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Light scalar fields coupled to matter are a common consequence of theories of dark energy and
attempts to solve the cosmological constant problem. The chameleon screening mechanism is com-
monly invoked in order to suppress the fifth forces mediated by these scalars, sufficiently to avoid
current experimental constraints, without fine tuning. The force is suppressed dynamically by allow-
ing the mass of the scalar to vary with the local density. Recently it has been shown that near future
cold atoms experiments using atom-interferometry have the ability to access a large proportion of
the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric
parallel plates can push deeper into the remaining parameter space available to the chameleon.

The current cosmological model is unable to describe
what is driving the accelerated expansion of our uni-
verse, without invoking the extreme fine tuning associ-
ated with the cosmological constant. Scalar fields are
often introduced either directly to explain the observed
accelerated expansion of the universe, or indirectly as a
consequence of attempts to solve the cosmological con-
stant problem [1–3]. Generically, adding a light scalar
field would induce a fifth-force in conflict with a host of
stringent experimental constraints [4]. This can be al-
leviated through the presence of a screening mechanism
which dynamically suppresses the fifth force in experi-
ments through self interactions of the scalar field [3]. The
most widely studied model of this type is the chameleon
[5, 6], which inherits a density dependent effective poten-
tial via a conformal coupling to standard model matter
fields making the field mass increase with the density of
the environment, thus the chameleon mediated force be-
comes increasingly short range.

The fact that the chameleon theory has been designed
to suppress the associated fifth-force in dense environ-
ments, means that it could in principle be detected
in a suitably designed laboratory experiment in high
vacuum. Recent years have seen a wealth of experi-
ments formulated for or appropriated to the detection of
dark energy, reaching far into previously unconstrained
regions of the theory parameter space utilising atom-
interferometry [7–9], cold neutron experiments [10–13]
and searches for Casimir-like forces [14, 15]. The remain-
ing parameter space includes the chameleon theories that
are most weakly coupled to matter, making them intrin-
sically harder to detect.

The target of this work is to understand whether the
non-linearities of the chameleon field can be exploited in
order to allow experiments to probe the remaining pa-
rameter space. In this letter we propose a parallel plate
set-up where the two plates have different densities but
the same total mass. This results in an asymmetric field
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profile for the chameleon field, but a symmetric field pro-
file for the gravitational force. In this regime of the pa-
rameter space, the chameleon force depends intrinsically
on the plate density, becoming independent of the total
mass of the plate. This asymmetry allows us to enhance
the chameleon presence in an atomic interferometry ex-
periment with the additional advantage of removing the
gravitational background.

THE CHAMELEON THEORY

The chameleon scalar field is described by the following
action:

S =

∫
d4x
√
−g
{
M2
Pl

2
R− 1

2
∂µφ∂

µφ− V (φ)

}
+

∫
d4x Lm

(
ψm,Ω

2(φ)gµν
)
,

(1)

This assumes a universal, minimal coupling between the
conformally rescaled metric g̃µν = Ω2(φ)gµν and each
matter species ψm. The conformal factor Ω(φ) is cho-
sen to be a monotonically increasing function of the
chameleon field φ, which we approximate by Ω(φ) =
1 + φ/M . It can be checked that in all situations we
consider φ � M . The energy scale M controls the cou-
pling to matter, and M = MP indicates a gravitational
strength force. The chameleon relies on a potential con-
taining non-trivial self interactions, for concreteness in

this work we will take V (φ) = Λ5

φ which captures all

of the interesting chameleon phenomenology. The en-
ergy scale Λ controls the self interactions of the scalar.
The scale M is constrained, by precision measurements
of atomic structure and searches for fifth forces [16–18],
to lie in the range 104 GeV ≤ M ≤ MP ∼ 1018 GeV.
Through the connection to dark energy and the increas-
ing expansion rate of the universe, Λ is expected to be
of order 1 meV [19], while Casimir force measurements
indicate Λ < 100 meV [16, 18, 20]. Given these con-
straints we take 10−2 meV < Λ < 10+2 meV as our range
of interesting values. Additional constraints on the pa-
rameter space from atom interferometry [9] are presented
alongside our key results in Figures 3 and 4.
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When matter can be described as a static, non-
relativistic perfect fluid, the motion of the chameleon is
governed by an effective potential

Veff =
Λ5

φ
+
ρφ

M
(2)

where ρ is the local energy density of matter. The mini-
mum of the effective potential, φmin(ρ), and the mass of
fluctuations around this minimum, mφ(ρ) are given by

φmin(ρ) =
(Λ5M

ρ

)1/2

, m2
φ(ρ) = 2

( ρ3

Λ5M3

)1/2

(3)

The force law associated with this coupling is Fφ =
− 1
M∇φ. Equation (3) shows how the mass of the

chameleon field increases with the density, allowing the
field to evade fifth force constraints [5] under certain con-
ditions.

THE PARALLEL PLATE SET-UP

We consider the chameleon field between two parallel
plates, and allow the plates to have differing densities.
We make the approximation that the plates are infinite
in extent, and that the space in between the plates has
almost zero density. The gravitational potential between
the plates is therefore approximately constant, and so
the gravitational force vanishes. In contrast, we will find
that the chameleon has a non trivial field profile between
the plates, as can be seen in Figure 1, and that this form
is a function of the density of the two plates. Through
out this work, if the densities of the plates differ we will
assume without loss of generality that the left most plate
has the higher density. We consider two possibilities, the
first that the field reaches a maximum between the plates,
and the second that the field is monotonically increasing
in the space between the plates.

Chameleon field reaches a maximum between plates

Analogous to the thin shell effect that occurs for the
chameleon field profile around a sphere, if the plates are
sufficiently wide they can be divided into core and shell
regions. Represented by bands A and E in Figure 1,
the core defines the space where the field φ ' φmin of
Equation (3). Inside the plate the field only varies in
the shell (bands B and D), increasing from the value
that minimises the effective potential in the plate. In
doing so it traverses the part of the effective potential
that is dominated by the density contribution. In the
low density region between the two plates (band C) the
chameleon field will evolve on the part of the effective
potential controlled by the self-interaction terms of the
bare potential. Importantly, as long as core regions exist
for both plates, the chameleon field between the plates
becomes effectively independent of the behaviour of the
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FIG. 1. Parallel plate configuration with contrasting den-
sity values, keeping the density multiplied by the width of
the plate the same for both plates. The plate separation
is denoted ` with the left and right plate thickness’s as R1

and R2, with corresponding plate densities ρL and ρR respec-
tively. The regions shaded with lines indicate where the field
has reached the minimum of its effective potential inside the
plate. The solid shaded regions are the shells in which the
field rolls away from the minimum of the effective potential.

chameleon outside the plates, any chameleon perturba-
tion attempting to propagate through the wall becomes
exponentially suppressed if the Compton wavelength of
the chameleon inside the plates is smaller than the plate
thickness. We denote the thickness of the shell in the left
and right plates as δL and δR respectively and impose
that the field and its first derivative are continuous at
the surface of the plates and at the interface between the
shell and core regions. The problem therefore reduces to
the following set of equations:
R1 − δL < z < R1

φ(z) =
ρL
2M

(z − (R1 − δL))
2

+ φL (4)

R1 < z < R1 + `

arccos

√
φ(z)

φ0
+

√
φ(z)

φ0

(
1− φ(z)

φ0

) 1
2

= ∓

√
2Λ5

φ3
0

(z − z0) (5)

R1 + ` < z < R1 + `+ δR

φ(z) =
ρR
2M

(z − (R1 + l + δR))
2

+ φR (6)

the constant parameter z0 corresponds to the position
at which the chameleon field reaches its maximum value,
denoted φ0, see Figure 1. We have written φL = φmin(ρL)
and below we introduce mL = mφ(ρL). The equivalent
definitions hold for the right hand plate.
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Imposing boundary conditions at the surfaces of the
two plates we find four equations for the four unknowns
φ0, z0, δL and δR:

φi
φ0

=
1−

(
miδi

2

)2 − (miδi
2

)4
1 +

(
miδi

2

)2 (7)

where i ∈ (L,R) and

arccos

√
1

1 + φ0

φi

(
miδi

2

)2 +

√
φ0

φi

miδi
2

1 + φ0

φi

(
miδi

2

)2
=

(
φi
φ0

)3/2{
mL(z0 −R) if i = L
mR(R+ l − z0) if i = R

(8)

If the field reaches a maximum value between the plates
then there is a smallest such maximum set by φ0 ≥ φR.
The system above can be solved by first considering the
series expansion of (8) for small φL/φ0 which can be used
to give a closed form solution for the shell thickness δL(

mLδL
2

)2

=
1

2
(
√

5− 1) (9)

This assumption is found to remain consistent across the
entire chameleon parameter space provided that the fol-
lowing density inequality is satisfied√

ρL
ρR

>∼

√
5 + 1

2
(10)

Equation (9) can then be used to recover an explicit equa-
tion for z0

z0 = R1 +
2

3mL

{
3π

4

(
φ0

φL

)3/2

−
(

2√
5− 1

)3/2
}

(11)

If φR � φ0 then there exists a similar set of equations to
(9)-(11) relating δR, z0 and φ0, and the field profile be-
tween the plates is approximately symmetric. The other
option is to take φR ≈ φ0. This will be the case when the
field configuration is extremely asymmetric and z0 lies at
the surface of the right hand plate. For the more general
case, equations (7) and (8) should be solved numerically.

The key observation here, is that for any given value
of the chameleon self interaction scale Λ the degree of
asymmetry in the chameleon field profile (following from
the value of z0 being offset from the central position of
R1 +`/2) between the plates increases as the value of the
chameleon energy scale M is increased. This indicates
that asymmetry effects may allow us to probe the weak
coupling regime, where the associated fifth force will be
more difficult to detect.

No maximum for the chameleon field

The maximum amount of asymmetry possible if the
chameleon field reaches a maximum value between the

plates occurs when z0 = R1 + `. In this section we con-
sider what happens if the field has insufficient space to
relax into a maxima within the vacuum region. In that
case the field value continues to rise within the right hand
plate, and its evolution is further described by equation
(5). It follows that equation (6) can be omitted from the
calculation (with the unknown δR being no longer rele-
vant to the problem) and the upper bound of Equation
(5) can be set to z0, which now lies inside the plate. If
the plate is sufficiently wide the field continues to increase
until it reaches the value that minimizes the effective po-
tential in the right hand plate, specifying the value of the
field maxima to be φ0 = φR. The system then reduces to
solving equations (7) and (8) across the single boundary
corresponding to the surface of the left-hand plate.

ATOM INTERFEROMETRY

The asymmetric chameleon field profile will produce a
force on any particles travelling between the plates which
could be detected in a sufficiently sensitive experiment.
One could perform a classical deflection experiment, fir-
ing a beam of particles between the plates, and measuring
the deviation from straight line motion in order to con-
strain the chameleon. Recently it has been shown that
experiments using atom interferometry are particularly
sensitive probes of the chameleon field [7–9]. This is due
to the fact that in a laboratory vacuum atoms are not
screened from the chameleon field over a broad region of
the chameleon parameter space, in addition the nature
of the experiment means that it can be sensitive to ex-
tremely small forces acting on the individual atoms. This
motivates combining our asymmetric plate scenario with
an atom interferometry measurement.

Atom interferometry divides the wave function of an
atom into a superposition of two states, which traverse
spatially separated paths before later being recombined.
The phase of each state becomes a function of the path
that has been traversed, and when the two states are
combined the differing phases of the two possible states
of the wave-function result in an interference pattern.
The probability of measuring the atom to be in one of
the two states therefore becomes a function of the forces
that have acted on the atom during the evolution. We
now demonstrate the capability of an experiment adopt-
ing an asymmetric plate configuration. Our results are
based upon a set-up where one of the two paths explored
by the wave-function traverses an asymmetric chameleon
profile whilst the other path passes between a symmetric
plate configuration, as shown in Figure 2. To simplify
the calculation we assume that incident atomic beams
are taken to enter exactly halfway between neighbouring
plates. This allows for the symmetric path to be used
as a reference, as particles avoid both gravitational and
chameleon forces.

The experiment measures the phase difference accu-
mulated along the two paths which has two parts. The
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first is proportional to the difference in the classical ac-
tion evaluated along each path [21, 22], and the second is
imprinted by the interactions with the laser beams used
to manipulate the atoms. Basically, the atoms pick up a
phase proportional to keff for each interaction where keff

is the effective wave-number associated with the hyper-
fine splitting transition of the atom. Due to the implicit
form of equation (5) describing the chameleon field be-
tween the plates, one needs to resort to numerical meth-
ods to evaluate these phases. However it is possible to
obtain an analytic estimate for this integral, if the devi-
ation of the particle path from a straight line is small.
In that case we can consider the expansion of the scalar
field to linear order around its central value. Perform-
ing this calculation, the contribution to the atomic phase
difference from the classical action, denoted ∆A, can be
approximated by

∆A ≈
{

1

3
a2T 2 +

1

M
(φB − φA)

}
T (12)

where a is the constant chameleon acceleration experi-
enced throughout the asymmetric route, T is the net ex-
posure time and the quantities φB and φA correspond to
the central field values of the right hand and left hand
paths respectively. Assuming that the atoms are kicked
by the lasers just before they enter the plates, to put them
on the correct path, and just after exiting the plates, in
order to recombine them, the net contribution from these
interactions ∆P is given by:

∆P = keffaT
2 (13)

Combining (12) and (13), the net phase difference can
be seen to consist of two competing factors: one that
depends on the acceleration (proportional to the gradi-
ent of the chameleon field) and one that depends on the
scalar potential. As illustrated in Figure 2, the central
acceleration can be increased by increasing the density
asymmetry but this is at the expense of decreasing the
central field value. Conversely, the phase difference due
to the scalar potential terms can be increased by allowing
the separation between the two sets of plates to vary. In
moving to a larger plate separation for path B, the field
is able to reach a higher central value.

Figures 3 and 4 demonstrate the power of this experi-
ment for two choices of plate separation, and time of flight
of the atoms between the plates. Experimental param-
eters for the vacuum chamber are chosen to correspond
to those used in [7]. Further, we assume that the atomic

beams are composed of Caesium atoms. Moving from
left to right in both of these figures indicates an increase
in exposure time from T = 30 ms, to the more optimistic
T = 1.05 s proposed in [23]. A first experiment is antici-
pated to be able to measure accelerations down to 10−6

g, where g is the acceleration due to free-fall at the sur-
face of the Earth. If systematics can be controlled it is
possible that a sensitivity of 10−9 g could be achieved.

 φ(z)

Path A Path B

FIG. 2. The three plate configuration proposed for use in an
atom interferometry experiment. The right most (green) plate
is less dense than the left and central (blue) plates, giving rise
to the chameleon field profile indicated by the red dashed line.

SUMMARY

We have described an asymmetric parallel plate set up
which could be used to search for chameleon dark energy.
The asymmetry of the chameleon field profile increases
for the most weakly coupled chameleons, allowing us to
overcome the difficulties of detecting the force mediated
by such weakly coupled fields. It can be seen from Fig-
ure 3 that this covers most of the remaining chameleon
parameter space, and in particular that the asymmetry
allows us to push further into the weakly coupled (high
M) region of the parameter space. Additionally, such an
experiment would improve constraints at small M and
Λ which are also hard to reach with current searches.
Combining this with the precision of atom interferom-
etry, which uses unscreened atoms as the test particles
moving in the chameleon field, we have shown that such
a configuration allows us to reach previously unobtain-
able parts of the chameleon parameter space.
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