above the corresponding
dashed line [Eq. (44)]. The right-hand axis gives λ times the
Compton wavelength in the cosmological vacuum [Eq. (36)].
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the lower bound on the coupling, increasing the maximum
achievable Compton wavelength.
Taking λ ∼ 10−18, v ∼ 103 TeV, and M ∼ 10−5MPl, we

can achieve α ∼ 1=100, lComp ∼ 1 cm, and a strong first-
order phase transition with Tc ∼ 1 MeV. This is particu-
larly interesting, as a range of tabletop experiments are
currently searching for screened fifth forces over ∼cm
distance scales [5,32–38] and pulsar timing arrays may be
sensitive to the stochastic background of nHz gravitational
waves from first-order phase transitions with critical
temperatures in the MeV range [39]. For shorter
Compton wavelengths, we can also obtain phase transitions
at around the electroweak scale, potentially having gravi-
tational-wave signatures in the mHz range of the forth-
coming LISA satellite array [40].
By means of this simple toy model, we have illustrated

the feasibility of generating radiatively stable screening
mechanisms entirely through quantum corrections. Having
shown the phenomenological viability of this model, it
would be of interest to study its potential embeddings
within the standard model and its further implications for
both cold atom fifth-force experiments and gravitational-
wave observations.
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