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Abstract1

Despite pharmacological treatment, bronchial hyperresponsiveness continues to2

deteriorate as airway remodelling persists in airway inflammation. Previous studies3

have demonstrated that the phytocannabinoid ∆9-tetrahydrocannabinol (THC)4

reverses bronchoconstriction with an anti-inflammatory action. The aim of this study5

was to investigate the effects of THC on bronchial epithelial cell permeability after6

exposure to the pro-inflammatory cytokine, TNFα. 7

Calu-3 bronchial epithelial cells were cultured at air-liquid interface. Changes in8

epithelial permeability were measured using transepithelial electrical resistance9

(TEER), then confirmed with a paracellular permeability assay and expression of10

tight junction proteins by Western blotting.11

Treatment with THC prevented the TNFα-induced decrease in TEER and increase in 12

paracellular permeability. Cannabinoid CB1 and CB2 receptor-like immunoreactivity13

was found in Calu-3 cells. Subsequent experiments revealed that pharmacological14

blockade of CB2, but not CB1 receptor inhibited the THC effect. Selective stimulation15

of CB2 receptors displayed a similar effect to that of THC. TNFα decreased 16

expression of the tight junction proteins occludin and ZO-1, which was prevented by17

pre-incubation with THC.18

These data indicate that THC prevents cytokine-induced increase in airway epithelial19

permeability through CB2 receptor activation. This highlights that THC, or other20

cannabinoid receptor ligands, could be beneficial in the prevention of inflammation-21

induced changes in airway epithelial cell permeability, an important feature of22

airways diseases.23



3

Keywords: Airway, epithelium, cannabinoid receptors, THC, tight junctions.1

2

Chemical compounds studied in this article:3

∆9-tetrahydrocannabinol (PubChem CID: 16078); AM251 PubChem CID: 2125;4

SR144528 (PubChem CID: 3081355); HU-210 (PubChem CID: 9821569); ACEA5

(PubChem CID: 5311006); JWH133 (PubChem CID: 6918505)6

7

Abbreviations: ∆9-Tetrahydrocannabinol, THC; ALI, air-liquid interface; CB18

receptor, cannabinoid receptor 1; CB2, cannabinoid receptor 2; DMSO,9

dimethylsulfoxide; EtOH, ethanol; EVOM2, epithelial volt-ohm-meter version 2;10

interleukin-1β, IL-1β; LLI, liquid-liquid interface; TEER, Transepithelial Electrical 11

Resistance;  TNFα, tumour necrosis factor-α, ZO, zonula occludens. 12

13



4

1 Introduction1

The airway epithelium provides a physical barrier, which prevents harmful agents2

from penetrating into the smooth muscle compartment and activating inflammatory3

responses [1]. This barrier function is regulated by tight junctions between cells,4

comprising of a complex of proteins, including occludin, claudin, junctional adhesion5

molecules, and zonula occludens (ZO-1, ZO-2, and ZO-3) [2]. Reduced expression6

of these proteins results in altered tight junction function, increased epithelial7

permeability and, consequently, increased transit of pro-inflammatory mediators and8

cytokines, leading to stimulation of the afferent sensory nerves and airway9

hyperreactivity [3]. Cytokines, such as TNFα have been shown to lead to loss of 10

occludin staining, which is associated with increased epithelial permeability [4].11

Therefore, regulation of tight junction protein expression and hence airway epithelial12

permeability is a target for preventing aggravation or progression of inflammatory13

airway diseases such as asthma [5]. Interestingly, tight junction disruption is present14

in biopsies from patients with asthma irrespective of treatment suggesting that15

current treatments for asthma may not prevent epithelial dysfunction [6]. ∆9-16

tetrahydrocannabinol (THC), the main phytocannabinoid derived from the Cannabis17

plant, binds readily to both CB1 and CB2 receptors as a partial agonist [7].18

Cannabinoid receptors have been shown to have anti-inflammatory effects in the19

airways. For example, THC prevents the enhanced nerve-evoked airway20

contractions in guinea pig trachea exposed to TNFα [8] through stimulation of both 21

CB1 and CB2 cannabinoid receptors. The cannabinoid receptor agonist CP55,94022

prevents inflammation-induced bronchoconstriction and mast cell degranulation in23

ovalbumin-sensitised guinea-pigs [9] and the endocannabinoid anandamide reverses24

leukotriene D4-induced airway constriction [10]. Although the effects of THC on25
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inflammation-induced changes in airway epithelial permeability are unknown, it has1

recently been shown that THC reverses the increase in colonic epithelial2

permeability caused by cytokines through activation of CB1 receptors [11]. It is not3

known whether the effects of THC on colonic epithelial cells can be replicated in4

airway epithelial cells and, hence, whether cannabinoid receptor agonists might be5

exploited therapeutically to reverse the increase in airway epithelial permeability as6

seen in airway inflammation. Therefore, this present study determined the effect of7

THC on TNFα-induced increase in permeability and reduced tight junction protein 8

expression in airway epithelial cells.9

10
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2 Materials and Methods1

2.1 Cell culture2

Calu-3 cells obtained from ATCC (Rockville, MD, USA) were cultured (from3

passages 5 to 20) on polyester membrane of Transwells® (pore size 0.4 µm, inserts4

surface area 1.12 cm2) (Corning CoStar, Arlington, UK). Cell culture medium,5

Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F12 Ham contained 10% of6

fetal bovine serum, 1% L–glutamine 1% non-essential amino acids, and 1%7

penicillin/streptomycin. Cells were seeded at a density of 1 x 105 cells per well until8

day 5 until confluent. Medium from the apical and basolateral side were removed9

and washed with 0.5 ml of phosphate-buffered saline (PBS) every 2 to 3 days. Air-10

liquid interface (ALI) was established and maintained for three weeks, at which only11

the basolateral compartment was replaced with medium.12

13

2.2 Transepithelial Electrical Resistance (TEER) Measurements14

Changes in Calu-3 epithelial permeability were assessed by measuring TEERs using15

STX2 electrodes (World Precision Instruments, Stevenage, UK). Prior to TEER16

measurement, the apical face of cells were washed with 0.5 ml warmed PBS. Basal17

(i.e. time zero) TEER was recorded after replacing the basolateral and apical18

compartments of Transwells® with 1.5 ml and 0.5 ml respectively. The resistance19

expressed by Calu-3 cells alone was obtained by subtracting resistance of the filter20

membrane. TEER values were presented as epithelial resistance per cm2 of21

Transwells® membrane.22

The effect of THC on cytokine-induced bronchial epithelial permeability was23

determined by pre-treating the cells with THC (3, 10 or 30 μM) or vehicle control 24
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(0.3% v/v EtOH) basolaterally, prior to addition of TNFα (10 ng/ml) or IL-1β (1 ng/ml). 1

TEERs were measured at various time points up to 48 hours post-drug application.2

In some experiments, AM251 (100 nM) and SR144528 (100 nM) were included to3

determine the role of CB1 and CB2 receptors respectively in the THC response. The4

involvement of cannabinoid receptor was further investigated using the potent5

cannabinoid receptor agonist, HU-210 (100 nM) and selective CB1 or CB2 receptor6

agonists ACEA (100 nM) and JWH133 (3 µM) respectively.7

8

2.3 Paracellular Permeability Assay using Fluorescein Isothiocyanate (FITC)9

Dextran10

Changes in epithelial permeability were confirmed by measuring transfer of FITC-11

labelled dextran (4 kDa) across the epithelial layer. In these experiments, media on12

the apical side was removed and replaced with 0.3% (w/v) N-acetyl cysteine (NAC),13

dissolved in warm (37⁰C) medium, to remove the apical mucus layer. After 3014

minutes, NAC was aspirated and 500 μg/mL of FITC-dextran in warm medium added 15

and cells incubated at 37oC. Permeability of the epithelial layer was estimated by16

sampling 100 μl of basolateral medium at basal, then every 30 minutes, for up to 3 17

hours. The amount of FITC-dextran present in the basolateral solution was18

determined by measuring the fluorescence intensity using a FluoStarGalaxy®
19

fluorometer, set at wavelengths 485 nm (excitation) and 520 nm (emission). The20

apparent permeability coefficient (Papp) is calculated according to the following21

equation:-22

Papp=
(
∆Q
∆t

)

A.C0
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Where Papp is the apparent permeability coefficient (cm/sec)1

ΔQ is the change in FD4 concentration over time (Δt) 2

A is the surface area of the Transwell filter (1.12cm2)3

C0 is the initial concentration of FD4 applied to the apical side of the cells (500µg/ml)4

2.4 Western blot analysis5

Treated cells were lysed with 200 µl lysis buffer (20 mM Tris, 1 mM sodium fluoride,6

1 mM ethyleneglycoltetraacetic acid (EGTA), 0.1% (v/v) Triton X100 and 10 mM β-7

glycerophosphate, pH 7.6) with protease inhibitor cocktail (Sigma Aldrich, Dorset,8

UK). Lysates were centrifuging at 6000 x g at 4⁰C for 5 minutes. Supernatants were9

removed and diluted with 6 x Laemmli buffer and then heated at 95⁰C for 5 minutes.10

Samples (10 µl) were separated using a 4%-20% precast SDS-PAGE gel and then11

transferred onto nitrocellulose membrane by Western blotting. After transfer,12

membranes were blocked in 5% w/v fat-free milk dissolved in Tris-buffered saline13

solution containing 0.1% v/v Tween-20 (TBS-T) for 1 hour. The membrane then was14

probed overnight at 4oC with one of the following primary antibodies in blocking15

buffer: anti-occludin rabbit antibody (ab31721; Abcam, Cambridge, UK), anti-ZO-116

rabbit antibody (40-2200) (Zymed, San Francisco, USA), anti-CB1 receptor antibody17

(1006590, Cayman Chemical, Michigan, USA) and anti-CB2 receptor antibody (ADI-18

905-749-100, Enzo Life Sciences, New York, USA). Membranes were also probed19

with anti-GAPDH mouse antibody at 1:20,000 dilution (Sigma Aldrich, Dorset, UK) as20

a loading control. The following day, primary antibodies were removed and21

membranes washed three times with TBS-T buffer. Membranes were then incubated22

with secondary antibodies (both at 1:10,000 dilution); goat anti-rabbit IgG23

(IRDye®800CW Conjugate, Licor Biosciences, Cambridge, UK) and goat anti-mouse24
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IgG (IRDye®680CW Conjugate, Licor Biosciences, Cambridge, UK), as appropriate.1

After washing with TBS-T buffer, bands were detected and quantified using LI-COR2

Image Studio infrared imaging system (Lincoln, NE).3

2.5 Statistical Analysis4

Time-dependent changes in TEER were analysed using a 2-way ANOVA, followed5

by a Bonferroni post-hoc test, using GraphPad Prism. Western blotting data were6

analysed by 1-way ANOVA followed by a Bonferroni post-hoc test. Results of p<0.057

were considered significant.8

2.6 Materials9

THC, AM251, SR144528 were obtained from Tocris Bioscience (Bristol, UK). All10

other reagents were obtained from Sigma Aldrich (Dorset, UK).11
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3 Results1

3.1 Effect of THC on Cytokine-Induced Reductions in TEER2

Basolateral application of THC alone at 3 and 10 µM had no effect on the3

Transepithelial electrical resistance (TEER) reading in Calu-3 airway epithelial cells4

(fig. 1). At 30 µM THC, there was a small increase in TEER (fig. 1). Resistance5

readings for vehicle control 0.3% (v/v) EtOH were maintained throughout the whole6

duration of experiment. In other experiments, THC was added 24 hours after addition7

of TNFα (10 ng/ml; fig. 2). In these experiments, TNFα caused a reduction in TEER 8

over the first 24 hours, which was reversed by the subsequent addition of THC (309

µM). In cells treated with TNFα alone, the reduction in TEER was maintained for the 10

duration of the experiment (up to 48 hours post TNFα addition; fig. 2 & 3A). Pre-11

treatment with THC reduced the effect of TNFα on TEER responses in a 12

concentration-dependent manner (Fig. 3A). Similarly, pre-treatment with THC13

reduced the subsequent reduction in TEER as a result of IL-1β treatment, although 14

the effect of IL-1β was not completely prevented (fig. 3B).   15

16

3.2 Effect of THC on FITC-Dextran Permeability17

Treatment with TNFα alone produced an increase in FD4 dextran paracellular 18

permeability (fig. 4). The basolateral application of THC alone did not alter FD419

dextran permeability through the Calu-3 cell layers. However, the increase in FD420

dextran permeability caused by TNFα was prevented in the presence of THC. These 21

data thus confirmed the correlation that a decrease in TEER is mirrored by an22

increase in Papp.23

24
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3.3 Role of Cannabinoid Receptors in THC-Mediated Effect1

In order to determine whether the effect of THC was mediated through cannabinoid2

receptor activation, the effects of either the CB1 receptor antagonist AM251 (100 nM;3

[12]), or the CB2 receptor antagonist SR144528 (100 nM; [13]) were determined. As4

in previous experiments, TEER responses in the presence of TNFα (10 ng/ml) with 5

THC (30 µM) were maintained around vehicle control levels over the duration of the6

experiment. The presence of SR144528 (fig. 5B), but not AM251 (fig. 5A) prevented7

the inhibitory effect of THC on the TNFα-induced reduction in TEER (fig. 5). 8

9

In order to determine whether CB receptor-selective agonists are able to replicate10

the effect of THC, the CB1/2 receptor agonist HU-210 (100 nM), the selective CB111

receptor agonist ACEA (100 nM), or the selective CB2 receptor agonist JWH 133 (312

μM) were used. None of these agonists had any effect on TEER responses on their 13

own over the 48 hour duration of the experiment (fig. 6A). However, pre-incubation14

with either HU-120 or JWH 133 prevented the reduction in TEER caused by TNFα 15

(10 ng/ml; fig. 6B). Pre-incubation with ACEA did not prevent the immediate effects16

of TNFα. However, in cells treated with ACEA, the TEERs returned to baseline within 17

24 hours, whereas in TNFα-treated cells TEERs remained low (fig. 6B).  18

19

3.4 CB Receptors Expression in Calu-3 Cells20

Western immunoblotting detected bands for both CB1 and CB2 receptors at the21

appropriate molecular weights (fig. 7 A&B). Rat cerebellum, used as a positive22

control for CB1 receptor expression, exhibited two major bands of slightly higher23

molecular weight than that seen in Calu-3 cells. No bands were seen in BV-2 cells,24

used as a negative control for CB1 expression. The band obtained with the anti-CB225



12

receptor antibody corresponded to the band obtained with rat spleen, used as a1

positive control. No band was seen in SH-SY5Y cells, used as a negative control.2

Expression of both receptors appeared to be increased in cells grown at air-liquid3

interface compared to cells grown at liquid-liquid interface (fig. 7 A & B).4

5

3.5 Effect of THC on TNFα-Induced Alteration of Occludin and ZO-1 Expression 6

Western blotting detected a band for occludin at around 64 kDa, whereas ZO-1 was7

expressed at approximately 225 kDa (fig. 8A & 9A). Other bands of lower molecular8

were also obtained, as observed by other groups using Calu-3 cells [14] (Wan et al.,9

2000). TNFα (10 ng/ml) reduced the expression of occludin and ZO-1 by half, 10

compared to untreated (basal) Calu-3 cells (fig. 8B & 9B). Treatment with THC alone11

had no effect on the expression of either occludin or ZO-1, but prevented the12

decrease in expression caused by TNFα (fig. 8 & 9).  13

14
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4 Discussion1

The phytocannabinoid THC has been previously shown to improve airway function in2

asthmatic patients [15] and activation of cannabinoid receptors prevents3

inflammation-induced changes in the airways [9]. Airway inflammation leads to4

increased permeability of the epithelial layer, resulting in a loss of barrier function,5

which is thought to be involved in development of airway hyperreactivity. This6

present study has demonstrated that pre-treatment with THC prevents the increase7

in permeability across a confluent monolayer of Calu-3 airway epithelial cells caused8

by the cytokines TNFα and IL-1β. THC appeared to have more of a protective effect 9

against TNFα compared to IL-1β, which may be related to differences in the 10

signalling pathways activated by these two cytokines. Interestingly, THC added 2411

hours after the addition of TNFα reverses the increase in epithelial permeability. The 12

effect of THC was inhibited by a CB2 receptor antagonist and mimicked by a13

selective CB2 receptor agonist. Both TNFα and IL-1β are important inflammatory 14

cytokines involved in airway inflammation in both asthma and COPD [16, 17, 18].15

Therefore, these data suggest that cannabinoid receptor ligands, particularly CB216

agonists, could play a role in preventing or reversing inflammation-induced increases17

in airway epithelial permeability, and, hence, preventing airway hyperreactivity.18

19

Previous investigations have demonstrated an inverse relationship between20

paracellular permeability of Calu-3 cells cultured at ALI and TEER measurements,21

whereby an increase in paracellular transport of solutes through the bronchial22

epithelial cell layer is mirrored by a decrease in transepithelial resistance reading23

[19, 20, 21]. Results obtained from the present study showed a marked increase in24

paracellular permeability (i.e. high Papp value) in Calu-3 cells treated with TNFα, 25
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which was prevented by pre-treatment with THC (fig. 4). These data thus confirm1

that the changes in TEER reflect an increase in paracellular permeability of the2

epithelial cells, and vice versa.3

4

The involvement of CB1 and CB2 receptors as the potential site of action of THC was5

assessed using the selective cannabinoid receptor antagonists, AM251 [22] and6

SR144528 [13]. SR144528, but not AM251, inhibited the THC-induced response in7

Calu-3 bronchial epithelial cells, suggesting that the action of THC in preventing the8

decrease in epithelial permeability by TNFα was mediated through CB2 receptors.9

Immunoreactivity with antibodies against CB1 and CB2 receptors was also detected10

in samples from Calu-3 cells, indicating the presence of both receptor subtypes.11

Interestingly, expression of both receptors was apparently higher in cells grown at12

ALI compared to cells grown at liquid-liquid interface (LLI). An ultrastructure study13

reported by a separate group of investigators revealed that ALI enhanced the14

differentiation of Calu-3 cells into a mucociliary phenotype, which was not seen in LLI15

[23]. Therefore, growing cells at ALI may have promoted the CB receptor expression16

demonstrated in the present study.17

18

In order to investigate the role of CB receptor subtypes further, TEER measurements19

were conducted using CB receptor-selective agonists. HU-210, a highly selective20

cannabinoid receptor agonist that acts on both CB1 and CB2 receptors in the21

nanomolar range [24], prevented the TNFα-induced decrease in TEER, in a similar 22

manner to THC. JWH133, a highly-selective CB2 receptor agonist [25] also23

prevented the effect of TNFα. On the other hand, ACEA, a selective CB1 receptor24

agonist [26], did not prevent the immediate TEER reduction as seen with TNFα, but 25
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caused a reversal of the TNFα-effect after 24 hours. It is possible, therefore, that CB21

receptors mediate acute reversal of the TNFα-induced reduction in TEER, whereas 2

CB1 receptor activation requires chronic activation. However, the CB2 agonist does3

not completely prevent the reduction in TEER with TNFα and still requires 3-4 hours 4

to reverse the response suggesting it reverses rather than prevents the TNFα 5

response. A previous study has indicated that CB2 receptors prevent TNFα-induced 6

release of IL-8 from airway epithelial cells, potentially through a cAMP-mediated7

alteration in gene expression [27]. Therefore, it is possible that the delayed effect of8

the CB2 agonist in this present study is due to the time required to alter gene9

expression.10

11

The expression of epithelial tight junction proteins such as occludin and ZO-1 are12

directly linked to the transepithelial resistance of the Calu-3 bronchial epithelial cell13

line [28]. Previous studies in the same cell model have demonstrated a decrease in14

Calu-3 cell transepithelial resistance following the exposure to TNFα, accompanied 15

by reduced immunoreactivity against occludin and ZO-1 proteins [29]. In the present16

study, Western blotting demonstrated that the reduction in the level of both occludin17

(fig. 8) and ZO-1 (fig. 9) expression when cells were treated with TNFα could be 18

prevented by pre-treatment with THC. THC alone had no effect on the expression of19

the tight junction proteins. This is consistent with the changes in TEERs and the20

permeability assay. The effect of THC could be to inhibit the TNFα signalling 21

pathway leading to a reduction in occludin and ZO-1 expression, or it could be acting22

through a separate pathway which counteracts the changes in tight junction proteins.23

The fact that THC reverses the TNFα-induced reduction in TEER 24 hours after 24
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addition of TNFα, suggests that it may be reversing rather than preventing the 1

changes in protein expression.2

3

In summary, these data indicate that THC, through activation of cannabinoid4

receptors and subsequent prevention of decreases in tight junction protein5

expression, has the ability to inhibit cytokine-induced airway epithelial barrier6

function disruption. Reduced barrier function is associated with hyperreactivity of the7

airways in inflammation. Therefore, epithelial cannabinoid receptors may be a8

therapeutic target for the prevention of airway epithelial dysfunction, as seen in9

asthma and COPD.10

11
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1

Figure 1 THC has little direct effect on TEER.

Effects of basolateral application of at various THC concentrations (3, 10 and

30 µM) or vehicle control, 0.3% v/v EtOH onto 21-day old Calu-3 cells.

Average basal TEER value was 695±2.8 Ω.cm2. Data are expressed as

percentage TEER by calculating the relative change in resistance at various

time points from basal reading, and are presented as mean ± SD; n=9,

**P<0.01, 2-way ANOVA followed by a Bonferroni post-hoc test, compared to

vehicle, 0.3% v/v EtOH, except THC + cytokine which is compared to TNF(10

ng/mL).
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Figure 2 THC reverses the decrease in TEER caused by TNFα. 1

Effect of basolateral application of THC (30 µM) alone or vehicle control, 0.3% v/v2

EtOH onto 21-day old Calu-3 cells 24 hours after application of 10ng/ml TNFα. 3

Average basal TEER value was 721±6.1 Ω.cm2. Data are expressed as percentage4

TEER by calculating the relative change in resistance at various time points from5

basal reading, and are presented as mean ± SD; n=9, ***P<0.001, 2-way ANOVA6

followed by a Bonferroni post-hoc test, compared to vehicle, 0.3% v/v EtOH, except7

THC + cytokine which is compared to TNF(10 ng/mL).8

9
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Figure 3 THC prevents decrease in TEER caused by TNFα and IL-1β.1

Effects of basolateral application of THC (at 3, 10 or 30 µM) in the presence of a2

cytokine, A. TNFα (10 ng/ml) or, B. the effect of basolateral application of THC (303

µM) in the presence of IL-1β (1 ng/ml) onto 21-day old Calu-3 cells cultured in ALI. 4

Average basal TEER values were A. 700±2.3 Ω.cm2 and B. 690±3.4 Ω.cm2. Data5

are expressed as percentage TEER by calculating the relative change in resistance6

at various time points from basal reading, and are presented as mean ± SD; n=9-15,7

*P<0.05, **P<0.01, ***P<0.001, 2way ANOVA followed by a Bonferroni post-hoc test,8

compared to vehicle, 0.3% v/v EtOH, except THC + cytokine which is compared to9

their respective cytokine.10

11
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Figure 4 THC prevents increase in epithelial permeability caused by TNFα. 1

Effect of the corresponding treatments on FD4 dextran paracellular permeability in2

21-day old Calu-3 cells. Epithelial permeability is represented as apparent3

permeability coefficient (Papp) calculated according to the equation in section 2.3.4

Data are presented as mean ± SD; n=9; ***P<0.001 1way ANOVA followed by a5

Bonferroni post-hoc test, compared to vehicle control for THC, (0.3%v/v) EtOH. THC6

+ TNFα treatment is also compared against treatment with TNFα alone. 7

8
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Figure 5 CB2 receptor antagonism prevents effect of THC.1

Effect of basolateral application of either A. the selective CB1 antagonist, AM 2512

(100 nM) or B. the selective CB2 antagonist, SR144528 (100 nM) in the presence of3

THC (30 µM) and TNFα (10 ng/mL). Average basal TEER values were A. 669±5.54

Ω.cm2 and B. 687±5.3 Ω.cm2. Data are expressed as percentage TEER by5

calculating the relative change in resistance at various time points from basal6

reading, and are presented as mean ± SD; n=15, *P<0.05, **P<0.01, ***P<0.001,7

2way ANOVA followed by a Bonferroni post-hoc test, compared to THC + TNFα; 8

except THC +TNFα, which is compared to vehicle control (0.01% v/v) EtOH. 9

10
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Figure 6 CB receptor agonists prevent TNFα-induced reductions in TEER. 1

Effects of basolateral application of A. Non-selective cannabinoid receptor agonist2

HU-210 (100 nM), selective CB1R agonist ACEA (100 nM) or selective CB2R agonist3

JWH 133 (3 μM) alone and; B. Cannabinoid receptor agonists in the presence of4

TNFα (10 ng/mL). Average basal TEER values were A. 721±4.5 Ω.cm2 and B.5

687±7.2 Ω.cm2. Data are expressed as percentage TEER by calculating the relative6

change in resistance at various time points from basal reading, and are presented as7

mean ± SD; n=9-18, *P<0.05, **P<0.01, ***P<0.001, 2way ANOVA followed by a8

Bonferroni post-hoc test. TEER data were compared to A. vehicle control (0.01%9

v/v) EtOH. B. TNFα (10 ng/mL); except TNFα, which is compared to vehicle control 10

(0.01% v/v) EtOH.11

12



29

Figure 7 Calu-3 cells express CB1 and CB2 receptors.1

Typical immunoblot showing samples that were treated with polyclonal A. anti-CB1 or2

B. anti-CB2 receptor rabbit antibody (green bands). Samples of Calu-3 cells grown at3

ALI were harvested at day 21 of culture; whereas cells of the LLI were lysed at day 54

of culture, when cells were fully confluent in Transwell® inserts. GAPDH (red band)5

was used as a loading control. Blot is representative of 3 separate experiments.6

7
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Figure 8 THC prevents the TNFα-induced reduction in occludin expression.1

A. Typical immunoblot showing expression of occludin in Calu-3 cells treated2

following treatment of TNFα (10 ng/mL), vehicle control (0.3% v/v) EtOH, THC (30 3

μM) alone or in the presence of TNFα in 21-day old Calu-3 cells for 48 hours. Basal 4

represents untreated cells cultured at air-liquid interface; i.e. no drug. B. Data5

presented as mean of fold change to protein expression over vehicle, (0.3% v/v)6

EtOH ± SD; n=3-8, **P<0.01, 1way ANOVA followed by a Bonferroni post-hoc test,7

compared to vehicle control, (0.3% v/v) EtOH, except combined treatment of THC +8

TNFα which is compared to TNFα (10 ng/mL). 9

10
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Figure 9 THC prevents the TNFα-induced reduction in ZO-1 expression. 1

A. Typical immunoblot showing expression of ZO-1 in Calu-3 cells treated following2

treatment of TNFα (10 ng/mL), vehicle control (0.3% v/v) EtOH, THC (30 μM) alone 3

or in the presence of TNFα in 21-day old Calu-3 cells for 48 hours. Basal represents 4

untreated cells cultured at air-liquid interface; i.e. no drug. B. Data presented as5

mean of fold change to protein expression over vehicle, (0.3% v/v) EtOH ± SD; n=3-6

8, *P<0.05, 1way ANOVA followed by a Bonferroni post-hoc test, compared to7

vehicle control, (0.3% v/v) EtOH, except combined treatment of THC + TNFα which 8

is compared to TNFα (10 ng/mL). 9

10

11


