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ABSTRACT 
 

On-the-fly laser machining is defined as a process that aims to generate pockets/patches on target 

components that are rotated or moved at a constant velocity. Since it is a non-integrated process (i.e. 

linary/rotary stage system moving the part is independend of that of the laser) it can be deployed to/into 

large industrial installations to perform in-situ machining, i.e. without the need of disassembly. This allows 

a high degree of flexibility in it applications (e.g. balancing) and can result in significant cost savings for 

the user (e.g. no dis(assembly) cost). This paper introduces the concept of on-the-fly laser machining, 

encompassing, models for generating user defined ablated features as well as error budgeting to 

understand the sources of errors on this highly dynamic process.  Additonally, the paper presents laser 

pulse placement strategies aimed at increasing the surface finish of the targeted component by reducing 

the area surface roughness that are possible for on-the-fly laser machining. The overall concept was 

validated by balancing a rotor system thorough ablation of different pocket shapes by use of a Yb:YAG 

pulsed fibre laser. In this respect, firstly, two different laser pulse placement strategies (square, hexagonal) 

were introduced in this research and have been validated on Inconel 718 target material; thus, it was 

concluded that hexagonal pulse placement reduce surface roughness by up to 17% compared to the 

traditional square laser pulse placement. The concept of on-the-fly laser machining has been validated by 

ablating two different features (4 x 60 mm and 12 x 4 mm) on a rotative target part at constant speed 

(100 rpm, 86 rpm) in the scope of being balanced. The mass removal  of the ablated features to enable 

online balancing has been achieved within < 4 mg. of the predicted value. Additionally, the error modelling 

revealed that there most of the uncertainties in the dimensions of the feature/pocket orginate from the 

stability of the rotor speed, which led to the conclusion that for the same mass of material to be removed 

it is advisable to ablate features (pockets) with longer circumferential dimensions; i.e. stretched and 

shallower pockets rather than compact and deep. 
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1. INTRODUCTION 

In the last decade the application of advanced materials, such as ceramic 

composites and superalloys has increased the demand for affordable and capable 

(micro) material removal techniques to machine difficult-to-cut materials [1]. Thus, the 

development of a manufacturing process to generate geometric features on such 

workpiece materials has become a field of great academic and industrial interest 

especially due to the demands of making precise small components for consumer and 

industrial products. Without a mechanical contact between the tool and the workpiece, 

pulsed laser ablation offers many inherent advantages like the absence of tool 

wear/breakage, chatter, part deflection, and mechanically induced material damage. 

Nevertheless, laser beam machining (ablation) can also present some disadvantages like 

the difficulty to control workpiece surface, low material removal rate and 

microstructure modification of part material; however, these drawbacks could be 

circumvented by optimising the laser parameters. On this basis, the wide availability of 

laser ablation systems at a competitive price point led to a quick adaption of this 

technology across a wide range of industries from the medical to the defence sectors. 

Consequently, it has established itself as a key enabler to manufacture hard-to-cut 

materials on a large scale.  

On-the-fly laser machining is used to describe a process that is performed on a 

workpiece that is rotated or moved at a constant velocity during the process. It differs 

from a laser system/machine on which multiple positioning (linear/rotary) stages are 

integrated since it only consists of the laser source with its galvanometric beam 
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manipulator that then, needs to have its pulse triggering synchronised with the 

independent motion of the part (belonging to another manufacturing system); such 

approach would allow the on-the-fly laser machining system to be truly portable and 

able to perform machining of components after assembly. One very interesting 

application of the process is on-the-fly depth profiling during ultrashort PLA [2] (i.e. the 

measuring of the depth of a feature along an arbitrary axis within a single 

measurement); this approach enables time-gated imaging of samples by evaluating the 

time-of-flight for light propagating to and from an object during an laser ablation 

process. Even though not a machining operation per se, this work applies the on-the-fly 

concept on a laser non-integrated system, which makes it suitable for in-situ 

interventions (i.e. the component remains in its working environment and is not fully 

disassembled). Advances in pulse laser ablation (PLA), especially regarding the 

minimisation of the pulse duration while maximising fluence (laser pulse energy over 

the area of the spot), have enabled the users to machine features within micron 

accuracy. However, during the generation of small features, a problem often 

encountered when using PLA is the phenomena of deep marking, which describes the 

increased overlap of pulses caused by the mirror accelerating to the defined velocity. 

Some lasers overcome this issue by using a method called ‘sky-writing’, where the laser 

beam scanning speed is accelerated to a constant target velocity before the marking 

process starts [3]; this however, reduces the operational time and limits the range of 

motion of the laser beam. Neverthless, on-the-fly laser machining, offers the ability to 

ablate a rotating component by synchronizing the rotor with the laser system. Jaeggi [3] 
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developed such a method for 2.5D processing of rotatives, a practice often used for 

surface and structuring applications. It achieved a pulse positioning precision of 1 µm 

with the target component rotating at 510 RPM; however, the research lacks a detailed 

analysis on the errors in different features and how this would affect the use of such 

system in other applications like in-situ balancing. A similar but more basic approach to 

the problem of in-situ balancing was lead by J. F. Walton et al. [4]. The method with the 

aim to balance rotatives using pulse laser ablation is described, however, the paper fails 

to to show any actual results nor does it give any guide on the achievable accuracy and 

precision of the method; so, it could hardly be a base for further advancements in the 

field. Additionally, the implemented controls only account for point ablation, a process 

at which the laser pulses at the exact location of the imbalance effectively drilling a hole 

to remove material, which can damage the structural integrity of complex geometry 

components and lead to reduced life time especially when balancing larger components 

where the removal of several grams of material is necessary. 

The errors associated with a machining process allow the user to predict 

whether the process will be able to provide the required accuracy for generating a 

predefined geometric feature. Thus, an analysis of errors is essential to all 

manufacturing processes to validate their suitability for a selected design. Previous 

studies have focused on the error budgeting multi-axis lasers [5] and polar coordinate 

laser writing systems [6]. The polar coordinate laser writing system uses a rotary 

encoder to coordinate the motorised air-bearing spindle with the purpose of achieving 

writing accuracy in the order of 0.1 μm at rotational speed of up to 800 rpm. This work 
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analyses the system, from an error perspective, on a pulse basis rather than from the 

point of view of feature generation to investigate the overall effect of errors on 

fabricating diffractive optical elements. Further research has been done on the accuracy 

of 3D laser scanning systems [7], which focused on defining the random and systematic 

error in the laser scanner head, as well as, developing an empirical model to account for 

the systematic error. Another laser application relevant to the present paper that has 

received a detailed error analysis is the terrestrial laser scanning (TLS) [8]. The paper 

proposes a new method to analyse errors, referred to as angular error analysis, which 

offers a more complete analysis of the positional accuracy. It is important to realise that 

analysing the error in the placement of the pulses does not give a complete picture of 

the resultant 3D geometry if applied to a feature. One also has to consider what effects 

the errors have on the material removal rate and, therefore, on the feature as a whole. 

For example, errors may affect the total amount of material removed by a laser 

machining process, if pulses are placed on zones of the component outside the focal 

length of the laser. This is also true if the beam incidence changes or the targeted 

component’s surface is not even, which can have an effect on ablation characteristic as 

shown by D. S. George [9]. Hence, for a more complete approach to on-the-fly laser 

machining, the errors of the machined pockets/features and their impact on the process 

neeed to be considered. Thus, the error budgeting of on-the-fly laser machining has yet 

not been studied to the extent necessary to make informed decisions, potentially 

hindering its growth in industry and research.  
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Nowadays many design problems can be solved using an iterative process and 

are therefore, prime candidates for computer optimisation algorithms. Laser machining 

especially, enables the operator to define a large number of parameters (beam power, 

pulse duration, frequency etc.) and hence, the optimum results depend on the 

experience of the user or the time available to trial several combinations. Thus, 

academic focus has been on using algorithms to determine the optimum set of 

parameters for a variety of applications. K. Erkorkmaz et al. [10] utilised the  

optimisation techniques  to define the laser pulse trajectory, which minimises the 

process time. This enabled them to obtain the ideal path by considering tool and 

process constraints. However, it required the position of all pulses to be known for the 

shape to be generated. Another interesting example of exploiting the power of 

computer based optimisation algorithms in regards to lasers is the search for critical 

parameters for a laser welding process [11]. This study establishes relationships 

between depth of laser penetration, bead width (i.e. width of the weld filler material), 

tensile strength of the welded component and the beam power, velocity and focal 

position of the laser. It then uses a genetic algorithm (GA) in order to establish the 

optimum solutions. Similarly, another paper [12] utilizes the newly developed ‘teaching-

learning-based optimization algorithm’ in order to establish optimum solutions for 

ultrasonic machining, abrasive jet machining and wire electrical discharge machining. 

The same has been done for laser fusion processes [13], where the author designs a 

‘fast laser cutting optimization algorithm’ based on limiting the design parameters in 

order to limit the solution space. Another laser cutting optimisation study [14] for 



Journal of Manufacturing Science and Engineering 

8 

 

Nd:YAG lasers cutting thin superalloy sheet focused its attention on minimising the kerf 

width, taper and deviation using a hybrid approach of the Taguchi methodology and the 

grey relational analysis. The author considered the following parameters: oxygen 

pressure, pulse width, pulse frequency and cutting speed. An important observation was 

in reference to the difference between the optimum parameters for a straight cut and a 

curved cut, which had to be determined separately. Besides, a model of Nd:YAG 

microgrooving of Al2TiO5 based on artificial neural network methodology [15] has been 

developed, which found a good agreement between the parameters determined by the 

algorithm and of the validated work. Hence, while some laser machining processes have 

been extensively studied using optimisation algorithms in order to obtain the ideal 

parameters, on-the-fly machining using PLA has not yet been fully studied, particularly 

the errors in generating a desired 3D feature.  

1.1 Scope of the paper 

This paper presents a mathematical model that predicts the material removal, 

process time and the errors of on-the-fly laser machining, of a specified geometrical 

area targeting as application the balancing of a rotating part at constant velocity.  The 

model needs an initial calibration to find the response of the workpiece material to a 

fixed set of energetic parameters and then using the kinematics of the laser beam and 

of the part, it ensures that a specified geometry/volume of the workpiece (rotating part) 

is removed by laser ablation at a high degree of robustness. The validation of the model 

is presented using a special rig with a part to be balanced made of Inconel 718, which 

makes the demonstration of relevance for applications in aerospace industry. The model 
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also finds its use in supporting a decision to remove a given volume of material (to 

enable the balancing to a desired grade) in such a way that it minimises the errors; this 

is done by associating to the model an error budget that quantifies the error in the 

critical dimensions of the volume to be removed of the proposed on-the-fly balancing 

system.  

2. THE CONCEPT OF ON-THE-FLY LASER MACHINING 

During the recent decade, ample research has been done on pulse laser ablation 

(PLA) and its thermal and kinematic effects on the surfaces of components [16]. 

Machining on-the-fly using PLA does not have an a priori full integration between the 

galvanometric manipulator of the laser beam and the moving/rotating stages of the part 

to be machined; this requires not only engineering integration of the two systems but 

also deep understanding of sources of errors that might impede on the time 

synchronisation of the beam action and the moving part. As on-the-fly pulse laser 

machining is defined as ablating the targeted component while it is moving or rotating 

at a constant velocity using a non-integrated laser system, it finds its use in repair tasks 

of industrial installations without the need of their disassembly, i.e. in-situ repair. 

However, in this approach the accuracy of the individual pulse placement affects the 

overall accuracy of an ablated feature; therefore, its accuracy is dependent on the 

errors in the individual spot placement on the target rotating/moving part. Figure 1 

presents a schematic of the principle that governs the on-the-fly laser balancing concept 

on which the galvanometric actuated mirror can manipulate the beam in the x and y 

directions; the rotating movement (ω) of the part is to be integrated with the laser 
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triggering and the beam galvanometer. For simplicity reasons, in the following, the on-

the-fly concept is applied that the beam will be manipulated (at intervals) only in the x 

direction, while the rotation (ω) of the rotor will be used to imitate the raster path of 

the beam to generate the ablated feature (as presented in the insert Figure 1); hence, 

the error related to the intermittent spot placement in the x direction will be considered 

small enough to be neglected in the proposed models. However, the errors related to 

spot placement along y (Dy), circumferential direction is the combination of errors of the 

following quantities (see Figure 1): the frequency of pulses (Δf); the time to trigger a 

laser pulse  (Δtd); the rotor radius (ΔR); the spot diameter (Δϕ); the velocity of the 

moving component (Δω). Thus, by superimposing single spots on y (circumferential) and 

x direction laser ablated pockets/features can be generated on the moving/rotating 

components. This is to be repeated several times, where each complete cycle is 

regarded as a layer; henceforth, the total number of layers (nz) of the feature affect its 

depth (d). In this context, it is of crucial importance to study the errors related to these 

interdependencies upon the geometrical accuracy of the ablated feature and allow the 

necessary actions to enable high precision removal of material on the target rotating 

part.  

Once, the model for on-the-fly laser machining/balancing is understood and the 

errors budgeted, it allows the comparison of different shapes (e.g. is it more accurate to 

ablate a long patch along the curvature of the rotor or a wide patch) and their 

geometrical accuracies and thus, select the geometry of the ablated feature that has a 

minimal error from the targeted one.  
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While the concept of on-the-fly laser machining is exemplified for a rotating disc 

at a constant velocity, it can also be applied to any scenario of part moving arbitrarily 

within the scanning area of the laser beam.  

3.  MODELLING THE ERRORS FOR ON-THE-FLY LASER MACHINING TARGETING AN 

APPLICATION FOR IN-SITU BALANCING  

The model determines the optimum pulse frequency (f), laser power (P) and 

number of ablated layers (nz) for a defined geometric feature using multi-objective 

optimisation techniques in order to minimise the process time (t) and the deviation 

from the desired mass removal (m). Furthermore, the cumulative error of critical 

dimension of the feature (i.e. Dy – see Figure 1) resulting from pulse placement error is 

calculated for the optimised parameters.  

Figure 2 shows a flowchart of the on-the-fly laser machining strategy introduced 

in this work, which starts with the selection of the critical dimensions (Dx, Dy) of the 

required feature as well as the desired mass (m) to be removed by on the-fly machining; 

note that the depth (d) of the feature (see Figure 1) is not defined but results from the 

chosen removal mass (which depends on the specified balancing grade). The desired 

feature is optimised for the minimum machining time whilst meeting the mass removal 

criteria using an optimisation algorithm (see Section 3.1). To model the mass removal 

(m) and determine the process time (t), a grid for the pulse placement is generated (see 

Section 3.2), then a single footprint is simulated and applied to the grid (see Section 

3.3). The grid geometry is adjusted according to the output of the scaling model relying 

on an artificial intelligence technique accounting for errors occurring at 
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beam/workpiece interface, e.g. variation of material redeposition (see Section 3.4). 

Lastly, the on-the-fly machining errors of the feature associated with the optimum 

parameters (i.e. the output of the optimisation study) are determined (see Section 3.5).  

3.1 Optimization modelling minimizing the processing time while meeting the mass 

removal requirement 

The multi-objective genetic optimisation algorithm is a search method, which 

attempts to find the optimum parameters of the on-the-fly laser machining for which 

both goals, i.e. process time and error of the mass removal, are minimised, however 

they cannot reach an absolute minima at the same time; those solutions can be 

obtained via genetic optimisation (represented as a Pareto curve), which has been 

considered the approach in this work. Compared to other optimisation algorithms used 

in engineering problems, genetic optimisation has few requirements and allows for a 

global search (i.e. it attempts to find the global minimum rather than the local 

minimum) [11], [12], [17].  

The genetic optimisation algorithm employed in this work follows the well-

established steps in genetic optimisation algorithms [18] as outlined below: 

1. (i) Formulate an equation for each goal (i.e. the processing time and error in 

removal mass) describing the problem with the variable parameters (i.e. the 

fitness function). (ii) Chose a size of the population of the on-the-fly laser 

machining parameters and other variables of the multi-objective genetic 

optimisation algorithm (i.e. crossover and mutation functions, crossover 

probability). (iii) Initialise a random population of the pre-determined size. (iv) 
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Set a time limit and maximum allowed number of generations before the 

algorithm finishes (i.e. the finishing criteria). 

2. Evaluate each member of the population of the on-the-fly process parameters 

and choose the best members (also known as parents) as the elite to be carried 

on to the next generation. A generation is defined as the all members of one 

population. Therefore, at each iteration of the algorithm, one new generation is 

created on basis of the previous one.  

3. Check whether finishing criteria of the on-the-fly laser machining algorithm is 

reached (e.g. limits on computational time, generations). 

4. Reproduce the current population members and repeat the algorithm until one 

finishing criteria is fulfilled. The reproduction is done by either mutating one 

parent or crossing the parameters of two parents.  

As the steps 1-4 are common in the field of process optimisation, they are not 

detailed here but used only to support the proposed on-the-fly strategy. 

With this in mind, a multi-objective genetic optimisation algorithm [19] is used to 

optimise the process defining parameters (pulse frequency - f, laser power - P, number 

of layers - nz and the pulse spacing in x and y – dx,y) for on-the-fly laser machining to 

meet the two algorithm goals: (i) minimum process time (t); (ii) minimum error of the 

mass removal (m). Furthermore, some practical constraints had to be imposed for the 

genetic optimisation: 
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 The pulse frequency (f) is limited by the constraints of the scaling model (see 

Section 3.4, Table 1) and the laser system being used, where fmin is the minimum 

and fmax the maximum pulse frequency.  

 
 

 (1) 

 The laser power (P) is limited by the material ablation threshold, Pmin, and the 

maximum value Pmax to avoid metallurgical damage of the part. 

 
 

 (2) 

 The number of layers (nz) is limited to a minimum of 1 and a maximum, nz_max, 

chosen based on the desired removal mass. 

 
 

 (3) 

 The pulse spacing (dx,y) is limited by the minimum (ωmin) and maximum (ωmax) 

rotational velocity permissible by the motor and its controller, and the pulse 

frequency (f). Additionally, the constraints imposed by the calibration process of 

the scaling model limit the pulse spacing (see Section 3.4, Table 1). 

 

 

 (4) 

 The pulse energy (i.e. the laser power – P, divided by the frequency - f) is limited 

by the calibration process of the scaling model, which enables the determination 

of the ablation depth of a laser process  (see Section 3.4, Table 1). 
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 (5) 

Note that the pulse frequency f (Hz), pulse spacing dy,x (μm) and the number of 

passes nz have been constrained to integers. The laser power (P) has its value expressed 

to 1 decimal place.  

3.2 Generation of the grid coordinates 

To generate a feature, a number of laser pulses need to be placed in a manner to 

form the required shape; the coordinates of all necessary laser pulses are regarded to as 

a grid within this work. All grids consist of a number of tracks (i.e. lines of pulses) 

orientated along the circular curvature of the targeted part, i.e. y-axis (see Figure 1). 

Thus, each track corresponds to a single laser ablation trigger, i.e. one revolution of the 

rotating part. The spacing between the individual pulses (dx,y) determines the amount of 

pulses (ny) per line as well as the number of tracks (nx) as shown in Eq. (6); where Dx,y is 

the critical dimension and ϕ the diameter of an individual laser pulse. The critical 

dimension is defined as the measurement that describes the feature in the relevant 

direction (see Figure 3). For example, for a rectangular shape it is the length in the y 

direction (Dy) and the width in the x direction (Dx).  

 

 

 (6) 

In this work it is assumed that the targeted component rotates with a constant 

velocity (ω). Therefore, the time between the triggering and the start of the ablation 

process (td) is expressed as the circumferential distance on the rotor as shown in Eq. (7), 
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where ω the rotational velocity of the targeted component and R the radius of the 

rotor. 

 
 

 (7) 

The vertical pulse spacing (dy) between the individual pulses is governed by the 

rotational velocity of targeted component (ω) the frequency of the laser pulses (f) and 

the radius of rotor (R) as shown in Eq. (8). The horizontal pulse spacing (dx) is solely 

limited by the accuracy achievable of the laser positioning system (galvanometer). 

During the generation of each track, the mirror of the laser head/galvanometer remains 

stationary in the x and y axes.  

 

 

 (8) 

Hence, the length Dy of the feature can be expressed as shown in Eq. (9). 

 

 

 (9) 

Some on-the-fly laser machining applications (e.g. balancing) could be employed 

to high value components, where it is essential to ensure that minimal damage (e.g. 

metallurgical transformation) is caused by the pulsed laser material removal process, 

which can also include various forms of micro and macro scale morophological changes, 

like increased surface roughness [20]. Therefore, to minimises surface roughness one 

has to  ensure that the fluence is equally distributed over the ablation area; this can is 

achieved by placing the pulses using the hexagonal packaging technique, which has 

been conclusively shown to be the densest distribution of laser footprints [21]  (i.e. 
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offering the most equal distribution of fluence) compared to the traditionally used 

square packaging of pulses (see Figure 3). 

3.3 Generating a laser footprint   

There are previous works regarding surface prediction through energy beam 

material removal that have adopted a crater-by-crater approach for modelling the 

evolution of the surface texture [22]–[24]. A common theme in these approaches is to 

first generate a single crater from process parameters, and then to overlap/convolute 

this, either with/without crater modification for subsequent pulses, to achieve a 

complete machined surface. This paper proposes to utilise this method in predicting the 

radius of a single crater for any given input parameters; this is building on the previous 

experience in the group by Gilbert et al [22], where calibration between the laser 

system and target material is carried out prior to use. The plotted relationship between 

energetic parameters of the laser ablation process and their corresponding material 

removal when used to ablate a known target material is of logarithmic nature. This 

relationship is then used to calculate further depths of ablation at other energetic 

parameters.  

The energetic parameters used are expressed as a normalized fluence 

(Θnormalized). This is simply a ratio between the fluence calculated from the energetic 

parameters in question - Θ (see Equation (10)), and the maximum ones achievable by 

the laser system - Θ 0 (see Equation (11) and (12)).  

 

 

 (10) 
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(11) 

 

 

(12) 

Where additional notations have the following meaning: Pmax - maximum 

average power output of the laser (W); fo - lowest pulse repetition frequency before 

attenuation; rz - beam radius at workpiece surface with a focal length of z. 

Figure 4 shows a generic relationship between ablated depth and normalized 

fluence following Equation (13). The vertical dotted line shows the normalized threshold 

fluence Θth at which ablation begins to occur using the specified laser system and target 

material. Thus, it is possible using this information to calculate the radial position within 

the laser beam at which this threshold fluence Θth value is reached and therefore, the 

target material ablated. 

 

 

(13) 

Using the equation (13), the threshold fluence (where d = 0, see Equation (14) 

and (15)) can be calculated; 

 
 

(14) 

 
 

(15) 

Once this normalised fluence value is known, by using a known beam energy 

distribution, it can be used to derive the radial position from the beam centre at which 

threshold fluence occurs (see Figure 5). This radial position across the laser footprint will 

therefore, indicate the region outside which the ablated depth could be considered 
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zero. This is shown graphically in Figure 5 where an example of a generic laser beam 

energy profile is coaxially aligned with its corresponding ablated crater (excluding the 

zone where the fluence is below the threshold - Θth).  

Using the above described crater of the laser this can be placed on the grid of 

pulses as described in Section 3.2 to enable the prediction of the ablated feature. 

3.4 Development of an intelligent scaling model to predict the material removal rate 

of pulse laser ablation 

With ablation of metals it is likely that some degree of material redeposition, i.e. 

melt expelled from the crater and solidified around the footprint, occurs [14], [22], [25]. 

As this phenomenon is random and in repeated ablated layers is likely to affect the 

prediction accuracy of the model, this aspect has been addressed by a scaling approach, 

i.e. compensating the accuracy of the ablation depth with the number of layers to 

minimise the effect of the material redeposition. As the scope of this paper is about 

controlling the on-the-fly laser machining this approach was considered appropriate to 

enable the proof of the proposed in-situ balancing concept. Thus, for the scaling 

approach for the laser footprint (see Section 3.3) an artificial neural network (ANN), see 

Figure 6, was utilised. This research uses the network to predict the real (affected by 

material redeposition) ablation depth (d), which is dependent on the process 

parameters (pulse frequency - f, pulse spacing – dx,y, the critical dimensions of the 

feature - Dx and Dy, and number of layers - nz). These parameters are the input neurons 

into the ANN, while the neurons within the hidden layers act as processing units 

containing the transfer function (Eq. (16), where x is the sum of all randomly weighted 
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inputs of the neuron) to obtain the output, i.e. ablation depth (d); note that Eq. 16 is 

mathematically equivalent to a hyperbolic tangent function, however runs faster by 

sacrificing some accuracy to computational speed and is therefore, commonly used in 

neural network designs [26]. All other factors, which may influence ablation depth like 

material, pulse energy, distance to focal plane and spot size are kept constant within 

this work.  

 
 

(16) 

The network was designed using the Levenberg-Marquardt backpropagation 

algorithm [27] which minimizes the computing time by approximating the Hessian 

matrix and calculating the Jacobian matrix using backpropagation; since it is a commonly 

used algorithm in neural network design, it is only briefly introduced.  

3.5 Error modelling using a standard deviation approach 

With the models ready to predict the optimum removal rate for a given feature 

to address on-the-fly laser machining, and bearing in mind that this can be utilised for 

in-situ balancing of rotatives, an obvious question is the influence of the variances of the 

process parameters upon the obtained ablated geometry.  

Considering that the width (Dx) is commanded by the laser galvanometer 

sequentially between ablated tracks, this section presents a way to determine the 

expected errors in the length (Dy) of the ablated pocket along the cord of the rotor; 

thus, with the ablation depth known from ANN (see section 3.4), Dx considered of 

negligible variation, the variance of the on-the-fly ablated volume can be obtained 

enabling the assessment of the precision of the in-situ laser balancing method. This 
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allows the development of a general error prediction model, which is not tied to one 

specific experimental set-up. In this respect, each pulse is affected by up to three errors: 

(i) error in the circumferential direction (i.e. y error); (ii) error in the horizontal direction 

(i.e. x error); (iii) error in depth (i.e. d error).  

The errors are calculated using the multi-variable calculus approach [28] as 

shown in Equation (17), where ΔH is describing the total error and A, B and C are 

variables, contributing to H, for which the error values are known. This is known to 

deliver the most accurate prediction of the actual error. Furthermore, it allows one to 

study the individual impact of the each contributing error parameter (A, B, C…) and 

therefore, therefore to identify ways reduce the variability of the output (Z). 

 

 

(17) 

Therefore, the total error in y (ΔDy) is expressed by Eq. (18), which describes the 

combined error due to the time lag (td), which determines the starting position of each 

track, and the sums of all pulse placement errors within one track (based on Eq. (7), (8) 

and (9)). 

 

 

(18) 

Hence, the overall error is dependent on the error in the time lag (td), the pulse 

frequency (f), the pulse radius (ɸ), the rotor radius (R) and the rotational velocity 

() (see Figure 7). 
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In this work, the x error is only influenced by the accuracy of the chosen 

galvanometric laser head (ΔDx) while the z (or d) error is solely dependent on the 

accuracy of the ANN in predicting the depth (d). Hence, it is obtained by assuming a 

Gaussian distribution of the ablated depth predictions by the ANN. Thus, the error in 

mass (Δm), which is obtained using Eq. (19) and (20), is calculated. 

  
(19) 

 

 

(20) 

In conclusion, by knowing the errors affecting on-the-fly laser machining, the 

user could have a strict control over the desired feature generation in terms of 

dimensions and mass removed. This is necessary for processes with stringent design 

requirements or applications, which require an accuracte mass removal like balancing. 

 

3.6 On-the-fly laser machining workflow 

Considering the previous modelling specifications, the procedure to perform on-

the-fly laser machining relies on the following steps: 

1. The user specifies the desired feature with critical dimension (Dx and Dy) and mass 

removal target (m); note that critical dimensions (Dx and Dy) depend on the space 

available on the part, between existing geometrical features of the rotative, to 

enable the removal of the required mass (m) leading to the desired level of 

balancing.  
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2. The optimisation algorithm generates an initial population of process parameters 

(pulse frequency - f, pulse spacing - dx,y and number of passes - nz) using the supplied 

constraints (see Equation (1) - (5)). 

3. Each member of the population is evaluated: 

-  Pulse coordinates for the specified feature are generated (see Equation (6) - (9)). 

- The laser footprint is simulated for the chosen energetic parameters (see 

Equation (10) - (15)). 

- The simulated laser footprint is plotted for each of the coordinates generated in 

step 3.1. 

- The simulated feature is scaled based on the model outputs from the ANN (see 

Section 3.4). 

4. The optimization algorithm checks for exit conditions (i.e. maximum number of 

generations, computational time limit). If none of the conditions is met, continue 

with step 2.  

5. The associated errors of the feature are evaluated (see Equation (18)) to enable 

corrective actions to the on-the-fly laser machining process. 

4. METHODOLOGY AND EXPERIMENTAL DESIGN 

For all trials a Yb:YAG SPI G3.1 SM fibre laser with a maximum average output 

power (P) of 20 W and a pulse duration ranging from 9-220 ns with a wavelength of 

1062 ± 2 nm was used. It has an operating range between 1 and 500 kHz  (f) and the 

beam quality, M2, has been specified as 1.8 by the manufacturer. The actual maximum 

average power output (P) was measured to be approx. 17.24 W when demanding the 
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full 20 W from the system (mean value over 100 samples). Lowering the frequency (f) 

below 35 kHz limits the pulse energy to prevent damage to the equipment (i.e. 

maximum pulse energy (E) at maximum power is achieved at 35 kHz (f) and 20 W (P) for 

a 220 ns pulse duration). The spot diameter (ϕ) was measured to be approximately 72 

µm on the focal plane using a complementary metal-oxide semiconductor (CMOS) beam 

profiler camera. 

4.1 Calibration trials 

4.1.1 Optimization model 

Before validation and utilization for on-the-fly laser machining, the previously 

developed model (see Section 3) had to be calibrated. This will provide the process 

parameters to achieve the desired mass removal target at a minimum process time. For 

this, the optimisation algorithm (see Section 3.1) needs to be configured. Thus, a 

population size of 100 for process parameters (f, P, nz and dx,y) and two goals (t, m) was 

chosen. The elite count was set to two (i.e. the number of members who are guaranteed 

to survive into the next generation), while the crossover probability is 0.8. The 

maximum number of generations (i.e. the limit) was chosen to be 300; this ensured a 

justifiable computing expense. New mutations were created using Gaussian distribution 

in accordance with the standard genetic optimisation practice [29].  

4.1.2 Laser spot footprint model for on-the-fly laser machining 

The footprint model (see Section 3.3) needed to be calibrated in order to obtain 

the radius of the laser spot at which the ablation threshold occurs for a given material (i.e. 

Inconel 718). This was done by varying the fluence levels (Θ) and measuring the depth 
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(ds) of the footprint from which the logarithmic dependence as in Eq. (21) was obtained 

(considering the Θ0 = 2021 J/cm2). 

  
(21) 

Hence, using the laser parameters (laser power - P, pulse frequency - f, beam 

radius - rz, and focal position - z) and assuming a Gaussian beam profile, the footprint of 

one laser pulse can be determined. Then, the diameter of the spot (ϕ) can be measured 

(see Figure 5).  

4.1.3 Scaling model 

Having obtained the spot radius and plotted the pulses onto the generated grid 

(see Fig x), the ANN needs to be calibrated to obtain the predicted feature depth (dp). 

The optimum neural network structure (see Section 3.4) for this example consists of one 

hidden layer containing six neurons (see Figure 6). The input layer has five neurons (i.e. 

frequency - f, pulse spacing - dx,y, number of layers - nz, critical dimensions – Dx and Dy) 

and the output layer has one neuron (i.e. depth of the feature - d). It has been found 

that increasing the number of neurons above the determined optimum of six causes 

over-fitting due to the noisy input data due to phenomena like shielding, which are 

difficult to control within the experimental setup of this work.  

The network was trained using 57 trials by varying in the pulse frequency (f), 

pulse spacing (dx,y), critical dimensions (Dx and Dy) and number of layers (nz) (see Table 2 

Experimental and training results); in order to simplify this model, the pulse spacing 

(dy,x) has been kept equal in both x and y directions. All laser ablated samples have been 
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carried out on  Inconel 718 as workpiece material at a constant pulse energy of 400 mJ 

(see Eq. (22)).  

 
 

(22) 

The scan speed, vscan, was determined by Eq. (23).  

  
(23) 

The sample depth (dm) was evaluated using a white light interferometer (Bruker 

Contour GT).  

In order to validate the designed network, the data samples were randomly 

divided into three categories:  

 Training samples that were used to train the network and continuously adjust 

the error between the measured and predicted depth. 

 Validation samples that were used to measure the generalization and stop the 

algorithm if there are no more significant improvements. 

 Testing samples that were used to validate independently the performance of 

the developed network. They have no effect on the training of the network.  

For this work, the data laser ablated samples were split into: 70% for training, 

15% for validation and 15% for testing.  

The limitations of the ANN (see Table 1) are defined by the range of samples 

submitted to the training of the network, which were selected by considering the 

restrictions imposed by the laser system and material (i.e. Inconel 718) as well as the 

expected application of the network. 
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The designed network achieved a reasonable accuracy (see Figure 8) in 

predicting the depth (dp) of an ablated rectangle on Inconel 718 as long as the 

limitations of the network were taken into consideration (see Table 1). Figure 8 presents 

the training, validation and testing samples all at a mean squared error below 11 µm. 

Due to the highly noisy calibration data (when measuring the depth – d – using a white 

light interferometer) this could be considered a well trained network.  

The ANN was trained with the goal of a zero mean squared error. An error (i.e. 

an indicator of the performance of the network) of 1.0929 at 10 epochs was achieved 

(see Figure 8). 

4.2 Experimental trials for the validation of pulse placement strategy  

The first stage of the validation trials was aimed to quantify the effect of the 

square and hexagonal pulse placement grid strategy (see Fig. 3) that will further support 

the on-the-fly laser machining concept. Laser ablation creates features by overlapping 

several pulses in a geometrical pattern forming the desired feature (e.g. rectangle) with 

the chosen critical dimensions (Dx and Dy in this example). By adapting the pulse 

placement strategy to result in smooth pockets (i.e. a low surface roughness) so that 

post machining processes can be reduced or eliminated. This concept was validated on 

static target surfaces (4 x 7 mm) made of Inconel 718 by comparing square and 

hexagonal pulse placement strategies when using the following process parameters: a 

total of 350 pulses per track (ny) over a total of 200 tracks (nx), i.e. spacing between 

pulses and tracks of 20 µm (dx,y), with 1 and 3 layers (nz) have been ablated using the 
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Yd:YAG laser with a frequency of 35 kHz (f), a power of 17 W (P),  pulse duration of 220 

ns and a scanspeed of 525 mm/s (vscan). 

To measure only the surface roughness caused by the laser machining process in 

the two pulse placement grid strategies, a white light interferometer (Bruker Contour 

GT) was used to determine root mean square area roughness measurement (Sq) 

specified in ISO 25178 [30]. 

Using hexagonal pulse placement compared to the traditional square placement 

(see Section 3.2, Figure 3) during PLA showed to minimise the surface area roughness. 

After one layer, a reduction in the root mean square area roughness (Sq) of 17% was 

achieved when utilising hexagonal pulse placement strategy; after three layers there 

was still an improvement of 13% (see Table 3).  

Figure 9 shows that the hexagonal pulse placement strategy leads to a smoother 

surface. This is attributed to the more evenly distributed fluence due to the hexagonal 

placement of pulses. This is supported by Figure 9, which shows for square placement 

(in Figure 9 c and d) visible tracks while hexagonal placement results in a significantly 

less visible ablation tracks (in Figure 9 a and b). Especially, in time critical processes (e.g. 

on-the-fly balancing during maintenance of high value components), where each laser 

ablation layer can take up to several minutes machining time, the ability to affect the 

surface finish easily can save time and potentially an additional finishing or polishing 

machining process.   

4.3 Experimental trials for on-the-fly laser machining   
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To conduct the material removal and error prediction trials, a test rig consisting 

of a shaft with a ᴓ 140 mm disc mounted by ball bearing on an experimental stand (see 

Figure 10) has been considered as the part to be laser on-the-fly machined. The rotor is 

driven using a 42 W DC Maxon motor (max. speed 1200 rpm), which is kept at a 

constant velocity using an external PID motor controller (Maxon Epos 24/2), and 

connected to the shaft using a flexible coupling.  

Two different on-the-fly laser machining processes were completed in order to 

validate the material removal and error prediction models for a user specified feature, 

i.e. a rectangle with chosen critical dimensions Dx and Dy (see Table 4). Henceforth, the 

dimensions of the two rectangles were chosen in a manner to have one long (i.e. a large 

Dy, Ablated feature A) rectangle along the curvature of the rotor and one wide (i.e. Dx > 

Dy, Ablated feature B) rectangle.  

As an ablation target, a small Inconel 718 sheet (80 x 20 x 0.6 mm) has been 

firmly attached to the rotor of the testing rig. The sample’s weight (m) has been 

determined using a scale with an accuracy of 2 mg in order to verify, after ablation, the 

accuracy of the material removal prediction after the on-the-fly laser machining process. 

For this, the on-the-fly strategy introduced in Section 3 was used to determine the 

suitable process parameters (pulse frequency - f, laser power - P, pulse spacing - dx,y, 

number of layers - nz, number of tracks - nx, pulses per track - ny and rotational velocity - 

ω). The minimum permissible rotational velocity of the rotor (ω) was set at 60 rpm, 

since for speeds below 60 rpm the velocity control became unstable (i.e. high variations, 

due to the high inertia of the rotor). As an optimisation target for the chosen feature, an 
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arbitrary desired mass removal target (md) with a permissible mass variation (Δmd) has 

been assigned to each ablated feature. Therefore, the optimisation algorithm choses 

process parameters, which results in the desired feature with the chosen mass removal 

(m) within an accuracy of Δmd and a minimum process time (t).  

All errors necessary for the on-the-fly laser machining error budgeting model 

were obtained using empirical means or from the provided documentation of the 

manufacturer. The error in the angular velocity (Δω), the time delay (Δtd), the feature 

depth (Δd) using the ANN, the rotor radius (ΔR), as well as, the pulse diameter (Δϕ) 

were obtained using empirical means as shown in Table 5.  

The error in the frequency (Δf) and in the x mirror for the beam positioning (ΔDx) 

were obtained using the manufacture’s data sheets. The error in the rotor speed (Δω) 

has shown to be of variable mangnitude depending on the speed of the motor (see 

Figure 11). 

Hence, the speed has been measured over a time period of approx. 100 seconds 

at 60, 200, 400, 600, 900 and 1200 rpm. The error has then been calculated using three 

standar deviations and a 5th degree polynomial has been fitted (see Figure Figure 11 and 

Equation (24)). 

 
(24) 

5. MODEL VALIDATION AND DISCUSSION 

The model was validated with a focus on potential applications in the in-situ 

balancing of components using pulse laser ablation by targeting to remove material 
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covering rectangular pockets (i.e. features). In this section, the material removal and 

error prediction concept to manufacture features for on-the-fly laser machining using 

Inconel 718 are studied using two examples.  

5.1 Evaluation of the proposed material removal model 

The on-the-fly laser machining feature prediction model was run using the 

chosen parameters for the two sets of scan trials (see Section 4 and Table 4). The two 

ablated features (see Figure 12) differ in the width and length (i.e. the critical 

dimensions Dx and Dy) as well as the desired mass removal - m (see Table 4). This further 

enables the comparison between different orientated features and how it affects the 

effectivity of on-the-fly laser machining (i.e. process time and material removal rate). 

The optimised parameters for the predicted process duration (t) and mass removal (mp) 

are shown in Table 6. Afterwards, both ablated features using the hexagonal pulse 

placement strategy, have been validated on the testing rig with the attached Inconel 

718 sheet (see Section 4.3 and Figure 12). 

The process time of ablated feature A (4 x 60 mm) and ablated feature B (12 x 4 

mm) vary widely; this is due to the number of triggers necessary to achieve the specified 

feature (i.e. number of tracks - nx multiplied by number of passes - nz).  

Hence, particularly long features in the circumferential direction benefit from 

on-the-fly machining, while shorter features however, can decrease the material 

removal rate per time unit significantly. Hence, for example for balancing a longer 

(circumferential length, e.g. ablated feature A) feature will significantly decrease process 

time (t) for a desired mass removal (m) target.  
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Due to errors mentioned in section 3.5, the 60 x 4 mm area (i.e. ablated feature 

A) removed 85 mg of material, with a target removal of 83.69 mg (see Table 7). This is 

an underestimate of 1.31 mg (-1.38 %). The 4 x 12 mm area (i.e. ablated feature B) 

removed 13 mg of material with a target removal of 16.25 mg, an overestimate of 3.25 

mg (+20.00%). The ablated feature B showed much larger errors due to the higher 

influence of on-the-fly errors on shapes with wider Dx than Dy (see Section 5.3). This is 

due to the higher number of revolutions (i.e. laser triggers) needed to create the feature 

(i.e. number of tracks - nx multiplied by number of passes - nz), where each possess 

another possibility of a laser misfire. Additionally, variations in the weight measurement 

(e.g. dust on the sample or scale, human error, etc.) have a bigger impact on smaller 

masses if measured as a percentage. The specific scale used for these trials had an error 

of approx. ±2 mg.  

To conclude, on basis of the higher errors for wide ablated features (high Dx, e.g. 

ablated feature B), on-the-fly laser machining is more effective when used for long 

ablated features (high Dy, e.g. ablated feature A) due to the lower number of laser 

triggers and therefore, decreased error potential and process time and higher material 

removal rate. In a balancing scenario, ablated feature A would have been chosen as it 

outperforms ablated feature B in all measured aspects (material removal rate, process 

time and error). 

5.2 Evaluation of the error budgeting model 

Utilising on-the-fly laser machining for balancing components requires the user 

to have a good understanding of how to optimise the laser processing parameters and 
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characteristics of the ablated feature in order to maximise the material removal and 

minimise process time (see Section 5.2). However, it also calls for an understanding of 

the associated errors of on-the-fly laser machining and therefore the accuracy of the 

feature predictions as well as the achievable tolerances using this process.  Henceforth, 

the developed error prediction model (see Section 3.5 and Equation (18) and (20)) for 

on-the-fly laser machining was validated on ablated feature A and B.  

As shown in Table 8 the errors are all within the predicted range. The measured 

length (Dy) and mass (m) are stated at a 95% confidence level (coverage factor k=2). 

Therefore, the error prediction model demonstrates its capabilities to predict accurately 

errors for the length (Dyp) and the mass (mp) of the feature. of on-the-fly laser machining 

processes. Below is a demonstration of its analytical capabilities on basis of the example 

introduced in section 5.2.  

Figure 13 shows the individual error contributions to the overall circumferential 

length error (ΔDy) in this specific example. Ablated feature A’s error is mainly 

contributed by the velocity of the rotor (Δω) with over 95.6% in total. There is a similar 

trend for ablated feature B with 95.8% contribution by the rotor velocity (Δω). The error 

of the rotor radius (ΔR) contributes another 4.4% and 3.97% to ablated feature A and B 

respectively. Spot size (Δɸ), time delay (Δtd) and pulse frequency (Δf) are negligible. 

Therefore, improvements in the accuracy of the circumferential length (ΔDy) can be 

achieved by increasing the stability of the motor control. As shown in Figure 11, 

increasing the rotor speed (ω) can also lead to better circumferential accuracy (due to a 

lower velocity error). However, this may cause an increase of the pulse spacing (dx,y) or 
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decrease of the pulse energy (E) (see Eq. (5) and (8)). Therefore, if the material removal 

rate is to be kept, this requires a different laser system capable of constant pulse 

energies (E) at higher pulse frequencies (f). Also, increasing the ablated track length (Dy) 

increases the rotor manufacturing accuracy (ΔR) impact.  

Hence, it is summarized that the error increases with circumferential length (Dy) 

of the ablated area. This is due to the high contribution of the rotor velocity (Δω) in this 

example. Increasing the stability of the motor control at low speeds (< 100 rpm) will 

make the manufacturing quality of the rig (i.e. rotor radius (ΔR)) become more prevalent 

when considering errors from the on-the-fly machining process.  

The error in mass of material removed – Δm (see Table 8) showed a good 

agreement between the predicted and measured mass removal error (Δm).  Figure 14 

shows the overall error contribution to the mass error (Δm). Ablated feature A and B 

have a similar high error contribution from the depth error (Δd) with 95.5% and 94.7% 

respectively. The error in the critical dimension Dx is negligible for both ablated features. 

However, the error in the second critical dimension Dy shows to be more prevalent if the 

surface area of the ablated feature is smaller (4.5% for ablated feature A with a surface 

area of 240 mm2 and 5.3% for ablated feature B with a surface area of 48 mm2). 

However, if the error in the rotor speed (Δω) is neglected the error contribution of Dy to 

the mass error (Δm) becomes negligible. Overall, the error for ablated feature A is 13.1% 

while it is 13.2% for ablated feature B. Hence, for in-situ balancing processes ablated 

feature A allows for a higher mass removal (m), shorter process time (t) while the error 

in the mass removal (Δm) does not vary greatly.   
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To conclude, the error model enables the prediction of inaccuracies in the critical 

dimensions and mass removal of the feature generated using on-the-fly laser machining. 

The highest contributor is the error in the feature depth (Δd). However, if taking the said 

errors into consideration, the on-the-fly laser machining model enables valuable 

predictions for in-situ balancing applications.  Hence, in a balancing scenario, where it is 

important to weigh accuracy of the feature shape used for mass removal and overall 

process time, a feature similar to ablated feature A would offer the best compromise 

between a high mass removal rate and a minimum error to achieve such. 

6. CONCLUSIONS 

The rise of pulse laser ablation (PLA) machining in industry and academia led to 

several new manufacturing techniques, one of them being on-the-fly machining using 

PLA. Its main advantages are the ability to machine rotatives with precision, accuracy, 

speed and little need for skilled labour. However, while many laser machining processes 

have received a great amount academic attention, on-the-fly pulsed laser machining so 

far has gone unnoticed. Specifically, its application potential as a correction method 

during balancing has so far been overlooked, also due to the non-existence of a reliable 

error budgeting model on a feature basis to predict the inaccuracies of a feature and 

hence evaluate on-the-fly laser machining as a potential manufacturing process. This 

papers presents a model, which is capable of predicting material removal (exemplified 

on Inconel 718 test pieces) and processing time of a specified feature generated by on-

the-fly laser machining.   
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 A model has been developed for predicting the material removal and process 

time for on-the-fly laser machining. The model combines analytical approaches 

with artificial intelligence to approximate the material removal. It has shown to 

offer a high accuracy with a maximum error below 3 mg when prediciting 

optimum process parameters to generate features of Inconel 718 using on-the-

fly laser machining. 

 A model to predict errors in the feature occurring from the on-the-fly laser 

machining process has been developed and validated using two sets of on-the-fly 

laser machining trials where it succeeded in accurately predicting the 

inaccuracies. Furthermore, the model allowed insights into the origin of the 

errors and henceforth, the stability of the motor control has been identified as 

the main source for errors (approx. 95% contribution) to the error of the critical 

dimension Dy. For the overall mass, the error in the depth of the feature (Δd) has 

the highest contribution (approx. 95%). 

 It has been shown that by changing the pulse placement strategy from the 

traditional square placement to the denser hexagonal placement, allows the 

fluence to be more evenly distributed over the ablation area and therefore 

reduces the surface roughness of the on-the-fly laser machining process. 

Improvements between 12% and 17% could be observed.  

 The model has been successfully applied and validated on a testing rig. Two trials 

have been conducted, one focusing on a long circumferential ablation feature, 

while to other one focused on a wide but short ablation feature. The mass 
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differences observed were -1% and +20% respectively. It has been concluded 

that the higher error in the wide trial stems from the high number of tracks, 

which increases the errors of on-the-fly laser machining.  

To conclude, the models enables operators to accurately machine features, 

assuming a well calibrated laser machining system on an industrial scale. Additionally, 

the methodology can be used as a corrective method for balancing rotatives in-situ due 

to the low space requirements of a fibre laser as well as the instantaneous vaporisation 

of waste material compared to “traditional” balancing methods. 
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NOMENCLATURE 
 
P Power of the laser 

ϕ Spot diameter (1/e2) 

rz Beam radius  

R Radius of the rotor 

m Removed material  

mp Predicted material removal  

md Desired material removal  

d Depth of the laser ablated pocket 

dm Measured depth of the laser ablated pocket  

dp Predicted depth of the laser ablated pocket  

ds Depth of the laser spot 

ω Angular velocity of the rotating part 

f Frequency of the laser 

nx Number of laser tracks 

ny Number of laser pulses per track 

nz Number of laser passes 

td Time delay between triggering and firing of the laser 

E Laser pulse energy 

Θ Laser output fluence 
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Fig. 11 Velocity error dependent on rotor speed 

Fig. 12 Rotary stage with Inconel 718 sample attached (see experimental set-up 
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Fig. 13 Error contribution of ablated feature A and B to ΔDy (see Eq. (18)) 
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 Figure 1 Schematic of on-the-fly pulse laser ablation with main sources of errors  
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Figure 2 Flowchart of the on-the-fly laser machining approach 
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Figure 3 Example of pulse placement grids for a rectangle using hexagonal and square pulse 
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Figure 4 Example calibrated relationship between depth of ablation and normalised fluence 
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Figure 5 Example of laser beam energy distribution (top) and crater depth profile (bottom), with 
the red shaded area indicating fluence below the ablation threshold level  
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Figure 6 Schematic of the artificial neural network for the prediction of the ablation depth in on-
the-fly laser machining 



Journal of Manufacturing Science and Engineering 

51 

 

Laser source

Mirror

ω + Δω 

R + ΔR 

f + Δf

ϕ + Δ ϕ

y

z

Lens

Disc

 
Figure 7 Schematic of the error sources in circumferential (y) direction 
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Figure 8 Validation performance of the trained neural network showing the point on which 
minimum error between the predicted and measured ablated depth was achieved 
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Figure 9 Comparison between the surface finishes of a) 1 layer hexagonal pulse placement, b) 3 
layers hexagonal pulse placement, c) 1 layer square pulse placement, d) 3 layers square pulse 
placement 
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Figure 10 View of the testing rig setup 
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Figure 11 Velocity error dependent on rotor speed 
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Figure 12 Rotary stage with Inconel 718 sample attached (see experimental set-up in Figure 10) 
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Figure 13 Error contribution of ablated feature A and B to ΔDy (see Eq. (18)) 
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Figure 14 The error contribution of ablated feature A and B to Δm (see Eq. (20)) 
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Table 1 Variation intervals for the neural network input parameters 

Input Parameter Minimum Maximum 

Frequency (f) 28 kHz 50 kHz 

Pulse Spacing (dx,y) 10 µm 40 µm 

No of Layers (nz) 1 222 

Critical Dimension Dy 2 mm 60 mm 

Critical Dimension Dx 2 mm 60 mm 
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Table 2 Experimental and training results of the neural network for Inconel 718 calibration trials, 
blue shading indicates square ablated patches (i.e. 4 x 4 mm), while orange shading indicates 
rectangular (i.e. not square) ablated patches 

Parameters 

Dx (mm) Dy (mm) dx,y (μm) f (kHz) nz dm (μm) dp (μm) 
4 4 40 50 1 -0.3 -0.43 

4 4 40 50 25 -3.08 -3.07 

4 4 40 50 3 -0.11 -0.67 

4 4 40 50 9 -1.69 -1.35 

4 4 40 45 1 -0.12 -0.14 

4 4 40 45 25 -2.78 -2.73 

4 4 40 45 3 -0.62 -0.37 

4 4 40 45 9 -1.14 -1.04 

4 4 40 40 1 0.05 -0.05 

4 4 40 40 25 -2.97 -2.59 

4 4 40 40 3 -0.19 -0.27 

4 4 40 40 9 -0.57 -0.94 

4 4 40 35 1 -0.37 0.01 

4 4 40 35 25 -2.35 -2.45 

4 4 40 35 3 -0.23 -0.21 

4 4 40 35 9 -0.12 -0.85 

4 4 20 50 1 -0.44 0.11 

4 4 20 50 25 -15.1 -15.06 

4 4 20 50 3 -1.76 -1.45 

4 4 20 50 9 -5.69 -5.70 

4 4 20 45 1 -0.2 -0.02 

4 4 20 45 25 -14.67 -14.41 

4 4 20 45 3 -1.55 -1.50 

4 4 20 45 9 -4.99 -5.52 

4 4 20 40 1 -0.28 -0.11 

4 4 20 40 25 -13.45 -13.64 

4 4 20 40 3 -1.33 -1.50 

4 4 20 40 9 -4.71 -5.29 

4 4 20 35 1 -0.78 0.08 

4 4 20 35 25 -12.47 -12.22 

4 4 20 35 3 -1.33 -1.21 

4 4 20 35 9 -4.6 -4.70 

4 4 10 50 1 -2.26 -0.45 

4 4 10 50 25 -62.89 -63.72 

4 4 10 50 3 -8.14 -6.84 

4 4 10 50 9 -25.24 -24.55 

4 4 10 45 1 -1.87 -1.15 
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4 4 10 45 25 -63.48 -61.36 

4 4 10 45 3 -7.59 -7.25 

4 4 10 45 9 -23.37 -24.10 

4 4 10 40 1 -1.6 -1.62 

4 4 10 40 25 -58.05 -58.55 

4 4 10 40 3 -6.95 -7.40 

4 4 10 40 9 -24.76 -23.37 

4 4 10 35 1 -1.62 -1.23 

4 4 10 35 25 -53.41 -53.75 

4 4 10 35 3 -6.69 -6.65 

4 4 10 35 9 -22.84 -21.54 

4 4 11 48 134 -274.62 -274.51 

4 12 12 44 68 -111.88 -100.43 

4 24 15 44 154 -152.57 -152.52 

2 30 17 45 222 -144.43 -146.46 

2 30 17 45 222 -146.47 -146.46 

4 27 13 49 96 -125.45 -118.14 

4 60 15 49 167 -157.65 -158.48 

4 60 15 48 56 -42.72 -42.64 

4 27 13 49 96 -110.75 -118.14 
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Table 3 Root mean square (Sq) area roughness (ISO 25178) comparison between hexagonal and 
square pulse placement 

 Square placement Hexagonal 

placement 
Reduction (%) 

1 Layer – Sq (µm) 2.18 1.81 -16.97 

3 Layers – Sq (µm) 1.17 1.02 -12.82 
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Table 4 Parameters for the on-the-fly laser machining and error prediction trials 

Ablated features Dx (mm) Dy (mm) m (mg) md (mg) Δmd (mg) 

A – Long feature 4 60 7538 84 1 

B – Wide feature 12 4 7539 16 1 
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Table 5 Errors associated with the pulse generation and placement 

Variable Standard 

deviation 

error 

Description Error 

distribution 

Method of 

measuring 

Δtd ± 0.012 ms Time delay due to 

triggering 

Gaussian Empirical: 

circumferential 

distance 

travelled 

Δω Velocity 

dependent 

(see Eq. (24), 

Figure 11) 

Angular velocity Normal Empirical: 

encoder output 

ΔR ± 0.05 mm Rotor radius Normal Empirical: 

digital caliper 

ruler 

Δf ± 0.5 Hz Frequency Normal Datasheet 

Δϕ ± 5 % Pulse diameter Gaussian Empirical: 

CMOS beam 

profiler 

Δd ± 12.66 % Feature depth Normal Empirical: 

calibration 

trials 

ΔDx ± 1 μm Positional 

accuracy of x 

mirror movement 

Normal Datasheet 
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Table 6 On-the-fly laser machining process parameter optimisation results for ablated feature A 
and B 

Ablated 

feature  

 dx,y 

(µm) 

f (kHz) P (W)  nx ny nz ω (rpm)  t (min) mp  (mg) 

A 15 48 18 262 3996 56 100 146.72 83.84 

B 14 45 17 852 281 30 86 297.21 16.25 
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Table 7 On-the-fly laser machining results for ablated feature A and B 

Ablated feature mp (mg) m (mg) Error (%) 

A 83.84 85±2 1.38 

B 16.25 13±2 20.00 
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Table 8 Error model evaluation results for ΔDy and Δm 

Ablated 

feature 

ΔDy Δm 

Dy (mm) Dyp (mm) m (mg) mp (mg) 

A  60±2.095  83.84±11.01 

B  4±0.157  16.25±2.15 

 


