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We investigate the behavior of two quantum emitters (two-level atoms) embedded in a linear waveg-
uide, in a quasi-one-dimensional configuration. Since the atoms can emit, absorb and reflect radia-
tion, the pair can spontaneously relax towards an entangled bound state, under conditions in which
a single atom would instead decay. Exploting the resolvent formalism, we analyze the properties of
these bound states, which occur for resonant values of the interatomic distance, and discuss their
relevance with respect to entanglement generation. The stability of such states close to the reso-
nance is studied, as well as the properties of non-resonant bound states, whose energy is below the
threshold for photon propagation.

PACS numbers: 42.50.Ct, 42.50.-p, 42.50.Nn, 03.67.Bg

I. INTRODUCTION

An excited atom in free space unavoidably decays to-
wards its ground state through spontaneous emission.
Boundary conditions and artificial dimensional reduction
can drastically modify the picture, providing situations
in which the decay is enhanced, inhibited or even com-
pletely hindered [1–9]. While confinement in optical cav-
ities has long been a common way to study the effects of
geometry [10–12], one-dimensional systems have recently
emerged as another promising stage for the observation
of interesting quantum electrodynamics (QED) phenom-
ena. Nowadays a variety of quantum emitters (atoms for
brevity) can be coupled to quasi one-dimensional fields
such as waveguides, optical fibers and microwave trans-
mission lines [13–19]. Alternatively, the effective reduc-
tion to one dimension can be obtained by tightly focus-
ing photons [20–22]. These impressive experimental ad-
vances have opened the way to unexplored nonperturba-
tive regimes of QED, and have motivated work on the
interaction between atoms and waveguides in different
geometries [23–30].

In this context, an interesting problem is the study of
atoms in semi-infinite linear waveguides, where one end
of the guide behaves as a perfect mirror [31–33]. For
selected values of the atom-mirror distance a nontrivial
bound state exists, in which the probability of atomic
excitation is finite, even when photons emitted through
spontaneous decay can propagate in the guide [34, 35].
The optical path between the atom and the mirror is cru-
cial for the existence of this kind of resonance. It is worth
noting that even a single atom exhibits a mirror-like be-
havior in one dimension [21, 22, 36–39]. One may thus
consider the interaction of two atoms, mediated by the
exchange of photons propagating in one dimension, and
exploit the dual behavior of each atom as both an emit-
ter and a mirror. Such interaction can give rise to stable
configurations in which the atoms display significant en-

tanglement, while the field is confined between the atoms
and does not propagate [39–41]. Besides the fundamental
interest of few-body QED in quasi 1D geometries, where
non-Markovian effects easily come into play [42], such a
system is thus interesting from the point of view of gener-
ating entanglement, an important resource in Quantum
Information, by relaxation. Indeed, if a bound state ex-
ists in which the two atoms are entangled, an initially
factorized atomic state can spontaneously relax towards
a state with finite entanglement. Relaxation occurs af-
ter an initial transient in which photon exchange builds
up quantum correlations. Differently from other meth-
ods of entanglement generation in waveguide-QED [43],
this process would not require a continuous pumping of
energy into the system, and would ideally provide a con-
stant entanglement in time after the initial transient.

In this paper we show how the properties of bound and
quasi-bound entangled states in waveguide-QED can be
studied in great depth and generality by exploiting the
resolvent formalism [44, 46]. Studying the resolvent, one
notices the presence of a number of poles in the so-called
complex-energy plane. Each pole can be associated with
a (generally unstable) state, and the imaginary part of a
pole is proportional to the inverse lifetime of the state.
This allows us to immediately identify a favorable sit-
uation for entanglement generation by relaxation: we
need one of these poles to be a long-lived entangled state
(i.e., the pole must have a negligible imaginary part),
while the remaining poles must be fast-decaying states.
Under such conditions, a separable atomic state would
quickly relax onto an entangled metastable state. While
the metastable state will eventually decay due to losses
and imperfections, our analysis allows to clearly identify
the relevant timescales of the problem. Thus, we can give
a clear indication of what degree of losses and imperfec-
tions a given system is able to tolerate while still allowing
the generation of long-lived entanglement. Importantly,
our formalism automatically takes into account a number
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Figure 1. Two two-level atoms are placed at relative distance
d in a one-dimensional waveguide, with propagation direction
along the x axis. Both atoms possess the same internal struc-
ture (for brevity we only sketch the levels of emitter A) and
interact through the mediation of waveguide photons. The
waveguide is characterized by its one-dimensional photon dis-
persion relation ω(k), with k being the photon momentum.
We first focus on the TE1,0 mode of an infinite waveguide of
rectangular cross section, and then generalize to a wide class
of one-dimensional dispersion relations in Sec. V.

of physical effect that are often neglected: these include
non-markovian effects, time-delay (due to the finite prop-
agation speed of photons), threshold effects (due to the
presence of either high- or low- frequency cutoffs in the
dispersion relation). Even though, for definiteness, we
focus for the most part on the dispersion relation typi-
cal of rectangular waveguides, we will also outline how a
wide class of physically relevant dispersion relations can
be tackled within the same framework.

Our paper is organized as follows. In section II we in-
troduce the Hamiltonian of our model, and illustrate how
a suitable choice of the inter-atomic distance gives rise to
entangled bound states above the frequency threshold for
photon propagation. Section III is devoted to the study
of poles in the complex-energy plane, which allows us to
extract crucial information relevant to the entanglement-
by-relaxation protocol. In section IV we extend our anal-
ysis to off-resonant bound states, whose energy is below
the low-frequency cutoff of the waveguide. We outline in
section V how our study can be generalized in a straight-
forward manner to any dispersion relation that satisfies
appropriate conditions. Finally, we draw our conclusions
in section VI.

II. THE MODEL

We describe the dynamics of two two-level atoms A
and B, situated in an infinite waveguide of rectangular
cross section, with sides Ly < Lz, see Fig. 1. When lon-
gitudinal propagation occurs with long wavelength com-
pared to the transverse size, interaction between atoms
and field can be reduced to a coupling with the lowest-
cutoff-energy TE1,0 mode, in which the electric field vi-
brates along the z direction and has a sine modulation
in the y direction [48]. In this situation, the electromag-
netic field is effectively scalar and massive. The inter-

acting atoms and photons are described, in dipolar and
rotating wave approximations, by the Hamiltonian

H = H0 + λV

= ω0(|eA〉〈eA|+ |eB〉〈eB |) +

∫
dk ω(k)b†(k)b(k)

+λ

∫
dk

ω(k)1/2

[
|eA〉〈gA|b(k) + |gA〉〈eA|b†(k)

+|eB〉〈gB |b(k)eıkd + |gB〉〈eB |b†(k)e−ıkd
]
, (1)

where ω0 is the bare energy separation between the
atomic ground |g〉 and first-excited states |e〉, λ is the
coupling constant (see Appendix B), d is the A-B dis-
tance, ω(k) is the photon dispersion relation, and b(k)
(b†(k)) is the annihilation (creation) field operator, satis-
fying the canonical commutation relation [b(k), b†(k′)] =
δ(k − k′). Henceforth, we will focus on the dispersion

ω(k) =
√
k2 +M2 of the TE1,0 mode in the waveguide,

characterized by a mass M ∝ L−1
y . However, as discussed

in section V, our approach is applicable to a wide class of
one-dimensional dispersion relations. The effective mass
M provides a natural cutoff to the coupling. The Hamil-
tonian (1) commutes with the excitation number

N = Nat +

∫
dk b†(k)b(k), (2)

where Nat = |eA〉〈eA| + |eB〉〈eB | is the atomic excita-
tion number. The N = 0 sector is 1-dimensional and is
spanned by the bare ground state |gA, gB ; vac〉. We shall
focus instead on the dynamics in the N = 1 sector, where
the states read

|ψ〉 =
(
cA|eA, gB〉+ cB |gA, eB〉

)
⊗ |vac〉+ |gA, gB〉 ⊗ |ϕ〉

(3)
where |ϕ〉 :=

∫
dk ϕ(k)b†(k)|vac〉 is a one-photon state,

and |cA|2 + |cB |2 +
∫
dk|ϕ(k)|2 = 1.

In the small-coupling regime, an isolated excited atom
with ω0 & M would decay to the ground state. We
shall demonstrate that, when two atoms are considered,
a resonance effect emerges, yielding a bound state. Using
the expansion (3) the eigenvalue equation, H|ψ〉 = E|ψ〉,
reads

EcA = ω0cA + λ

∫
dk

ϕ(k)

ω(k)1/2
, (4)

EcB = ω0cB + λ

∫
dk
ϕ(k)eıkd

ω(k)1/2
, (5)

ϕ(k) =
λ

ω(k)1/2

cA + cBe−ıkd

E − ω(k)
. (6)

The field amplitude ϕ(k) has two simple poles at k =

±k̄ = ±
√
E2 −M2. Thus, when E > M , the integrals

in (4)-(5) are finite only if cA+cBe±ik̄d = 0, yielding k̄d =
nπ for positive integers n. This implies that a bound
state can exist only for discrete values of the interatomic
distance d. Moreover, in the first component of such an
eigenstate (3), the atoms are in a maximally entangled
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(singlet or triplet) state, namely cA = (−1)n+1cB . To
determine the distances at which the bound state exists,
let us first compute the energy eigenvalue, which after
the resonance condition is the solution of

E = ω0 + λ2

∫
dk

1− (−1)ne−ıkd

ω(k)(E − ω(k))

= ω0 +
2λ2

M

[
1 +O

(
E −M
M

)
+O

(
e−Md

√
Md

)]
. (7)

Corrections in the second line are negligible if |ω0−M | �
M . This will result as a special case of the ensuing anal-
ysis of the complex poles of the resolvent. [See Eq. (28)
and following ones.] Thus for large M , a bound state
with E > M is present only if the distance d takes one
of the discrete and equally spaced values

dn =
nπ

k̄
, with k̄ :=

√(
ω0 +

2λ2

M

)2

−M2, (8)

and if the wavenumber k̄ is real (ω0 > M − 2λ2/M).
The properties of states with E < M , to which an imagi-
nary wavenumber can be associated, will be discussed in
Section IV.

To complete the characterization of the bound state,
we shall analyze the atomic populations and the field
energy density. The former can be immediately obtained
using the normalization condition on the states (3) as

1 = 2|c(n)
A |

2

(
1 + λ2

∫
dk

1− (−1)n cos(kdn)

ω(k)(E − ω(k))2

)
, (9)

Where we use the shorthands c
(n)
A , c

(n)
B to indicate the

coefficients of the bound state with d = dn. Retaining

only the highest order in M and defining pn := |c(n)
A |2 +

|c(n)
B |2 as the probability associated to theNat = 1 sector,

one gets

pn '
(

1 + nπ
2πλ2M

k̄3

)−1

. (10)

Notice that, despite being apparently of order λ2, the
correction to unity is given by the ratio between pow-
ers of two small quantities, namely the effective coupling
constant λ/M , and the wavenumbers ratio k̄/M . The
resulting number can be of order one, even at small cou-
pling constants. Observe that the probability vanishes
like k̄3/n at very small k̄: this behavior is physically mo-
tivated by the fact that, as the energy approaches the
cutoff, the distance between the atoms must increase to
infinity in all bound states. Let us finally analyze the en-
ergy density of the electromagnetic fields. Neglecting the
exponentially suppressed contribution of the square-root
cuts, the energy density turns out to be related to the
Fourier transform of the photon amplitude,

ϕ̃n(x) =

∫
dk

2π
ϕn(k)eıkx

'
λc

(n)
A 2M√
2πE

∫
dk

1− (−1)ne−ıkdn

k̄2 − k2
eıkx, (11)

as

En(x) ' E|ϕ̃n(x)|2 '
(2
√
πλM

k̄

)2

pn sin(k̄x)2, (12)

for x ∈ [0, dn], and En(x) ' 0 outside. Thus, the field
is confined between the two atoms, and modulated with
periodicity π/k̄, with nodes at the positions of the atoms
which act as mirrors. This explains the occurrence of
such bound states for discrete values (8) of the inter-
atomic distance.

Moreover, the structure of the bound state is

|ψn〉 =
√
pn|Ψs〉 ⊗ |vac〉+ |gA, gB〉 ⊗ |ϕn〉, (13)

where s = (−1)n+1 and |Ψ±〉 = (|eA, gB〉 ± |gA, eB〉)/
√

2
are (maximally entangled) Bell states. This is a key
feature which enables entanglement generation by atom-
photon interaction. Indeed, suppose that d = dn: a fac-
torized initial state, say |ψ(0)〉 = |eA, gB〉 ⊗ |vac〉, can be
expanded into a “stable” and a “decaying” part as

|eA, gB ; vac〉 =

√
pn
2
|ψn〉+

√
1− pn

2
|ψ⊥n 〉, (14)

with 〈ψ⊥n |ψn〉 = 0. After a transient of the order of |ψ⊥n 〉’s
lifetime (see discussion in the following), the atomic den-
sity matrix ρat(t) := Trfield|ψ(t)〉〈ψ(t)| approaches

ρat(∞) =
p2
n

2
|Ψs〉〈Ψs|+

(
1− p2

n

2

)
|gA, gB〉〈gA, gB |, (15)

in which the atoms have a finite probability, determined
by (10), to be maximally entangled. In Figure 2 we dis-
play the atomic entanglement in the asymptotic state, as
measured by the concurrence [45]. However, one could
also measure the photon state and obtain, with a finite
probability, a maximally entangled atomic state. The
strategy is therefore the following: one prepares a fac-
torized state, and measures whether a photon is emitted.
If (after a few lifetimes) no photon has been observed,
the atomic state is projected over the maximally entan-
gled Bell state |Ψs〉. This can be achieved with higher
probabilities for larger values of ω0. In realistic scenarios
this simplified picture is challenged by the presence of
losses, such that it is no longer possible to prepare an ex-
act Bell state. Nevertheless, if losses occur on sufficiently
long timescales (as compared to the decay rate of the fast
pole — see section III below), and provided the detector
efficiency is high enough, it remains possible to achieve
high fidelity with a Bell state.

III. TIME EVOLUTION AND BOUND STATE
STABILITY

Let us now study the general evolution of an initial
state in the atomic sector Nat = 1. We will use the re-
solvent formalism [44, 46] to illustrate that the system
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Figure 2. Behavior of the concurrence C = p2n/2 of the asymp-
totic states ρat(∞) as a function of the atomic excitation en-
ergy, for λ = 10−2M and a factorized initial state. The solid
(blue) line, dashed (red) line and dotted (black) line are re-
ferred to the resonant states with n = 1, 2, 3, respectively.

relaxes towards the bound state, and to quantify the ro-
bustness of the bound state against small variations in
the model parameters (such as the A-B distance). We re-
mark that the usefulness of the resolvent formalism goes
beyond the analysis of stable states, in that it provides
crucial information on the relevant timescales of the prob-
lem. Indeed, the entanglement-by-relaxation protocol de-
scribed in the previous section relies on the fast decay of
the unstable Bell state. The analysis of the resolvent
enables to determine the lifetime of this unstable state,
which must be much shorter than the typical timescales
of waveguide or atomic losses, as well as the inevitably
finite lifetime of the bound state (due for example to im-
perfect control of the A-B distance). Whenever these
conditions are met, the effectiveness of the protocol is
guaranteed and a long-lived entangled state may be pre-
pared by relaxation.

The resolvent G(z) = (z − H)−1, with z the com-
plex energy variable, has singularities only on the real
axis (on the first Riemann sheet) and the study of addi-
tional singularities (on the other Riemann sheets) yields
crucial information about the dynamical stability of the
system: in particular, a pole with a non-vanishing imag-
inary component signals a decay process. The resolvent
approach yields results that are consistent with those ob-
tained from the analysis of the Laplace transform of the
time evolution [41].

For λ = 0, the free resolvent G0(z) = (z−H0)−1 has a
pole on the real axis, at z = ω0, corresponding to the ex-
cited states of atoms A or B. When interaction is turned
on, this singularity splits into two simple poles, which
generally migrate into the second Riemann sheet. We
shall see from a non-perturbative analysis that, under res-
onance conditions, one of the poles falls on the real axis
(and is therefore very long-lived), while the other one has
a very short lifetime. Let G(z) and G0(z) be the restric-
tions to the Nat = 1 sector of the interacting and free

resolvent, respectively. In the basis {|eA, gB〉, |gA, eB〉}
one gets

G0(z) =
1

z − ω0

(
1 0
0 1

)
(16)

and

G(z) = [G0(z)−1 − λ2Σ(z)]−1 = [z − ω0 − λ2Σ(z)]−1,
(17)

where

Σ(z) =

(
ΣAA(z) ΣAB(z)
ΣBA(z) ΣBB(z)

)
(18)

is called self energy.
The resolvent G(z) is analytic in the whole complex

energy plane, except at points on the real axis that belong
to the spectrum of the Hamiltonian H. In particular it
exhibits simple poles at the eigenvalues of H and cuts
along its continuous spectrum [44, 46]. However, it can
happen that some complex poles show up on the second
Riemann sheet, through the analytic continuation of the
resolvent GII(z) from the upper half-plane to the lower
half-plane under the cut [46, 47]. These poles physically
correspond to unstable states with energy and decay rates
given by their real and imaginary part, respectively.

The particular form of the interaction Hamiltonian V
in (1) enables one to exactly evaluate the self energy:

ΣAA(z) = ΣBB(z) =

∫
dk

1

ω(k)(z − ω(k))
, (19)

ΣAB(z) = ΣBA(z) =

∫
dk

cos(kd)

ω(k)(z − ω(k))
. (20)

Due to the bare energy degeneracy and the symmetric
structure of the self energy, the propagator can be diag-
onalized as

G(z) =
|Ψ+〉〈Ψ+|

z − ω0 − λ2Σ+(z)
+

|Ψ−〉〈Ψ−|
z − ω0 − λ2Σ−(z)

, (21)

where

Σs(z) = 2

∫ ∞
M

dω
κs(ω)

z − ω
, s = ±1, (22)

with spectral densities

κ±(E) =
1± cos(

√
E2 −M2d)√

E2 −M2
χ[M,∞)(E). (23)

The self-energy functions Σ±(z) are analytic in the cut
complex energy plane C \ [M,+∞) and have a purely
imaginary discontinuity across the cut proportional to
the spectral density:

Σs(E − ı0+)− Σs(E + ı0+) = 2πıκs(E). (24)

During the continuation process into the second Rie-
mann sheet through the cut, the self energy (22) will thus
get an additional term

Σs(z) −→ ΣII
s (z) = Σs(z)− 2πiκs(z), z ∈ C. (25)
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Note that the new term has in general a nonvanishing
imaginary part and is the analytical continuation of the
discontinuity of the self-energy function across the cut.
Now, a pole

zp = Ep − ıγp/2 (26)

of G(z) on the second sheet must satisfy the equation

zp = ω0 + λ2ΣII
s (zp), (27)

for s = +1 or s = −1, where ΣII
s (z) is the branch (25)

of the self energy in the second sheet. By plugging (25)
and (23) into (27) we get

zp = ω0 + λ2

Σ±(zp)− 4πı
1± cos

(√
z2

p −M2d
)

√
z2

p −M2

 .

(28)
It is evident from (28) how the energetic degeneracy at
λ = 0 is lifted by interactions. Notice the presence of an
imaginary component, detecting decay.

The last ingredient we need in order to get a closed
expression for the complex energy poles is the evaluation
of Σs(z) in (28). Thus, let us rewrite (22) as an integral
over k:

Σ±(z) =

∫ +∞

−∞

dk√
k2 +M2

1± eıkd

z −
√
k2 +M2

. (29)

The integrand function can be analytically continued to
the complex k plane using the principal determination of
the square root, which has nonnegative real part for all
values of its argument, and is characterized by a branch
cut for k2 +M2 < 0 , that is

k = ±ıχ, with χ ∈ (M,∞). (30)

Two first-order poles, symmetric with respect to the ori-
gin of the k plane, are also present whenever Re(z) > 0:

k = ±k0(z) = ±
√
z2 −M2. (31)

By deforming the integration contours as in Figure 3
and applying Jordan’s theorem, Σs is split in two terms

Σs(z) = Σcut
s (z) + Σpole

s (z). (32)

coming from the upper branch cut and from one of the
two poles (see Figure 3). Specifically, when Im(z) > 0,
the pole k0(z) lies in the upper half plane, and the inte-
gral involves the residue

Σpole
± (z) = 2πı lim

k→k0(z)

(k − k0(z))(1± eıkd)√
k2 +M2(z −

√
k2 +M2)

= −2πı
1± eı

√
z2−M2d

√
z2 −M2

. (33)

k

k

√ z2−M 2

√ z2−M 2

−√ z2−M 2

−√ z2−M 2

iM

iM

Im( z)>0

Im( z)<0

Figure 3. Integration contours (red) in the complex k plane
for the computation of the integral in Eq. (22) with Im(z) > 0
(upper panel) and Im(z) < 0 (lower panel).

Instead, when Im(z) < 0, the deformed contour in the
upper plane encircles −k0(z), where the residue yields

Σpole
± (z) = 2πı lim

k→−k0(z)

(k + k0(z))(1± eıkd)√
k2 +M2(z −

√
k2 +M2)

= 2πı
1± e−ı

√
z2−M2d

√
z2 −M2

. (34)

Finally, the integrals along the cut read

Σcut
± (z) = 2z

∫ ∞
M

dχ
1± e−χd√

χ2 −M2(z2 + χ2 −M2)

=
2√

z2 −M2
Log

(
z +
√
z2 −M2

M

)
±O(e−Md),

(35)

where the contribution from e−χd, that is not amenable
to an explicit closed form in terms of simple functions, is
nevertheless suppressed like e−Md and can be neglected
for large values of Md.

We are now able to recognize the real resonant poles
discussed in the first part of the paper as special solutions
of Eq. (28). Indeed, assuming that the complex energy
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pole (26) is far from the branching point z = M and that
its imaginary part is almost vanishing, one can decouple
the real and imaginary parts of (28) and obtain from
Eqs. (32)-(35)

Ep 'ω0 +
2λ2

kp
Log

(
Ep + kp

M

)
± 2πλ2 sin(kpd)

kp
, (36)

γp ' 4πλ2 1± cos(kpd)

kp
, (37)

where kp =
√
E2

p −M2. Hence, we find that the poles

in the second Riemann sheet have a cyclic behavior with
respect to d. This result is in agreement with the one
obtained in Ref. [40] in the Markovian approximation. In
particular, when d = dn, as defined in Eq. (8), the real

part of the pole equations is solved by Ep =
√
k̄2 +M2.

In this case, one of the poles corresponds to the entangled
bound state, and has vanishing imaginary part, while the
other signals an unstable state with associated decay rate

γ(u)
p = 8πλ2/k̄ (38)

Even if, strictly speaking, bound states only occur for
discrete values of d, it can be readily checked that while
the energy shift is linear, the decay rate of the stable pole
is quadratic for d→ dn

γ(s)
p ' 2πλ2k̄(d− dn)2, (39)

implying that the state |ψn〉 remains very long-lived close
to resonance. Eq. (39) quantifies the robustness of the
bound states against variations of the parameter d. Note
how Eqs. (38) and (39) provide essential information on
the feasibility and effectiveness of the entanglement gen-
eration protocol: firstly, it is necessary that the condition

γ
(s)
p � γ

(u)
p is satisfied, which is equivalent to the condi-

tion k̄2(d−dn)2 � 1. Secondly, γ
(u)
p must be much larger

than any decay rate associated with loss processes (e.g.
waveguide losses). Even though approximate analytical
expressions such as Eqs. (38) and (39) are extremely valu-
able, we emphasize that our methodology is capable of
capturing the exact behaviour of the poles against vari-
ations in the model parameters. To illustrate this, in
Fig. 4 we show the trajectories of the poles (26) in the
complex energy plane, obtained by fixing M and d and
varying the bare excitation energy ω0. On the one hand,
we are thus able to assess quantitatively the robustness
of bound states against variations in ω0. On the other
hand, Fig. 4 demonstrates how our methodology allows
one to interpolate seamlessly between perturbative and
non-perturbative regimes.

IV. OFF-RESONANT BOUND STATES

Let us briefly discuss the behavior of bound states with
E < M . In this case, the atoms are not expected to de-
cay. Nonetheless, they interact by coupling to the evanes-
cent modes of the waveguide. Scrutiny of Eqs. (4)-(5)
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-0.004

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

Ep�M

-
Γ

p�H
2M

L

Figure 4. Trajectories of the poles E
(+)
p − ıγ

(+)
p /2 (dashed

blue line) and E
(−)
p − ıγ

(−)
p /2 (solid red line) on the second

Riemann sheet of the complex energy plane, for Md = 15
and λ = 10−2M , with varying .95 ≤ ω0/M ≤ 1.35. The
trajectories are tangent to the real axis (they touch it when-
ever condition (8) is satisfied), showing that the approximate
bound states are robust against variation of ω0. Notice that
the behaviour of both poles becomes non perturbative in λ as
ω0 ∼M .

shows that there are bound states for all d, whose energy
satisfies(

E − ω0 − α(E) −β(E)
−β(E) E − ω0 − α(E)

)(
cA
cB

)
= 0, (40)

with

α(E) = − λ2

√
M2 − E2

(
π + 2 arctan

E√
M2 − E2

)
, (41)

β(E) = − λ2

√
M2 − E2

2πe−
√
M2−E2d. (42)

where we have again neglected the O(e−Md) contribu-
tions from branch-cut integration in the complex k plane.
If the coupling is small and the excitation energy ω0 is
far from the threshold M for photon emission, the above
equations reduce to an effective Hamiltonian eigenvalue
equation in the Nat = 1 sector. The eigenvalues read

E(±) = ω0 + α(ω0)± β(ω0), (43)

with cA = cB for the plus sign (ground state) and
cA = −cB for the minus sign. These bound states are
not associated to any resonance. It is also possible to
check that the electromagnetic energy density falls like
exp(−

√
M2 − E2|x|) away from the atoms.

Since the eigenstates of the effective Hamiltonian are
Bell states, the evolution of an initially factorized state
is characterized by oscillations between two orthogonal
maximally entangled states with period 2π/β(ω). Com-
pared to entanglement by relaxation, this mechanism
yields unit concurrence [41]. On the other hand, the
process can be very slow, since the energy splitting is
exponentially suppressed with the interatomic distance,
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and requires the fine tuning of an optimal time to stop
the interactions, which is not required in the spontaneous
entanglement process described in Section II.

The case E →M is more interesting, since the physics
becomes nonperturbative. Equations (4)-(5) admit a sin-
glet and a triplet solution. For the singlet case, the bound
state with E = M is obtained at a finite excitation en-
ergy:

ω0 = M − 2λ2

M
+ 2πλ2d, (44)

in which, due to a cancellation of divergences, the cor-
rection to the bare energy is still perturbative in λ2.
This singlet solution approximates the dark eigenstate
|Ψ−〉 ⊗ |vac〉 occurring at d = 0. The triplet, instead,
survives as a real eigenstate even for ω0 ≥ M . How-
ever, since cA = cB implies that the integrals over the
field become divergent in this limit, the population in
the Nat = 1 sector is suppressed to fulfill normalization,
and the contribution of this pole to the expansion (14)
can be safely neglected.

V. EXTENSION TO GENERIC DISPERSION
RELATIONS

While we have worked out in detail the case of a rect-
angular waveguide, we emphasize that our methods can
be applied to a generic dispersion relation ω(k). We start
by noticing that Eqs. (4)-(6) lead in full generality to the
implicit condition

E = ω0 + λ2

∫
dk

1− (−1)ne−ıkd

ω(k)(E − ω(k))
, (45)

which must be satisfied by the bound state energy E. For
the existence of a resonant (i.e. above threshold) bound
state, it is evident that also the condition k̄d = nπ, n ∈ N
must hold, where k̄ > 0 satisfies E = ω(±k̄). If this
were not the case, the right hand side of Eq. (45) would
diverge. We assume that such k̄ exists and is unique.
This is the case, for example, when ω(k) is an increasing
lower-bounded function of |k|. Moreover, the possibility
of non-resonant eigenstates below threshold follows as in
the case of a rectangular waveguide.

Moving on to the complex energy plane, the analysis of
poles proceeds along the same lines as in section III, al-
beit the existence of compact analytical expressions will
rely on the specific functional form of ω(k). The pole con-
tribution to the self energies can be generalized by replac-
ing the denominators in Eqs. (33)-(34) with ω(k0)ω′(k0),
and the square root in the exponentials with k0. In the
perturbative regime, this change does not affect formally
the ratio of the decay rates of stable and unstable poles
close to a resonance, namely [see Eqs. (38)-(39)]

γ
(s)
p

γ
(u)
p

=
1

4
k̄2(d− dn)2, (46)

where dn = nπ/k̄. We can see that quantitative differ-
ences between models arise in the inversion of the disper-
sion relation as a function of the energy. The quantity
in Eq. (46) gives a clear indication of the potential of
a given model to generate entanglement by relaxation.
While losses would inevitably degrade the quality of the
achievable entangled state, Eq. (46) may be seen as pos-
ing a fundamental limit to the entangling capabilities of
a given system, a limit which would persist even in an
idealized lossless scenario.

VI. CONCLUSIONS AND OUTLOOK

We analyzed stable and unstable states of a pair of
atoms in a waveguide, finding that an entangled bound
state exists for discrete values of the interatomic distance.
This implies that an initially factorized atomic state can
spontaneously relax towards a long-lived entangled state.
By analyzing the poles of the resolvent operator, we have
shown how to quantify the robustness of the entangled
bound state to small variations in the model parameters,
and how to identify the timescales that are crucial for the
preparation of an entangled state by relaxation.
While it has been pointed out that quantum computation
may be achievable in waveguide-QED trough effective
photon-photon interactions [49], focusing on the atomic
degrees of freedom may also hold significant potential for
applications in Quantum Information [50]. Further in-
vestigation will thus be devoted to the analysis of many-
atom systems [51–54], in which photon-mediated interac-
tions could possibly produce stable configurations such as
W states or cluster states.
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Appendix A: Derivation of the quasi-1D free field
Hamiltonian

We derive here the Hamiltonian in Eq. (1) of the main
text from first principles. Let us consider a waveguide
of infinite length, parallel to the x axis, characterized
by a rectangular cross section with y ∈ [0, Ly] and z ∈
[0, Lz]. We conventionally assume that Ly > Lz. A
common choice is Ly/Lz = 2. In a generic guide made
of a linear dielectric with uniform density and coated by
a conducting material, the boundary conditions for the
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electric and magnetic fields on the surface S read

Ex|S = 0 and
∂Bx
∂n

∣∣∣∣
S

= 0, (A1)

with ∂/∂n denoting the normal derivative with respect to
the surface. Transverse electric (TE) modes are charac-
terized by Ex = 0 everywhere in the guide and obtained
by imposing ∂Bx/∂n = 0 on the surface. On the other
hand, transverse magnetic (TM) modes have Bx = 0
identically. If the waveguide is rectangular, the bound-
ary conditions for TE modes reduce to

∂Bx
∂y

∣∣∣∣
y=0

=
∂Bx
∂y

∣∣∣∣
y=Ly

=
∂Bx
∂z

∣∣∣∣
z=0

=
∂Bx
∂z

∣∣∣∣
z=Lz

= 0,

(A2)
which limits the form of the longitudinal magnetic field
to the real part of

Bx = B0 cos

(
mπy

Ly

)
cos

(
nπz

Lz

)
ei(kx−ωm,n(k)t), (A3)

with m,n ∈ N2\{(0, 0)} and B0 a constant.
The integers m and n label the mode TEm,n. The disper-
sion relation with respect to the longitudinal momentum
has the same form as a massive relativistic particle,

ωm,n(k) =
√

(vk)2 + ωm,n(0)2, (A4)

with ωm,n(0) = v

[(
mπy
Ly

)2

+
(
nπz
Lz

)2
] 1

2

, where the mass

term is called the cutoff frequency of the mode, and v =
(µε)−1/2 is the phase velocity in the waveguide, assumed
isotropic and nondispersive with magnetic permeability µ
and dielectric constant ε. Since Ly < Lz, the TE1,0 mode
has the lowest cutoff frequency. It can be proved [48] that
ω1,0(0) is also lower than the cutoffs of all TM modes.
Thus, at sufficiently low energy the contribution of the
higher energy modes can be neglected, and propagation
occurs effectively in one dimension.

The TE1,0 mode is characterized by the following be-
havior of the fields

Bx = B0 cos

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A5)

By = −ikLyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A6)

Ez = i
ω1,0(k)LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t), (A7)

with the other three components vanishing. These fields
can be derived from the (transverse) vector potential

Az =
LyB0

π
sin

(
πy

Ly

)
ei(kx−ω1,0(k)t). (A8)

The mode can be quantized by introducing the time-0

field operators

A(1,0)(r) =

∫
dk

(
~

2πεω1,0(k)LyLz

) 1
2

sin

(
πy

Ly

)
×
[
a(k)eikx + a†(k)e−ikx

]
ûz, (A9)

E(1,0)(r) = i

∫
dk

(
~ω1,0(k)

2πεLyLz

) 1
2

sin

(
πy

Ly

)
×
[
a(k)eikx − a†(k)e−ikx

]
ûz, (A10)

with [a(k), a†(k′)] = δ(k − k′) and ûz = (0, 0, 1). The
electric field energy operator associated to the mode thus
reads

E(1,0)
el =

ε

2

∫
dr :

(
E(1,0)
z (r)

)2

:

=
1

2

∫
dk ~ω1,0(k)

[
a†(k)a(k)

−a(k)a(−k) + a†(k)a†(−k)

2

]
(A11)

with : (...) : denoting normal ordering, while the magnetic
field energy can be evaluated using the relation B(1,0) =
∇×A(1,0):

E(1,0)
mag =

ε

2

∫
dr :

(
∂yA

(1,0)
z (r)

)2

+
(
−∂xA(1,0)

z (r)
)2

:

=
1

2

∫
dk ~ω1,0(k)

[
a†(k)a(k)

+
a(k)a(−k) + a†(k)a†(−k)

2

]
. (A12)

Thus, the free Hamiltonian for the electromagnetic field
takes the diagonal form

H(1,0) = E(1,0)
el + E(1,0)

mag

=

∫
dk ~ω1,0(k)a†(k)a(k)

= ~v
∫
dk

√
k2 +

(
π

Ly

)2

a†(k)a(k). (A13)

It is worth noticing that the analogy with a massive bo-
son is not limited to the dispersion relation. Indeed, the
quantum theory of the mode can be mapped onto a real
scalar theory in one dimension, by introducing the oper-
ators

α(x) =

∫
dx

√
~

2(2π)ω1,0(k)

[
a(k)eikx + a†(k)e−ikx

]
,

Π(x) = −i
∫
dx

√
~ω1,0(k)

2(2π)

[
a(k)eikx − a†(k)e−ikx

]
,

(A14)

satisfying

[α(x),Π(x′)] = i~δ(x− x′) (A15)
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and related to the vector potential and the electric field
by multiplication. The Hamiltonian can be expressed
in terms of the field operator α(x) and its canonically
conjugated momentum Π(x′) as

H(1,0) =
1

2

∫
dx :

[
(Π(x))

2
+ v2 (∂xα(x))

2

+v4

(
M

~

)2

(∂xα(x))
2

]
: (A16)

with M := π~
vLy

, which also allows to identify a linear

Hamiltonian density H(x) such that H(1,0) =
∫
dxH.

Appendix B: Interaction Hamiltonian

The interaction between the field and an artificial
atom, made up of a particle trapped in a potential V (r),
can be obtained by the minimal coupling prescription:

Hat =
1

2me

(
p− eA(1,0)(r)

)2

+ V (r)

= H0
at −

e

me
p ·A(1,0)(r) +

e2

2me

(
A(1,0)(r)

)2

,

(B1)

with r and p the canonically conjugated position and
momentum of the artificial “electron”. The transverse
choice ∇·A = 0 for the vector potential makes the order-
ing with respect to p immaterial. We adopt a two-level
approximation for the atom, retaining only the ground
state |g〉 and the first excited state |e〉, satisfying

H0
at|g〉 = 0, H0

at|e〉 = ~ω0|e〉. (B2)

Furthermore, we apply long-wavelength approximations
to the interaction terms, which enable one to neglect the
O(e2) contribution, whose relevance is suppressed like the
ratio of the photon momentum to the particle momen-
tum [44], and to apply a dipolar approximation to the
O(e) term. The position operator r is replaced by a non
dynamical center-of-mass position r0. The interaction
Hamiltonian thus reads

H
(dip)
int = − e

me
A(1,0)
z (r0)

[
〈g|pz|g〉|g〉〈g|+ 〈e|pz|e〉|e〉〈e|

+〈g|pz|e〉|g〉〈e|+ 〈e|pz|g〉|e〉〈g|
]
. (B3)

The assumption that the expectation value of momen-
tum vanishes in the eigenstates of the free Hamiltonian
simplifies the interaction. Moreover, the canonical com-
mutation relation can be used to obtain

〈e|pz|g〉 =
im

~
〈e|[H0

at, z]|g〉 = imω0〈e|z|g〉 =: imωzeg

= imω0|zeg|eiθeg , (B4)

by which the mass me disappears from the theory, and
the Hamiltonian takes the form of a coupling between
the dipole moment Deg = e|zeg| and the electric field.

Finally, we can define new canonically conjugated field
operators b(k) := e−i(θeg+π/2)a(k) and retain only the
rotating-wave terms b(k)|e〉〈g| and b†(k)|g〉〈e|, to obtain
the interaction operator

H
(dip,RW )
int = ω0Deg

(
~

2πεvLyLz

) 1
2
∫

dk

(k2 + (vM/~)2)1/4

×
[
b(k)|e〉〈g|eikx0 + b†(k)|g〉〈e|e−ikx0

]
.

(B5)

Notice that y0 = Ly/2 has been used. The dynamics for
the atom pair is thus determined by

H = H0
at,A +H0

at,B +H(1,0) +H
(dip,RW )
int,A +H

(dip,RW )
int,B

(B6)
with atom A in x0 = 0 and atom B in x0 = d.

Appendix C: Energy density

The study in the main text has been focused on the
N = 1 sector, spanned by the wavefunctions

|ψ1〉 = cA|eA, gB ; vac〉+ cB |gA, eB ; vac〉

+

∫
dkF (k)|gA, gB ; k〉. (C1)

Using the scalar Hamiltonian density defined in Section
A, one can compute the energy density

〈ψ1|H(x)|ψ1〉 =
1

2

[
〈ψ1| : (Π(x))

2
: |ψ1〉

+v2〈ψ1| : (∂xα(x))
2

: |ψ1〉

+v4

(
M

~

)2

〈ψ1| : (∂xα(x))
2

: |ψ1〉
]

=

∣∣∣∣∣
∫
dk

√
~ω1,0(k)

2(2π)
F (k)eikx

∣∣∣∣∣
2

+

∣∣∣∣∣
∫
dk

~vk√
2(2π)~ω1,0(k)

F (k)eikx

∣∣∣∣∣
2

+

∣∣∣∣∣
∫
dk

v2M√
2(2π)~ω1,0(k)

F (k)eikx

∣∣∣∣∣
2

.

(C2)

This stucture can be simplified if one assumes that the
dominant contribution to the integrals comes from the
poles of F (k) ∼ A+(k − k0)−1 +A−(k + k0)−1. Neglect-
ing the corrections yielded by square-root branch-cut in-
tegration, one obtains

〈ψ1|H(x)|ψ1〉 ' ~ω1,0(k0)

∣∣∣∣∫ dk

2π
F (k)eikx

∣∣∣∣2
=: ~ω1,0(k0)

∣∣∣F̃ (x)
∣∣∣2 , (C3)

which is used to compute the energy density for the res-
onant states.
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