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Molecular profiling of ependymal tumors has resolved a previously histologically defined 52 

entity into clinically meaningful tumor types driven by gene fusions, copy number 53 

variants, and epigenetic alterations. Moreover, the distinct relationship between 54 

neuroanatomic compartment (i.e., supratentorial, posterior fossa, spine), molecular 55 

alteration, and clinical outcome[10] now forms the basis for their classification in the 56 

2021 WHO “Blue Book”[6]. In contrast to other CNS tumors, recurrent mutations are 57 

uncommon in ependymal tumors, but instead harbor specific gene fusions (e.g., ZFTA, 58 

YAP1) or copy number alterations (MYCN amplification, chromosome 6 loss). In 59 

posterior fossa (PF) ependymomas, recurrent somatic alterations are particularly 60 

uncommon[7, 8, 10]. However, a recent study demonstrated that a small subset of 61 

posterior fossa group A (PFA) ependymomas harbor recurrent missense mutations in 62 

the EZHIP/CXorf67 gene[9]. Histone H3 K27M mutations, seen in the majority ofmost 63 

diffuse midline gliomas (DMG), have also been detected in a small proportion of PFA 64 

ependymomas[4, 9]. TERT promoter mutations were recently shown to identify a group 65 

of clinically aggressive posterior fossa ependymal tumors with hybrid histologic and 66 

epigenetic features of ependymoma and subependymoma (EPN/SE)[13]. Exceptionally, 67 

ZFTA (C11orf95) fusions have also been detected in PF ependymomas[5]. The lack of 68 

recurrent alterations in PF ependymomas has likely hindered the development of 69 

effective targeted therapies. Here, we report the occurrence of heterozygous coding 70 

mutations in the activin receptor type I (ACVR1) gene in a rare subset of PF 71 

ependymomas. Furthermore, we show that, in the context of retained H3K27me3 72 

expression, ACVR1-mutant PF ependymomas exhibit a methylation signature distinct 73 

from other PF ependymomas. 74 



We initially identified an uncharacterized group of ependymal tumors (n=7) 75 

through unsupervised clustering of DNA methylation array data from approximately 76 

16,000 CNS tumors. Sequencing of tumors from this group revealed pathogenic ACVR1 77 

missense mutations in all cases for which sufficient material was available (n=6) (Fig. 78 

1a, herein referred to as PF-ACVR1). Evaluation with the Heidelberg classifier 79 

(v11b4/12.5) failed to match these tumors to a known DNA methylation class (calibrated 80 

score < 0.9). We also identified two methylation-defined PFA ependymomas harboring 81 

oncogenic ACVR1 mutations (Fig. 1a, PFA-ACVR1). Clustering analysis of PF-ACVR1 82 

among established PF ependymal tumor types (PFA, PFB, EPN/SE) revealed a distinct 83 

DNA methylation signature associated with these tumors (Fig. 1b), confirming findings 84 

on non-linear dimensionality reduction. In contrast to ACVR1-mutant DMG, ACVR1-85 

mutant PF ependymomas lacked co-occurring alterations in PIK3CA, PIK3R1, and 86 

PPM1D (Fig. 1c). One case harbored deleterious mutations in TP53 and RB1 and a 87 

single case contained a TERT promoter mutation. In the majority of PF-ACVR1 (6/7), 88 

cCopy number analysis revealed broad gains and losses in the majority of PF-ACVR1 89 

(6/7), resembling profiles that are often observed in PFB (Supplementary Fig. 1, online 90 

resource). The median age at diagnosis (32 years) was similar to PFB (29 years), but 91 

significantly older than PFA (median age) (p < 0.01) and younger than EPN/SE (median 92 

age) (p < 0.05) (Fig. 1b; Supplementary Fig. 2, online resource). 93 

Review of histology from available cases showed characteristic morphologic 94 

features of ependymoma (e.g., perivascular pseudorosettes) and a compatible 95 

immunohistochemical profile (i.e., GFAP+, OLIG2-, perinuclear dot-like EMA). 96 

Interestingly, we observed focal papillary or pseudopapillary features in most cases 97 



(Supplemental Fig. 3, online resource). Immunohistochemical staining of PF-ACVR1 98 

tumors showed retained H3K27me3 and an absence of EZHIP/CXorf67 expression 99 

(Supplemental Fig. 3, online resource). The two cases clustering with PFA (PFA-100 

ACVR1) occurred in young children and demonstrated loss of H3K27me3 with 101 

concurrent EZHIP expression in tumor cells (Supplementary Fig. 3, online resource). 102 

To date, ACVR1 mutations in gliomas have been restricted to specific amino acid 103 

residues within the TGF-β glycine-serine-rich (GS) (codon 206), protein kinase catalytic 104 

(PKc; codons 258, 328) and protein kinase catalytic-like (PKc-like; codon 356) 105 

domains[1, 3, 12, 14]. The p.Gly328Gln (c.982G>T, n=2) and p.Arg375Cys (c.982G>T, 106 

n=1) substitutions described here have not been previously reported in CNS tumors 107 

(Fig. 1d; Supplemental table 2, online resource). Germline mutations in ACVR1 are 108 

associated with fibrodysplasia ossificans progressiva (FOP) and result in ligand-109 

independent upregulation of bone morphogenic protein (BMP) pathway signaling[3, 11]. 110 

Interestingly, the p.G328Q variant reported here has not been reported in a somatic 111 

malignancy or in FOP (https://cancer.sanger.ac.uk/cosmic, queried Feb. 22, 2022). In 112 

DMG, ACVR1 mutations are associated correlate with distinct clinical and molecular 113 

features: they frequently co-occur with the less common histone H3.1 (H3C4) K27M 114 

mutations, are more common in females, and have been associated with longer overall 115 

survival (OS)[14]. While survival differences were not observed in the current series, the 116 

small sample size and short follow-up time may limit interpretation of outcome. Notably, 117 

the 7 patients with ACVR-1 mutations were all alive, with a median follow-up of 153 118 

months all patients were living at last follow-up with a median overall survival of 153 119 

months (Supplemental Table 1; Supplemental Fig.4, online resource). 120 



Despite a relative lack of recurrent somatic mutations, recent evidence suggests 121 

that leveraging ‘super-enhancer’ dependency may be an effective therapeutic approach 122 

in ependymal tumors[7]. This approach has identified subtype-specific transcriptional 123 

dependencies in ependymomas that may be responsive to small molecule inhibitors. 124 

Thus, the identification of lineage- or molecular-based groups will be increasingly 125 

important in directing future therapeutic approaches in ependymoma. A recent study 126 

also revealed clinical benefit of repurposing a receptor tyrosine kinase inhibitor 127 

(vandetanib) in combination with an mTOR inhibitor in patients with ACVR1-mutant 128 

DMG[2]. Vandetanib, a multi-RTK inhibitor, has demonstrated a synergistic effect with 129 

everolimus in inhibiting ACVR1 downstream effector signaling (i.e., SMAD), as well as 130 

improved CNS penetration in this context[2], thus raising the possibility of this approach 131 

in ACVR1-mutant PF ependymoma. Our findings indicate further study is needed to 132 

delineate the biologic and clinical implications of ACVR1 mutations in PF 133 

ependymomas. 134 
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Figure legends 209 

Figure 1. Genetic and epigenetic characterization of ACRV1-mutant PF ependymomas. 210 

Unsupervised embedding of DNA methylation array data from representative samples 211 

from ependymal tumors across all neuroanatomic compartments (a); also included are 212 

K27-altered diffuse midline gliomas (DMG) with and without ACVR1 mutations. Notably, 213 

PF ependymomas with ACVR1 mutations and retained H3K27me3 expression (labeled 214 

me3+) form a distinct epigenetic group. Heatmap of DNA methylation array data from 215 

PF ependymal tumors confirming four distinct tumor types with hierarchical clustering 216 

(b). Oncoplot of co-occurring oncogenic or likely oncogenic somatic alterations from 217 

ACVR1-mutant PF ependymomas (left) and diffuse midline gliomas (DMG, right) (c). 218 

Lollipop plot of the distribution of AVCR1 mutations in PF ependymomas (top) and DMG 219 

(bottom) (d); novel missense mutations are labeled arrows. Abbreviations: DMGK27, 220 

diffuse midline glioma, K27-altered; ZFTA, supratentorial ependymoma, ZFTA fusion-221 

positive; EPN, SPINE, spinal ependymoma; YAP1, supratentorial ependymoma, YAP1 222 

fusion-positive; MPE, myxopapillary ependymoma; EPN/SE, PF, posterior fossa 223 

ependymoma/subependymoma[13]; SUBEPN, SPINE, spinal ependymoma; SUBEPN, 224 

ST, supratentorial subependymoma; PFA, posterior fossa ependymoma, group A; PFB, 225 

posterior fossa ependymoma, group B; MYCN, spinal ependymoma, MYCN-amplified. 226 

Supplemental Figure 1. Copy number profiles derived from DNA methylation data. 227 

Sample-specific profiles for PF-ACVR1 showed frequently broad gains and losses. 228 

Proportion-based plots for other PF ependymoma types are shown on the right. 229 

Supplemental Figure 2. Age distribution of PF ependymoma types and statistical 230 

differences when compared to PF-ACVR1. ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01 231 



Supplemental Figure 3. Representative histologic and immunophenotypic (H3K27me3, 232 

EZHIP) features of PF-ACVR1 (cases 1-5, 7) and PFA-ACVR1 (cases 8 and 9) included 233 

in this series.  234 

Supplemental Figure 4. Kaplan-Meier curves of OS and PFS stratified by PF 235 

ependymoma tumor type (the exact log rank test is a permutation test based on 236 

100,000 random permutations). Pairwise comparison of the other groups vs. PF-ACVR1 237 

groups did not reveal significant differences in survival distributions; this is likely a result 238 

from extremely unbalanced sample sizes (i.e., 7 vs ≥ 47) in pairwise comparisons with 239 

PF-ACVR1. 240 
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