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Abstract 

P2Y receptors are expressed in virtually all cells and tissue types and mediate an 

astonishing array of biological functions including platelet aggregation, smooth muscle cell 

proliferation and immune regulation. The P2Y receptors belong to the GPCR superfamily 

and are composed of eight members encoded by distinct genes that can be subdivided into 

two groups based on their coupling to specific G-proteins. Extensive research has been 

undertaken to find modulators of P2Y receptors, although to date there have only been a 

limited number of small molecule P2Y receptor antagonists that have been approved by 

drug/medicines agencies. This Perspective reviews the known P2Y receptor antagonists, 

highlighting oral drug-like receptor antagonists, and considers future opportunities for the 

development of small molecules for clinical evaluation. 

Introduction 

Although nucleotides, such as adenosine-5’-triphosphate (ATP) and uridine triphosphate 

(UTP) are important intracellular molecules, they are also released into extracellular fluids by 

various mechanisms. The receptors for these extracellular nucleotides have been 

progressively characterized and classified as purinergic receptors.1 The subdivision of these 

purinergic receptors into P1 (adenosine) and P2 (ATP, ADP) was originally proposed by 

Burnstock in 19782 and further subdivision of the P2 receptors between P2X and P2Y was 

made in 1985.3 It is now well established that signalling by extracellular nucleotides is 

mediated by two families of receptors, where P2Y receptors are metabotropic G protein-



 

coupled receptors (GPCRs) and P2X receptors are trimeric ion channels.4 The P2Y 

receptors belong to the GPCR superfamily and possess the characteristic molecular 

topology of an extracellular N-terminus, an intracellular C-terminus and seven 

transmembrane spanning loops.5 However, in comparison to other GPCR families, P2Y 

receptors show limited sequence homology; possibly explaining the differences in ligand 

selectivity and specificity for the relevant G-protein they signal through. In addition, P2Y 

receptors are found to be expressed in virtually all cells, in all tissue types and mediate an 

astounding array of biological functions including platelet aggregation, smooth muscle cell 

proliferation and immune regulation. The discovery of oral, drug-like6-7 compounds with 

favourable ADME (absorption, distribution, metabolism, and excretion) properties8 for these 

receptors, specifically antagonists of the P2Y12 receptor that have proven therapeutic benefit 

in various disease states, could address many unmet areas of clinical need.9 

The P2Y family is composed of eight members encoded by distinct genes that can be 

subdivided into two groups based on their primary signalling through specific coupled G-

proteins. From a phylogenetic and structural (i.e. protein sequence) perspective, two distinct 

P2Y receptor sub-groups have been characterized by the relatively high level of sequence 

divergence. The first sub-group includes the P2Y1,2,4,6,11 receptors and the second sub-group 

encompasses the P2Y12,13,14 receptor subtypes. In addition, the various P2Y receptors differ 

by their selectivity for distinct nucleotides (Table 1). P2Y11 is an ATP receptor, whereas 

P2Y1, P2Y12, and P2Y13 are ADP receptors. P2Y4 and P2Y6 are pyrimidine nucleotide 

receptors activated by UTP and UDP respectively. P2Y2 is a dual ATP and UTP receptor. 

P2Y14 is a receptor for UDP-glucose and other nucleotide sugars as well as for UDP itself.  

Table 1: Properties of human P2Y receptors. 

Receptor Tissue distribution Agonist G 

Protein 

P2Y1 wide, including platelets, CNS, heart, skeletal ADP Gq 



 

muscle, GI tract 

P2Y2 wide, including lung, heart, skeletal muscle, 

kidney, brain 

ATP=UTP Gq 

P2Y4 placenta, lung, vascular smooth muscle UTP Gq 

P2Y6 wide, including brain, lung, heart, placenta, spleen, 

intestine 

UDP Gq 

P2Y11 spleen, intestine, dendritic cells ATP Gq + Gs 

P2Y12 platelets, brain ADP Gi 

P2Y13 brain, spleen ADP Gi 

P2Y14 wide including brain, heart, adipose tissue, 

placenta, intestine and hematopoietic cells 

UDP-

glucose/UDP 

Gi 

For further information relating to the specificity of P2YRs see Alexander et al10 

This perspective aims to examine the various approaches used to discover drug-like 

antagonists of P2Y receptors and builds on recent reviews in the area concentrating on P2Y 

receptor agonists and the early nucleotide containing modulators.11 Recently, X-ray crystal 

structures of ligand-bound P2Y1
12 and P2Y12

13-14 receptors have been published. It is hoped 

that structural information resulting from these disclosures can assist in the design of new 

modulators for P2Y receptor subtypes, as many of the reported modulators still lack the 

potency and selectivity for viable chemical drug-like leads. Oral drug design has been 

hampered by the importance of retaining the negatively charged phosphates of nucleotides 

for their interaction with the P2Y receptors. This presents huge issues for drug development 

because of their metabolic instability, low bioavailability, nonspecific binding to biological 

membranes, and chemically due to their demanding purification.  To date, the only clinically 

proven role for P2Y receptor antagonists lays in the antithrombotic area, where extracellular 

nucleotide signalling has been shown to be involved in platelet aggregation. Extracellular 

ADP has a crucial role in platelet activation through activation of cell surface P2Y1 and P2Y12 

receptors, resulting in adherence to sites of damage when blood vessel injury occurs. In so 



 

doing, platelets secrete several factors that initiate clot formation and recruit other platelets 

to the point of injury. Based on this, several antagonists for each of these receptors show 

anti-thrombotic activities. However, to date only P2Y12 receptor antagonists have been 

successfully developed for clinical use.  

The development of clinically relevant P2Y12 receptor antagonists and further case histories 

for the discovery of other P2Y receptor subtype antagonists will be presented in this 

perspective. Each sub-section, containing a brief introduction to the underlying 

pharmacology and potential clinical benefit for the P2Y receptor antagonist, is followed by a 

detailed study of the search for effective orally bioavailable, drug-like molecules.  

Drug-like antagonists of the P2Y1 receptor (P2Y1R) 

Advances in platelet biology15 revealed that ADP played a crucial role in platelet function. 

Therefore, receptor antagonists of the two ADP receptors, P2Y1 and P2Y12, may provide 

antithrombotic efficacy16 with reduced bleeding liabilities. Through a Gi-dependent pathway, 

P2Y12R activation is responsible for mediating the inhibition of adenylyl cyclase, which 

sustains platelet aggregation. Through a Gq-dependent pathway, P2Y1R activation is 

responsible for calcium mobilisation, which causes platelet shape change and initiates 

reversible aggregation.17 It has been demonstrated in pre-clinical studies using P2Y1-

deficient (P2Y1
 -/-) mice, and by using selective nucleotide-derived P2Y1R antagonists such 

as 1 (MRS2179)18 (Figure 1), that a complete blockade of ADP-induced platelet aggregation 

occurs leading to an effective reduction of arterial thrombosis with a moderate prolongation 

of the bleeding time.19-20,21,22  Inhibition of the P2Y1R is therefore a promising approach for 

the discovery of new antithrombotic drugs.23-24  

In the search for selective antagonists of the P2Y1R, structural modifications were made on 

the natural agonist 2 (adenosine diphosphate, ADP). In the first reported work in this field, 

building on the observation that 3 was a weak partial agonist,25 4 was shown to be an 

antagonist of the P2Y1R.25 Substitution of the ribose with an acyclic group afforded 5, a 



 

potent bisphosphate antagonist (Figure 1).26 These compounds proved useful tools for 

interrogating the scope of modulating the P2Y1R. However, their pharmacokinetic properties 

may not make them ideal oral, drug-like candidates.  A series of adenosine derivatives 5a-b 

were shown to have weak antagonist activity when linked to aspartic acid through a 

carbamate.27 Further studies in these areas delivered 6 (MRS2279) and 7 (MRS2500)28 as 

useful tool compounds to probe the mechanism and highlight the potential clinical 

significance of P2Y1R antagonism.29 

 

Figure 1: The natural agonist 2 (ADP) and a selection of nucleoside-based P2Y1R 

antagonists. 

The following section focuses on the study of P2Y1R antagonists specifically aimed at the 

identification and development of oral drugs.  



 

Scientists at Bristol-Myers Squibb (BMS) have reported the discovery and development of a 

series of potent, selective and bioavailable diarylurea P2Y1R antagonists. In their discovery 

program a high throughput screening (HTS) effort, using >1 million compounds against the 

human P2Y1R, revealed that diarylurea 830 had good affinity and binding selectivity toward 

the P2Y1R versus P2Y12R (P2Y1 Ki = 75 nM, P2Y12 Ki > 70 μM). 

 

In light of its profile, compound 8 was chosen as the starting point for further modification. 

The hit series was amenable to rapid exploration by parallel synthesis, initially through 

substitution of the phenyl ring attached to the urea group. In this synthetic strategy, 

isocyanate 9 was reacted with a diverse array of 96 amines to afford a series of urea 

derivatives (such as 10a-i) that rapidly generated a structure-activity relationship (SAR). To 

explore substitution of the phenyl ether group, the 2,4-difluorophenyl urea was kept constant 

and a range of substituted 3-aminopyridines 11a-i were condensed with 2,4-difluorophenyl 

isocyanate, key results from these arrays are summarized in Table 2. 

Table 2: Parallel synthesis and exploration of initial hit 8. 

 

Compound R1 hP2Y1 Ki Compound R2 hP2Y1 Ki 



 

(nM)a (nM)a 

10a Ph 171 12a 3-CF3 75 

10b 2-F-Ph 47 12b H 2000 

10c 2-Cl-Ph >5000 12c 2-t-Bu 18 

10d 3-F-Ph 607 12d 3-t-Bu 33 

10e 4-Cl-Ph 69 12e 2-i-Pr 28 

10f 4-MePh 48 12f 2-Et 77 

10g 4-OCF3-Ph 313 12g 2-CF3 172 

10h CH2Ph >5000 12h 4-CF3 >5000 

10i CH2CH2Ph >5000 12i 4-Me >5000 

aMeasured by displacement of [-33P]-2-MeS-ADP binding to cloned hP2Y1 receptors 

From this work, it was demonstrated that mono-substitution was preferred for activity at the 

distal aromatic group (R1) and that aliphatic substituents were not tolerated in this position. 

Data also supported the concept that lipophilicity at the ortho-position of the phenyl ether 

(R2) was required for affinity. The importance of the ether link between the phenyl and 

pyridyl rings was also explored by replacing it with either a thio-ether or amino variants. 

Whilst substitution with sulphur afforded a 3-fold drop in affinity, replacement with nitrogen 

resulted in a 20-fold loss, and N-methylation resulted in a more significant loss (Figure 2). 

 

Figure 2: Structure activity relationship for the replacement of the oxygen atom with sulfur or 

nitrogen. 

A follow-on array was then synthesized using a combination of eight preferred substituents 

from the phenyl ether group and the aromatic ring attached to the urea group. Using a 



 

human platelet rich plasma assay (hPRP), these compounds demonstrated a clear trend that 

combination of a lipophile at the ortho-position alongside substitution of the phenyl urea at 

the para-position gave receptor antagonists, with several compounds displaying micro-molar 

activity. In order to ensure that the anti-platelet activity was due exclusively to P2Y1R 

antagonism, all compounds were tested for antagonism at other P2Y receptors such as 

P2Y2, P2Y6, P2Y11, P2Y12 and P2Y14. Compounds with good in vitro P2Y1R binding affinity 

and functional activity were evaluated to determine their metabolic stability. From these 

studies, compound 13 (BPTU) showed reasonable metabolic stability in rats and was 

progressed to an in vivo rat pharmacokinetic (PK) study.  This compound showed modest 

bioavailability (F = 18%) when dosed at 30 mg/kg and the compound was subsequently 

progressed to a rat antithrombotic assay (Figure 3).  

 

Figure 3: Rat in vivo PK study on compound 13. Vss is the volume of distribution at steady-

state. 

Compound 13 clearly improved blood flow and reduced thrombus weight in a dose 

dependent manner showing a maximum of 68 ± 7% thrombus weight reduction compared to 

vehicle using a 10 mg/kg bolus followed by 10 mg/kg/h infusion. Ex vivo platelet aggregation 

responses to ADP were also significantly inhibited at all antithrombotic doses.  

Diarylurea-containing compounds of the type shown (Figures 2-3) are generally associated 

with poor solubility at physiological pH. BMS scientists addressed this issue by addition of 

amine-containing, water-solubilizing groups (R3) onto the distal phenyl ring (Figure 4).31 



 

 

 

Figure 4: Incorporation of an amine as a water-solubilizing group to improve physico-

chemical properties of the urea derivatives. 

This afforded a series of compounds, as illustrated by 14 and 15, with comparable binding 

affinities when compared to the parent 13. Compound 14 was chosen as the new lead 

compound as it possessed similar levels of activity in the platelet aggregation assay (IC50 2.9 

M at 25 M ADP) but had significantly higher solubility. However, further profiling of 14 

showed it was metabolically unstable in rat and human liver microsomes and displayed high 

inhibition against several GPCR targets [ca. 90% inhibition (at 10 M) 5-HT2A, 5-HTT, -2A 

adrenoreceptor and -1D adrenoreceptor]. Further investigation revealed 15 as a more 

metabolically-stable compound with enhanced rat bioavailability (F = 40%), due in part to the 

increase in aqueous solubility. Unfortunately, 15 also had similar off-target activity, as well as 

showing activity against the hERG potassium ion channel.  

In order to address the poor physico-chemical properties of their lead compounds, scientists 

at BMS looked into bioisostere replacements of the core urea moiety. In a series of papers 

they explored replacement of the urea with amino thiadiazole32 16 and 2-aminothiazole33 17 

mimetics (Figure 5). 



 

 

Figure 5: Bioisosteric replacement of the urea group: a) 2-amino-3,4-thiadiazole 

replacement and b) 2-aminothiazole replacement 

High P2Y1R antagonism was demonstrated for a range of azole bioisosteric replacements 

(e.g. 16). Several five-membered heterocycles were used as replacement for the urea 

moiety, with comparable levels of P2Y1R antagonism and ADP-induced aggregation activity. 

These receptor antagonists suffered from the same poor physico-chemical properties as the 

previous lead series (high lipophilicity including poor aqueous solubility <1 g/mL at pH 6.5) 

and were not pursued further. In the case of the 2-aminothiazole bioisosteric replacements, 

a series of new analogues were discovered with excellent P2Y1R binding affinity. Several of 

the analogues demonstrated moderate inhibition of platelet aggregation, with compound 17 

showing a reasonable rat PK profile (CL 6.7 mL/min/kg; T1/2 2.1 h, F 27%). However, poor 

solubility and high plasma protein binding (99.9% bound) may have contributed to the 

modest activity seen in the human serum platelet aggregation assay (IC50 17 M) and this 

series was not pursued.  

In another approach to address the poor physico-chemical properties inherent in the biaryl 

urea lead compounds, incorporation of an amine containing, water-solubilizing group into the 

phenyl ether portion of the core structure was explored (Figure 6).  



 

 

Figure 6: Changes to the phenyl ether portion of 13 to increase water solubility 

Compounds (18-20) displayed similar hP2Y1R antagonism to that of 13, however improved 

physico-chemical properties resulted in good functional activities as well as improved 

aqueous solubility. From this set of compounds, piperidine 20 showed the best overall profile 

and favourable PK parameters (Table 3).34 

Table 3: In vitro data and rat PK profile for the diarylureas 18-20.  

Compound hP2Y1 Ki 

(nM) 

PAa IC50 

(M) 

Solubility 

(g/mL) 

CL 

(mL/min/kg) 

Vss 

(L/kg) 

T1/2 

(h) 

F 

(%) 

PPBb 

(% bound) 

18c 11 2.5 3 48 22 14 16 100 

19c 57 1.2 270 84 10 1.7 13 99.7 

20d 16 2.4 105 18 14 11 89 99.9 

aPlatelet aggregation (PA) was tested with 2.5 μM of ADP. bPlasma protein binding (PPB). C 

Cassette dosed 0.5 mg/kg (i.v./p.o.) d2 mg/kg (i.v.), 5 mg/kg (p.o.) 

In a continuing theme, a range of conformationally-constrained, anilino-substituted 

diarylureas were synthesized to generate a new series of potent and selective P2Y1R 

antagonists. These compounds possessed an oral antithrombotic effect with mild bleeding 

liability in rat thrombosis and homeostasis models (Figure 7).35  



 

 

Figure 7: Evolution of new conformational constrained, ortho-anilino diarylurea 23. 

In the evolution of compound 23, compounds 21-22 demonstrated good P2Y1R antagonism 

(21 hP2Y1 Ki = 8.7 nM, 22 hP2Y1 Ki = 20.3 nM). It is interesting to note that among these 

ring-constrained analogues, the aryl compound 21 had slightly enhanced activity at the 

P2Y1R and this seemed to be a general trend observed within this series of compounds. 

After further optimization, 23 was identified, with an excellent overall profile (23, hP2Y1 Ki = 

4.3 nM, hP2Y1; PA = 4.9 M (at 10M ADP); solubility 4 g/mL; rat PK: CL 9.1 mL/min/kg; 

T1/2 7.5 h; F 32%). Compound 23 inhibited arterial thrombus formations and improved blood 

flow in a dose-dependent manner when administered by either IV or PO routes. Maximum 

thrombus weight reductions of 66% and 64% were observed in comparison to vehicle at 

doses of 0.6 mg/kg + 2.25 mg/kg/h (IV) and 10 mg/kg (PO), respectively. In these same rat 

models, a 20 mg/kg oral dose of clopidogrel reduced carotid artery thrombus weight by 67% 

and prolonged mesenteric bleeding time by 8.2-fold. These results suggested that inhibition 

of P2Y1 by 23 compared favourably to the antithrombotic and haemostatic effects of 

clopidogrel - a clinically established P2Y12R antagonist. 

In a further disclosure, potency in the spiropiperidine indoline-substituted diarylureas was 

enhanced through the introduction of a 7-hydroxyl substitution on the spiropiperidinyl 

indoline chemotype. Further SAR studies were conducted to improve pharmacokinetics and 

potency, resulting in the identification of 24 (P2Y1 calcium mobilization assay = 0.12 nM; PA 

= 0.13 M (at 10M ADP); solubility 680 g/mL; CL 7.3 mL/min/kg; T1/2 8.4 h; F 23%), a 

compound that demonstrated a robust antithrombotic effect in vivo and improved bleeding 



 

risk profile compared to the P2Y12R antagonist clopidogrel in a rat bleeding model.36 This 

exciting improvement in activity led to investigation of a series of urea bioisosteres of the 

diarylurea lead 24, culminating in the discovery of a series of 2-amino-1,3,4-thiadiazoles, 

such as compound 25 (P2Y1 Ki 16 nM; PA 0.45 M (at 10 M ADP); rat PK: CL 4.0 

mL/min/kg; T1/2 24 h; F 22% (cassette dosed 0.5 mg/kg (p.o.)), as potent P2Y1R antagonists; 

the first series of non-urea containing P2Y1R antagonists.37  

 

Several analogs of 25 were shown to have more favourable PK profiles, such as higher 

maximal trough concentration (Ctrough), lower CL, smaller Vss, and similar bioavailability 

compared with 25.  

Further optimization of 25, by introducing 4-aryl groups at the hydroxylindoline in two neutral 

and basic sub-series, have been described.38-39 In the neutral series, 26 had excellent 

potency and a highly desirable PK profile. Meanwhile, in the basic series, 27 (BMS-884775) 

had an improved PK profile (Figure 8).  



 

 

Figure 8: Discovery of 27 – a potent and orally bioavailable P2Y1R antagonist (n.b. no dose 

given for the PK studies). 

Scientists at Pfizer have reported a series of potent and orally bioavailable diarylurea P2Y1R 

antagonists40 resulting from an HTS campaign. The HTS hits (28 and 29) were further 

explored to deliver aryloxypyrazole 30 as a suitable template for further elaboration (Figure 

9). 

Figure 9: Discovery of the aryloxypyrazole template (such as 30) for further elaboration 

During their optimization project, attention was paid to the A- and B-rings of the template. 

Interestingly, substitution in the ortho-position of the A-ring increased binding affinity and 

was preferred over meta- and para-substitution, with either small lipophilic or halogen 

substituents being optimal. Limited examination of the B-ring was undertaken at this time. 

However, it was noted that larger lipophilic substituents in the pyrazole 3-position led to 



 

inactivity, thus the 3-methyl substitution was preferred. Subsequent optimization then 

focussed on the D-ring while maintaining the optimal substitution on the A- and B-rings 

(Figure 10). 

 

Figure 10: Lead optimization of the aryloxypyrazole template 

Compound 31 had good in vitro metabolic stability and was further evaluated for its rat PK 

where it demonstrated a very favourable profile (CL 81 mL/min/kg; Vds 15.7 (L/kg); T1/2 2.8 h; 

F 59%). This compound was progressed to a rat arterial injury model where it resulted in a 

dose-dependent decrease in both the incidence of occlusive thrombus formation and the 

average time to occlusion. It is interesting to note that high affinity was achieved when 

lipophilic groups were incorporated at the para-position of the D-ring (32, hP2Y1 Ki = 0.03 

M), whereas a more polar substituent (33, hP2Y1 Ki > 10 M) led to a substantial loss in 

activity. When heterocyclic replacements were made in the C-ring, it was discovered that 

substitution with a pyridyl group afforded compounds (e.g. 34) with reasonable activity.  

A series of HTS-derived diarylurea P2Y1R antagonists were reported by scientists at 

GlaxoSmithKline (GSK).40 In their work, they described the discovery of a hit (35) which was 

optimized to give a series of benzofuran-substituted urea derivatives e.g. 36 (Figure 11). 



 

 

Figure 11: A series of HTS-derived diarylurea P2Y1R antagonists 

Scientists at GSK also reported on a non-urea containing series of receptor antagonists, 

once more obtained as a result of HTS.41 A high throughput calcium mobilization assay 

employing a fluorescent imaging plate reader (FLIPR) identified tetrahydro-4-quinolinamine 

37 as an antagonist of hP2Y1R. Exploration of this screening hit led to the identification of 

urea 38 where the importance of the absolute stereochemistry was highlighted through the 

separation of the enantiomers through chiral HPLC and it was discovered that all P2Y1R 

antagonism was derived from a single enantiomer (Figure 12). 

  

Figure 12: Evolution of the HTS-derived lead to the active single enantiomer 38 

Compound 38 was progressed to a platelet aggregation assay and was shown to inhibit 

ADP-induced aggregation with an IC50 = 504 nM. 



 

In a seminal paper, researchers have established the X-ray co-crystallised structure of 

inhibitors bound into the hP2Y1R.12 Structures of the hP2Y1R in complex with either a 

nucleotide antagonist 1 (2.7Å resolution) or a non-nucleotide antagonist 13 (2.2Å resolution) 

reveals two distinct ligand-binding sites. Interestingly 13 was originally identified by a radio-

ligand binding assay and described as a competitive antagonist.  Antagonist 1 occupies a 

binding site within the seven transmembrane bundles of the P2Y1R, and 13 binds to an 

allosteric pocket on the external receptor interface with the lipid bilayer (Figure 13). 

 

 

Figure 13: Compounds 7 and 13 co-crystallised into the hP2Y1R showing the two distinct 

binding sites. An overlay of structures pdb codes 4XNV and 4XNW visualised with PyMOL 

Molecular Graphics System, Version 1.3. Schrödinger, LLC. 

Perspective comment 



 

The story of the discovery of 27, covered over several papers, illustrates a classical 

medicinal chemistry project where core pharmacological optimisation (P2Y1R antagonism) 

was run in multi-parameter optimisation to improve physico-chemical properties (such as 

solubility and pharmacokinetics) of the lead compounds. It is also important to note that 

during this optimisation phase, consideration of all parts of the structure was examined 

including the utilisation of bioisosteric replacements (Figure 14). 

 

Figure 14: Summary of the discovery of 27. cLogD is the calculated distribution coefficient. 

While this optimisation process led to a dramatic increase in biological activity and 

improvement in solubility, increases in the core physical properties, such as MWt and 

lipophilicity, would lead to future issues in the development of a pre-clinical candidate.42 

Hopefully, elucidation of the co-crystal structure of the P2Y1R antagonist ligands will enable 

structure-based drug design of future P2Y1R antagonists, facilitating discovery of 

compounds with physical properties for improved oral absorption.  

Drug-like antagonists of the P2Y2 receptor (P2Y2R) 

The P2Y2R is activated by endogenous agonists UTP (hP2Y2, EC50 = 140 nM) and ATP 

(hP2Y2, EC50 = 230 nM) with almost equipotent activity in a transfected 1321N1 human 



 

astrocytoma cell line.43 The P2Y2R is predominately Gq-coupled and receptor agonism leads 

to activation of phospholipase C (PLC), IP3 release and elevation of intracellular Ca2+ 

concentration, as well as the activation of protein kinase C (PKC) and activation of the 

mitogen activated protein kinase (MAPK) cascade.44 

 

P2Y2R agonism has shown potential as a treatment for cystic fibrosis (CF), as defective 

chloride secretion in the respiratory epithelium of CF patients can be compensated by 

activation of chloride secretion channels. Through a knockout study,45 comparison of 

P2Y2R(+/+) with P2Y2R(-/-) mice revealed that the P2Y2R mediated 85-95% of nucleotide-

stimulated chloride secretion in the trachea, and agonist 39 (INS37217, hP2Y2, EC50 = 220 

nM) was shown to increase chloride and water secretion, as well as an increased mucin 

release of tracheal tissue in an ex vivo model.46 It has also been shown that receptor 

agonism of the P2Y2R leads to keratinocyte proliferation47 and neutrophil migration,48 

suggesting that receptor antagonists could show promise in treating psoriasis. Offermanns et 

al49 reported that ATP released from tumor cell-activated platelets and induced the opening 

of the endothelial barrier, leading to migration of tumor cells and hence cancer-proliferation. 

More importantly they identified P2Y2Rs as the primary mediator of this effect; demonstrating 

a strong reduction of tumor cell metastasis in P2Y2R deficient mice and showing the 

therapeutic potential of P2Y2R antagonists as anti-metastatic agents. 

The only reported development of P2Y2R antagonists from an industrial research group are 

compounds patented by scientists at AstraZeneca in the late 1990s (formerly Fison’s and 

Astra Pharmaceuticals). Unfortunately, no absolute potency values for the compounds were 



 

reported and so a detailed SAR cannot be given here. However, looking chronologically at 

the patents, it is possible to see the sequential development of several structurally distinct 

classes of receptor antagonists, culminating in compounds which could be classed as drug-

like. 

 

Figure 15: P2Y2R antagonists patented by AstraZeneca. All exemplified compounds were 

reported as being P2Y2R antagonists with a pA2 > 4.0 in hP2Y2R transfected Jurkat cells. 

cLogP was calculated using instant J Chem.50   

Within the first patent, a series of triphosphate receptor antagonists were reported (Figure 

15).51 It was shown, in an analogous series of P2Y2R agonists, that taking UTP as the 

starting point and replacing the βγ-oxygen with a dichloromethylene group, along with 

conversion to a 4-thiouridine, induced enhanced metabolic stability as well as maintaining 

full agonist activity.52 Conversion to a P2Y2R antagonism profile was achieved through the 

introduction of a large, lipophilic group at the C-5 position of the uridine. This key substitution 

was extensively exemplified with a biphenyl and dibenzo-suberenyl substituent 40 and 41 

respectively; however further substituents are reported throughout the patent.51 The in vivo 

use of these triphosphate analogues would probably be limited to intravenous and topical 

administration. With the scope of developing oral, drug-like compounds, there is a desire to 

move away from excessively high molecular weight and highly-charged triphosphate 



 

moieties. To this extent, a subsequent patent53 was published detailing acidic, non-

phosphate P2Y2R antagonists, exemplified by 42 and 43 (Figure 16). 

 

Figure 16: P2Y2R antagonist patented by AstraZeneca. All exemplified compounds were 

reported as being P2Y2R antagonists with a pA2 > 4.0 in hP2Y2R transfected Jurkat cells.   

Within this second series of acidic receptor antagonists, it is possible to see distinct 

structural changes. Across the majority of the exemplified compounds, the core 4-thiouridine 

was maintained along with the dibenzo-suberenyl substituent, now further substituted with 

two additional methyl groups. Presumably these features were required to maintain or 

enhance the activity seen in the first series of compounds.  

In this series, the ribose group was replaced with a simpler 5-membered heterocycle, in 

most cases a substituted furan ring. In addition to this modification, a further notable 

structural change was replacement of the triphosphate with an acidic phosphate mimetic. 

This modification was reported as L-aspartic acid derivative 42 and the acyltetrazole 

analogue 43 (AR-C118925XX), along with other bioisosteric replacements. However, in 

achieving this structural change, a substantial increase in the overall lipophilicity was 

observed that would compromise their physico-chemical properties.  



 

 

Figure 17: P2Y2R antagonists patented by AstraZeneca including acidic (such as 44) and 

neutral receptor antagonists (such as 45-46). 

A series of less lipophilic receptor antagonists were reported in the final patent and a 

selection of these compounds is shown (Figure 17).54 The key strategy appeared to be 

replacement of one of the phenyl rings in the dibenzo-suberenyl substituent with a 5-

membered heterocyclic ring. This can be shown through considering 44 (cLogP = 3.3) which 

is appreciably less lipophilic than 43 (cLogP = 5.3) whilst remaining structurally similarity. 

More importantly, this change allowed for generation of a neutral receptor antagonist series 

as exemplified by 45 and 46. Although there have been no further reports on the activity of 

these compounds, structurally they appear to be more drug-like than the compounds in the 

previous patent applications.  

Since disclosure of these P2Y2R antagonists from AstraZeneca, several studies using 43 

with success in both in vivo and ex vivo models have been reported; further validating the 

therapeutic benefit of P2Y2R antagonists. In 2004, scientists at Novartis55 showed that 43 

was inactive at 10 μM concentrations against a panel of 37 receptors (except for hP2Y2). In 

an ex vivo model 43 concentration-dependently antagonized ATPγS-induced mucin 

secretion in human bronchial epithelial cells (IC50 ~ 1 M).  In 2015, Ceruti et al56 showed 

that in an in vivo model, 43 completely inhibited satellite glial cell activation and cross talk 



 

with trigeminal neurons, exerting a potent anti-allodynia effect. This suggests P2Y2R 

antagonists also have therapeutic potential for management of trigeminal neuralgia. 

It has been reported57 that several members of the flavonoid family displayed P2Y2R 

antagonism (mP2Y2R, IC50 ≈ 10-50 µM). When screening a series of 40 flavonoids (Figure 

18), 48 (Tangeretin, mP2Y2R, IC50 = 12 µM) reduced the amplitude of the P2Y2R response 

to UTP but not the EC50 value, indicating it could be acting as an allosteric P2Y2R antagonist.  

 

Figure 18: A series of 40 flavonoids 47 (generic structure) and 48 

More recently it has been suggested58 that amphiphilic phytochemicals, similar to these 

flavonoids, appear to function indirectly through disruption of cell membranes in which the 

transmembrane proteins reside. This might explain the non-competitive antagonism 

observed for 48 and the difficultly encountered in extracting meaningful SAR from the 

compound series. However more importantly, the promiscuity in developing polyphenolic 

compounds is well known and is generally avoided when selecting lead-like compounds. 

From the unselective, broad-spectrum P2YR antagonist 49 (Reactive Blue-2, hP2Y2R, IC50 

=1.85 μM), a series of receptor antagonists were reported (Figure 19).59 The most potent (50 

hP2Y2R, IC50 = 9.82 μM), although unpublished, ‘appeared to be selective versus other P2Y 

subtypes as well as nucleotide-metabolizing enzymes’. 



 

 

Figure 19: Evolution of 50 (PSB-716) and 51 (PSB-416) from 49  

To develop a greater understanding for the binding of these P2Y2R antagonists, work was 

reported60 on site-directed mutagenesis studies, to understand the binding modes of UTP, 49 

and 50 (hP2Y2R, IC50 = 11.5 μM). It is worth highlighting several of these point mutations as 

they provide insight into ligand binding within the P2Y2R. 

Table 4: Mutagenesis data for selected P2Y2R antagonists 

Mutant UTP 49 51 

 EC50/μM IC50/μM IC50/μM 

wt4 0.0590 1.85 21.7 

Y114A 0.0372 >>100 24.6 

R272A 20.60 nd nd 

C278S 2.09 1.05 3.44 

wt3 0.0804 1.62 21.9 

Y198A 0.108 9.30 21.1 

S296A >>300 nd nd 

With respect to the receptor expression, mutants Y114A, R272A and C278S can be 

compared to wt4; mutants Y198A and S296A can be compared to wt3. 

 



 

Mutation Y114A on the TM3 domain and Y198A on the TM5 domain did not significantly 

affect the UTP response, but did affect the antagonistic response of 49 but not 51. Mutation 

S296A on the TM7 domain significantly affected the agonistic response to UTP and similarly 

mutation R272A on the extracellular loop 3 (EL3) in close proximity to the TM6 domain, 

resulted in a significant loss of agonist response to UTP. The mutation C278S significantly 

affected agonist response to UTP. It was proposed that this mutation inhibited formation of a 

key Cys25-Cys278 disulfide bridge, which is thought to be important for the increase in 

receptor antagonism observed for 49 and 51.  

From this mutagenesis data, a bovine rhodopsin-based P2Y2R homology model was 

developed. It was hypothesized that Arg272 has a ‘gatekeeper’ role, helping to ‘guide’ the 

phosphates of the agonists into the receptor. Ser296 is located at the bottom of the binding 

pocket where it forms key hydrogen bonding networks with the nucleobase of UTP and ATP. 

A docked antagonist-binding pose of 50 was reported. However, even with the publication of 

this homology model in 2009 no further development of these compounds has been 

reported.  

Recent crystal structures of P2Y12R10 show significant difference in antagonist and agonist 

bound conformations. In the absence of an X-ray crystal structure for the P2Y2R, further 

work into developing P2Y2R homology models, focusing on antagonist receptor binding 

could prove invaluable for future development of drug-like P2Y2R antagonists. 

 

Antagonists of the P2Y4 receptor (P2Y4R) 

The hP2Y4R is fully activated by the endogenous agonist UTP (hP2Y4, EC50 = 550 nM, 

rP2Y4, EC50 = 200 nM) in transfected 1321N1 cells and is considerably more potent than 

ADP and UDP. ADP was shown to be a weak, partial agonist (hP2Y4, 15% max at 100 μM, 

rP2Y4, 34% max at 100 μM) and the weak agonist activity, sometimes observed for UDP, 

can be attributed to contaminating UTP. Interestingly, there are disparate differences when 

comparing the pharmacological properties of ATP on human and rat P2Y4Rs. In human, 



 

ATP acts as a competitive antagonist (hP2Y4, pA2 = 6.2) whereas in rat, ATP acts as a full 

agonist (rP2Y4, EC50 = 1.17 μM).61 Mutagenesis work has shown that residues on the second 

extracellular loop (EL2) of the P2Y4R were responsible for ATP’s ability to act as an agonist 

in rat and an antagonist in human. In the triple hP2Y4R mutant (S177N, V183I, R190L), ATP 

was an equipotent agonist compared to UTP.62  

The first selective P2Y4R agonist 52 (hP2Y4, EC50 = 23 nM) was reported in 2011 and 

showed a 28-fold and 32-fold selectivity versus the P2Y2R and P2Y6R respectively (hP2Y2, 

EC50 = 640 nM; hP2Y6, EC50 = 740 nM). Through development of CXCR4-derived P2Y4R 

homology models, the selectivity gain was thought to be due to unconserved residues in the 

EL2 domain.63  

 

In a similar manner to the P2Y2R, activation of the Gq-coupled dependent pathways of 

P2Y4R leads to stimulation of chloride secretion channels and water secretion. Work with 

P2Y4-deficient mice showed P2Y4R expression in liver, stomach and intestine.64 It was 

shown that the P2Y4R was the primary mediator of UTP-stimulated chloride secretion in both 

small and large intestines, suggesting the potential use for the development of P2Y4R 

antagonists as anti-diarrheal agents.65 

Unlike most P2Y receptors, the P2Y4R does not show the same susceptibility to broad-

spectrum P2YR antagonists and is only antagonized by 49. Using hP2Y4R stably transfected 

into 1321NI cells, 53 (suramin) gave no antagonistic response and 54 (pyridoxal phosphate-

6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (PPADS)) was shown to be 

relatively ineffective.66 Compound 49 was demonstrated to be a competitive P2Y4R 

antagonist in rat transfected Xenopus oocytes (rP2Y4, pA2 = 6.43).67 It is thought that the 



 

P2Y4R may play a causative role in hypoglycemic cell death and, using 49, it was shown that 

P2Y4R antagonism increased cell survival in both cerebellar granule neurons and HEK-293 

cells under hyperglycemic conditions.68 This gives scope for future P2Y4R antagonists to be 

used as neuroprotective agents in diabetes. As with P2Y2, there is scope to use 49 as a 

starting point for the development of selective anthraquinone-based P2Y4R antagonists.  

 

  

However, there has been no further published work on any P2Y4R antagonists. Hence, there 

remains a large scope and unmet need for the development of lead- and drug-like P2Y4R 

antagonists. 

Antagonists of the P2Y6 receptor (P2Y6R)   

The P2Y6R receptor is activated by UDP (EC50 = 0.30 μM). Its transcript has been detected 

in numerous organs, including spleen, thymus, intestine, blood leukocytes and the aorta. 

The majority of research has been performed on agonists of this receptor as typified by 55 

(PSB0474)69 and 56 (MRS2957). 

 



 

From these studies, it was shown that activation of the P2Y6R amplifies mucosal ATP 

release underlying bladder over-activity in patients with benign prostatic hyperplasia. 

Therefore, a potential use of a selective P2Y6R antagonist could be as a novel strategy to 

control persistent storage symptoms in obstructed patients.70 In a recent article, Hirota et al 

suggested that a P2Y6R  antagonist could have benefit in Clostridium difficile toxin-induced 

CXCL8/IL-8 production and intestinal epithelial barrier dysfunction and may therefore provide 

a new therapeutic target for the treatment of C. difficile infections.71 In a further recent study, 

it was shown that endothelium-dependent relaxation of the aorta by UDP was abolished in 

P2Y6 KO mice with the authors postulating that these observations might be relevant to 

several physio-pathological conditions, such as atherosclerosis or hypertension.72 Inhibition 

of P2Y6R  has also been suggested as a potential therapeutic target for monosodium urate 

(MSU)-associated inflammatory diseases, such as tophaceous gout.73 With these and other5 

recent observations, inhibition of the P2Y6R could prove a viable therapeutic mechanism in 

many potential disease areas. Unfortunately, there are only a few known non drug-like 

inhibitors of the P2Y6R  (57-58) available.74,75,76 

Fischer et al. recently described the SAR of uracil nucleotide derivatives and found that 

uridyl phosphosulfate (59) was a weak P2Y6R antagonist (Figure 20).75 

 

Figure 20: Known P2Y6R antagonists; 57 (MRS2578), 58 (MRS2567) and 59  

Even though these compounds have been used to study the potential therapeutic role of 

P2Y6R antagonism, the combination of their chemical functionality and bulk physical 

properties make them less than optimal starting points for oral drug discovery programs.77 



 

Antagonists of the P2Y11 receptor (P2Y11R) 

The P2Y11R was cloned from human placenta and genomic DNA libraries.78 It is coupled to 

both Gq and Gs with its activation leading to increases in cAMP and IP3 levels. The rank 

order of potency of a series of nucleotides for the P2Y11R, transfected into two cell lines, 

1321N1 astrocytoma cells and CHO-K1 cells, is: ATPS ~ 

BzATP>dATP>ATP>ADPS>2MeSATP.79 P2Y11 mRNA has been found to be highly 

expressed in macrophages, platelets, lymphocytes, neutrophils, megakaryocytic cells and 

has also been detected in neuronal-derived and glial-derived cell lines.80 

The P2Y11R is expressed on some leukocyte types including monocytes,81 neutrophils,82 

lymphocytes and monocyte-derived dendritic cells.83 It has been found to mediate ATP-

induced maturation and regulate trafficking of specific dendritic cell types,84–86  regulate 

macrophage activation87 and regulate release of cytokines such as IL-6,88,89 IL-8 and the 

production of IL-12.90 It has also been shown that inhibition of neutrophil apoptosis by ATP is 

mediated by the P2Y11R.91 

The SAR of a series of suramin-derived P2Y11R antagonists have been investigated.92 In this 

study, the methyl groups of (53) were replaced by a range of substituents (Table 5).  

Table 5: Structure activity relationship of suramin analogues 

 

R P2Y1* P2Y2* P2Y11 pKi **  

H 59.3 31.6 6.95 



 

CH3 (53) 54.5 50.5 6.52 

C2H5 48.7 48.8 6.00 

CH(CH3)2 45.0 31.1 6.35 

Ph 75.1 73.2 6.52 

F (60, NF157) 63.3 42.8 7.35 

Cl 40.6 55.2 6.97 

OMe 23.2 44.9 7.12 

CH2OCH3 47.5 44.3 5.62 

*Percentage inhibition by a single dose (100 M) of agonist-induced calcium mobilization of 

native P2Y1R and P2Y2R in HEK293 cells and at P2Y11R recombinantly-expressed in 

1321N1 astrocytoma cells). **The pKi values for P2Y11R on 1321N1 astrocytoma cells are 

shown. 

Interestingly, the same changes to structurally simpler compounds (61a-h) gave compounds 

with little or no antagonism at P2Y11 (Figure 21). 

 

Figure 21: Synthetic changes to 61a-h gave compounds with little or no activity at P2Y11 

A wide range of substituents were tolerated with the difluoro-substituted analogue, with 

compound 60 being the most potent (P2Y11, pKi = 7.35). This analogue, as well as having 

significant selectivity over P2Y1R and P2Y2R (> 650-fold), has 3- to > 67-fold selectivity over 

P2X2,3,4,7. 



 

A systematic screening of a library of naphthalene phosphonic acid and sulfonic acid 

compounds led to the identification of 62 (P2Y11, pKi = 7.8). This compound was 2.6-fold 

more potent than 60 and almost 1000-fold more potent than its very close structural 

analogue 61b. At concentrations up to 100 M there were no observed effects at the P2Y1R, 

P2Y2R and P2Y6R (expressed in 1321N1 astrocytoma cells). 

 

A rat formalin-induced inflammatory pain model, using the selective P2Y11R antagonist 62 

(NF340) and agonist 63 (NF546), suggested that activation of the receptor, along with 

activation of the P2Y1R and P2Y6R, lead to nociception.92-93 

A computational model using the -bovine rhodopsin crystallographic structure as a 

template in combination with site-directed mutagenesis was used to deduce the key ATP-

binding site interactions. ATP was 10-fold less potent at the E186A mutant P2Y11R and 

1000-fold less potent at the R268A mutant, whilst being functionally inactive at the R106A 

and R307A mutants. It is proposed that Arg106, Arg268, Arg307 and Glu186 are involved in ionic 

interactions with the tri-phosphate chain. Arg307 may also be H-bonded to the adenine N6. 

Computational modelling also suggests Ser206 is involved in an interaction with the -

phosphate of ATP and Met310 interacts with the adenine ring.94-95 

Drug-like antagonists of the P2Y12 receptor (P2Y12R) 

The P2Y12R is found on many cell types including megakaryocytes and platelets. The 

endogenous agonist is ADP and, following a thrombotic event, activation of the P2Y12R 

amplifies platelet activation and aggregation, leading to thrombus formation.96 Although the 

involvement of ADP in platelet aggregation was first discovered in the 1960s,96-97 it was not 



 

until 2001 that the P2Y12R was structurally characterized.98-99 Activation of both P2Y1R and 

P2Y12R are important for platelet activation and thrombus formation. However, the wide 

distribution of the P2Y1R amongst different cell types compared with the P2Y12R have made 

P2Y1R antagonists a less desirable target in drug discovery for treatment and prevention of 

thrombosis. 

The thienopyridine class of irreversible binders for the P2Y12R was discovered in the 1970s 

by researchers at Sanofi, whilst screening compounds with structural similarity to the 

nonsteroidal anti-inflammatory drug tinoridine; although it is interesting to note that the actual 

drug target was not known at this time.100-101 It was shown that some of these compounds 

did not exhibit anti-inflammatory properties but did have an anti-thrombotic effect after oral 

dosing in a rat model. One of the most effective compounds 64 (ticlodipine) was chosen for 

development and was launched in 1978 as an anti-thrombotic agent for a range of high risk 

patients. Unfortunately, (64) was found to suffer from a poor benefit/risk ratio and a backup 

program resulted in the launch of 65 (clopidogrel) in 1998, which had a much improved 

safety profile. Interestingly, 65 was initially tested as a racemate, but it was eventually found 

that the anti-thrombotic activity resided with the S-enantiomer.101 

This class of inhibitor required activation through conversion to the active metabolite 66, 

which binds irreversibly to the receptor. Binding to the P2Y12R was confirmed in 2001102  and 

site-directed mutagenesis identified two extracellular cysteine residues, Cys17 and Cys270 as 

candidates for disulfide bond formation with this active metabolite103 which was later 

confirmed when the X-ray crystal structure was published in 2014.13 

In 2009, another irreversible inhibitor within this class 67 (prasugrel - a racemate) was 

launched.104 



 

 

AstraZeneca scientists took the weak P2Y12R antagonist ATP as the starting point for their 

discovery project. Replacement of the -oxygen with a dihalomethylene group and 

installation of substituents on the adenine ring gave a series of high affinity reversible 

antagonists.105 One of these, 68 (cangrelor, P2Y12 IC50 = 0.4 nM), was approved in 2015 for 

use as a quick onset/quickly reversed intravenous antiplatelet drug, over twenty years from 

its discovery. 

 

The next objective was to develop a drug suitable for oral administration. This required a 

move away from compounds containing highly acidic groups.101 As ADP is an agonist for the 

P2Y12R and ATP an antagonist, it was hypothesized that the terminal phosphate was 

important for receptor antagonism. Effort was therefore directed at finding alternative acidic 

groups to the triphosphate chain, in particular the terminal phosphate.  This work led to the 

aspartic acid-derived analogues 69-71. Within this series, conversion of the purine ring to a 

triazolopyrimidine 70 gave a > 100-fold increase in binding affinity over the purine analogue.  

Replacement of the ribose with a cyclopentyl ring gave a series of compounds, such as 71, 

with similar activity and increased metabolic stability (Figure 22).   



 

 

Figure 22: Key SAR of glycoside analogues showing the evolution to the potent cyclopentyl 

analogue 71. Affinity pIC50 values were derived from an ADP-induced aggregation assay 

using washed platelets. 

The physical properties of these molecules (MW>500, >5 H-bond donor groups and the 

dicarboxylic acid moiety) were not conducive to good oral absorption. Replacement of the 

butylamine group on the triazolopyrimidine ring with a 1R,2S-trans-phenylcyclopropylamine 

gave an increase in potency across a number of analogs. Further modifications aimed at 

finding a suitable replacement for the dicarboxylic acid led, with fluorine fine tuning, to 72 

(ticagrelor),106 an orally active reversible P2Y12R antagonist, which was launched in Europe 

in 2010 (hP2Y12 pKi 8.7; rat PK CL 21 mL/min/kg; Vss 3.8 L/kg; T1/2 2.6 h, F 24%).   

 

Outside of the work patented by AstraZeneca other companies have developed other 

nucleotide-based P2Y12R antagonists. Inspire Pharmaceuticals reported the 

monophosphate, 73 (INS50589, IC50 16 nM) that showed inhibition of platelet aggregation in 

a washed human platelet assay. Unfortunately, this compound proved unsuccessful in 

clinical trials as an intravenously-delivered drug.107 Further carboxylic acid replacements for 



 

the phosphate groups were investigated with the 2-carboxybenzyl analogue 74 (hP2Y12, IC50 

= 40 nM) being the most potent of this series. 

 

A series of analogues of 72, primarily focussed on replacing the hydroxyethoxy substituent 

with a heterocycle, was reported by researchers at Johnson & Johnson. Compounds 

containing the 1H-tetrazol-5-yl group were the most potent (e.g.  75, hP2Y12, Ki = 2 nM). No 

in vivo data was reported.108 

A number of ester and carbonic ester derivatives (76a-d) of 72 and 77 (a major metabolite of 

72 with similar binding affinity) have a comparable effect to 72 and 77 on platelet 

aggregation after oral dosing (5 mg/kg) to rats. No in vitro data was given and the activity is 

assumed to be due to hydrolysis (presumably metabolic) to 72 and 77 (Figure 23).109 

 

Figure 23: Derivatives of 72, 76a-d and 77 - the active metabolite of 72. 



 

More recently,110 researchers at Shanghai Hengrui Pharmaceutical Co Ltd. described their 

SAR exploration of the cyclopentyl ring and cyclopropylamino groups of 72. Compound 78, a 

fluorinated analogue of 77, was more potent than 72 in vitro and in vivo, with a satisfactory 

PK profile and a shorter bleeding time observed. 

With the scope of developing non-nucleotide antagonists, high throughput screening of the 

AstraZeneca compound bank identified piperazinyl-pyridine, 79 as a hit (hP2Y12 IC50 = 330 

nM). SAR investigations were amenable to parallel synthesis and this eventually led to acyl 

sulfonamide 80 (AZD1283, hP2Y12 IC50 = 11 nM), a compound with a PK profile suitable for 

progression into human clinical trials.111–113  It is interesting to note that an acyl 

sulphonamide group is also present in 81 (elinogrel), a P2Y12R antagonist which progressed 

into clinical trials supported by Portola Pharmaceuticals,114 then by Novartis. However, 

development of this compound was terminated in 2012. 

 

With the use of fusion protein, the crystal bound structures of the P2Y12R with full agonist 2-

methylthio-adenosine-5’-diphosphate (2-MeSADP), 2-methylthio-adenosine-5’-triphosphate 



 

(2-MeSATP) and 80 have been published.13-14 Both 2-MeSADP and 80 bind in the same 

pocket with the adenine group of 2-MeSADP and the nicotinate group of 80 forming similar 

 interactions with Tyr105. However, the pocket shape in these structures is different and 2-

MeSADP and 80 display only a partial overlap. It is interesting to note the movement in TM7 

observed for binding of 80 in the antagonist-bound P2Y12R state compared to that of the 

agonist-bound P2Y12R state (Figure 24). 

 

 

Figure 24: a) Overlay of agonist (cyan) and antagonist (brown) bound P2Y12Rs with 80 and 

2MeSADP. b) Crystal structure of 80 in an antagonist-bound state P2Y12R c) Methylthio-

adenosine-5’-diphosphate (2-MeSADP) in the agonist-bound state P2Y12R. An overlay of 

structures pdb codes 4PXZ (brown) and 4NTJ (cyan) visualised with PyMOL Molecular 

Graphics System, Version 1.3. Schrödinger, LLC. 



 

The 2-thioether group occupies a lipophilic pocket formed by Phe106, Lys155, Ser156 and 

Asn159, providing an explanation for the affinity enhancing effect of the alkylthio group. The 

2-MeSATP structure has a similar conformation to 2-MeSADP. Furthermore, 82, 83 and 68, 

with the modified triphosphate chain and larger 2-alkylthio substituent, can be docked in a 

similar way to 2-MeSADP within the binding cavity of P2Y12R-2-MeSADP, suggesting the 

reason for receptor agonism and antagonism is unclear. The docking of 72, with the large N6 

substituent, requires conformational change of the receptor in order to be accommodated. 

 

Berlex Biosciences reported 115 that the piperazinyl-glutamate 84 (BX-667, hP2Y12 IC50 129.9 

nM) and its active metabolite 85 (BX-048, IC50 8.3 nM), are reversible antagonists for the 

P2Y12R in an in vitro ADP-induced washed platelet aggregation assay.116 The compounds 

were shown to inhibit platelet aggregation and thrombus formation in vivo in both rat and dog 

models.117  

 

Taking 84 as a starting point, scientists at Pfizer used parallel synthesis to find a 

replacement for the quinoline ring (Figure 25).118,119,120 



 

 

Figure 25: Chemical expansion of 84 illustrating the range of compounds prepared 

A large number of substituted heterocycles were evaluated (group R3 in Figure 25) and it 

was found that a nitrogen atom in the ring ortho- to the amide was preferred along with a 

phenyl ring ortho- to the same nitrogen (Figure 26). 

 

Figure 26: A series of substituted heterocyclic P2Y12R antagonists 

Optimization showed that R4 could be a wide variety of substituents and did not need to 

contain an acidic group. Compound 86 (hP2Y12, Ki = 15 nM), which contains only one 

carboxylic acid group, was found to have the best overall profile, with a PK and safety profile 

suitable for pre-clinical evaluation. Further refinement121 gave the closely related compounds 

87-88, with activity (87 hP2Y12 Ki 2.1 nM, 88 hKi 2.8 nM) and PK profiles suitable for clinical 

backups. 



 

 

 Actelion122 reported the development of P2Y12R antagonists using 85 as the starting point, 

leading to 89, which is structurally similar to 86-88. This compound has very good activity 

(hP2Y12R IC50 = 4.8 nM) and a PK profile suitable for further evaluation.  In a later paper123 

replacement of the carboxylic acid was investigated. A number of acidic carboxylic acid 

bioisosteres, including acyl sulphonamides, tetrazole and 3-hydroxyisoxazole exhibited 

similar potencies to the parent compound, with the phosphonic acid derivative, 90 

(ACT246475) chosen as the pre-clinical candidate. Unfortunately, the bioavailability was 

found to be low in both rat and dog. This led to the development of the 

bis((isopropoxycarbonyl)oxy)methyl ester pro-drug 91 (ACT281959). 

 

Sanofi-Aventis124 found the 1-phenylpyrazolone scaffold 92 (hP2Y12 Ki = 139 nM) as a 

suitable replacement for the quinoline ring of 84. A comparison of 92 and 84 docked into a 



 

P2Y12 homology model showed the 1-phenylpyrazolone moiety of 92 occupies the same 

hydrophobic pocket as the quinoline group of 84. The 5-substituent of the 1-

phenylpyrazolone, which did not overlay with the 4-substituent of quinoline of 84, was 

selected for systematic change; followed by variations to the piperazine ethyl carbamate and 

the central amino acid group. Optimization led to the neutral antagonist 93 (hP2Y12 Ki = 7.7 

nM). Removal of the acidic moiety led to a substantial reduction of PPB to give high activity 

in the human platelet rich plasma assay (hPRP IC50 = 30 nM). Compound 93 showed anti-

aggregator activity in an ex-vivo dog model (10 mg/kg, p.o.), showing the potential for pre-

clinical development.  

 

Pfizer reported thienopyrimidine-based P2Y12R antagonists125 with the most potent examples 

being 94 (hP2Y12 Ki = 4 nM) and 95 (hP2Y12 Ki = 3 nM). However, a significant drop in 

activity was observed in the hPRP assay (3 and 5 M respectively), which was attributed to 

the highly hydrophobic biphenyl group.  



 

 

Taking the HTS hit 96 (P2Y12 IC50 = 1.5 M) as a starting point, Sanofi-Aventis developed 97 

(SAR216471) as a pre-clinical candidate.126 With high binding affinity (IC50 = 17 nM), the 

compound exhibited a small activity drop-off in the hPRP assay (IC50 = 100 nM) resulting in 

good activity in the ex-vivo rat platelet aggregation model (ED50 = 2.75 mg/kg p.o.). A 

number of anthraquinone derivatives have been found to be selective, high affinity P2Y12R 

antagonists, the most potent of which are 98 (hP2Y12 Ki = 25 nM) and 99 (hP2Y12 Ki = 21 

nM).127,128  Compound 100 (hP2Y12 IC50 = 170 nM) was found after screening the COR 

compound library.129 Limited investigation of the SAR through simultaneous changing of the 

ethoxy groups failed to find more potent analogues (Figure 27).  



 

Figure 27: A selection of P2Y12R antagonists from Sanofi-Aventis and 100 (CT50547) 

discovered through screening the COR screening collection.  

Perspective comment 

The important role the P2Y12R plays in thrombus formation and the huge commercial 

success of clopidrogrel, has meant that a number of pharma companies have invested 

significantly in P2Y12R antagonist programmes.  

The thienopyridine class of irreversible binders was discovered incidentally in rat and mouse 

in vivo and ex-vivo anti-inflammatory screens. The requirement for metabolic transformation 

to an active species for P2Y12R activity means that compounds, within this series, would be 

inactive in either a cellular or membrane-based HTS assay. Furthermore, the active 

metabolite 66 is chemically unstable and would not therefore be present in a compound 

screening library.  



 

The risks involved in developing an irreversible antagonist and its potential for deleterious 

binding to proteins could be seen as being prohibitive to most pharmaceutical groups. As a 

consequence, P2Y12R antagonist programmes have focussed on finding reversible receptor 

antagonists. The first of these company programs, Fison’s Pharmaceuticals, before the 

advent of high throughput screening, used ATP as a starting point. It is commendable that 

these investigators were able to develop an oral drug, ticagrelor, from such a non-lead-like 

chemical starting point. 

Antagonists of the P2Y13 receptor (P2Y13R) 

The P2Y13R was first identified at the turn of this century,130,131 with its primary sequence 

demonstrating a 48% amino acid homology with the P2Y12R.  Coupled to Gi, it is activated 

by a range of diphosphate adenine nucleotides (ADP, 2MeSADP, ADPβS).  A more 

thorough evaluation of the receptor revealed a number of key similarities and differences 

between the P2Y13 form of the receptor and its closely related P2Y12 subtype.132 P2Y13 is 

less sensitive to activation via triphosphate nucleotides, 2MeSADP displays a superior or 

equal potency to that of ADP depending upon the endpoint measurement and the receptor is 

only weakly antagonized by 83.105 In addition, the P2Y13R is not antagonized by the active 

metabolite of 66 at concentrations up to 2 μM.132 Meanwhile, the similarities between the two 

receptor subtypes were also revealing; both subtypes, for example, are antagonized by 

2MeSAMP, diadenosine tetraphosphate (Ap4A) and most interestingly 68 , with the latter 

behaving in a non-competitive manner with respect to the P2Y13R.  It was further noted that 

ADP activation of the P2Y13R could be antagonized by 49 (IC50 = 1.9 M), 53 (IC50 = 2.3 M) 

and 54 (IC50 = 11.6 M).  The P2Y13R is expressed in the brain, spleen lymph nodes and 

bone marrow where it is also expressed on hemopoietic cells.133 

To date, there remains a paucity of P2Y13 selective antagonists, with the main structural 

contribution arising from derivatives of 54.134 Recognizing that the pyridine derivative 54 had 

been previously identified as a low potency antagonist of the P2Y13R,132 Kim et al embarked 



 

upon the design and synthesis of a range of new derivatives, assessing their pharmacology 

through attenuation of ADP-induced PLC activity in human astrocytoma 1321NI-Gα16 cells 

stably transfected with human P2Y13Rs (hP2Y13-1321N1- Gα16).  

 

The most potent compounds generated from this synthesis campaign were 101 (MRS2211 

hP2Y13 pIC50 = 5.97) and 102 (MRS2603 hP2Y13 pIC50 = 6.18).  102 demonstrated a 

competitive antagonism (hP2Y13 pA2 = 6.3) alongside a >20-fold selectivity towards the 

P2Y13R when compared to P2Y1 and P2Y12.  Its subsequent commercial availability has 

made it the molecular probe of choice for further investigation of P2Y13R subtype 

pharmacology.135–144 

Drug-like antagonists of the P2Y14 receptor (P2Y14R) 

The P2Y14R was, at its time of identification, the eighth member of the P2Y receptor 

family.145  It is a Gi-coupled receptor, which is activated by at least four naturally occurring 

UDP-sugars.  These include UDP-galactose, UDP-glucuronic acid, UDP-N-

acetylglucosamine and UDP-glucose (UDP-Glc), with the latter acting as the most potent 

agonist. P2Y14 mRNA has been detected in a range of human tissues including the stomach, 

intestine, adipose, brain, lung, spleen, heart and placenta.133 Additionally, this receptor has 

been found in neutrophils.146 Since UDP-Glc promoted signalling in multiple types of immune 

cells has been described; the P2Y14R may possess a role in regulation of immune system 

homeostasis.147 More recently, experiments with P2Y14 knockout mice have highlighted the 

potential of P2Y14R antagonism in the treatment of diabetes.148 



 

Using a yeast model system, it was demonstrated that UDP antagonized the UDP-Glc 

promoted P2Y14R activation in a concentration-dependent manner.149 Cognisant of this 

report, Harden et al undertook a more detailed study to ascertain that UDP acted as a 

competitive antagonist at the human P2Y14R (pKB = 7.8).150  A similar level of receptor 

antagonism was observed using uridine 5’-O-thiodiphosphate whereas ADP, CDP and GDP 

produced no antagonist activity.  An interesting observation from this study identified a 

striking ortholog variance, whereby UDP was demonstrated to act as a potent agonist 

(rP2Y14R EC50 = 0.35 μM) highlighting a polarized pharmacological difference in ligand 

behaviour. The authors then reassessed the action of UDP in three different cell lines; 

human embryonic kidney (HEK) 293, C6 glioma, and Chinese hamster ovary (CHO) cells, all 

stably expressing the human form of the P2Y14R.151 This series of experiments ultimately 

concluded that UDP was in fact acting as an agonist with EC50 values of 74, 29 and 33 nM 

respectively in the previously highlighted cell lines. 

The first non-nucleotide based antagonists for the P2Y14R were originally reported by Merck 

and comprised a series of compounds based around a tetrahydropyrido[4,3-d]pyrimidine 

scaffold.152 The initial hit 103 was identified via an high-throughput calcium2+ mobilization 

assay screen of the Merck sample collection.  Whilst displaying only modest potency 

(mP2Y14 IC50 = 4.9 M), the scaffold was seen as attractive to pursue a hit-to-lead 

optimization programme; comparing activity at both the mouse and chimpanzee orthologs of 

the P2Y14R. The authors comment that the selection of chimpanzee P2Y14 (99% sequence 

homology to human) for screening was driven by the larger window (signal/background 

noise) with this receptor over the human P2Y14, while the mouse receptor (83% identical to 

human) was used to enable future evaluation of the compounds in mouse models of 

disease.  Systematic modification of the substitution pattern on the phenyl urea moiety 

eventually revealed that a 3,4- or 3,5-disubstitution pattern afforded the most potent 

antagonists as long as the 3-position substituent was an ethyl group, e.g. 104 (Figure 28).   



 

 

Figure 28: The first non-nucleotide based antagonists for the P2Y14R. 

Turning their attention to the o-tolyl group at the 4-position of the heterocylic core generated 

a series of analogs highlighting that either ortho-positions could be substituted by either a 

methyl or chloro group, maintaining very good activity at both receptors, e.g. 105.  The final 

series of analogs retained the 3-ethylphenyl urea and the o-tolyl moieties and then altered 

the 3-pyridyl group to produce nineteen new compounds of which five are highlighted (Table 

6). 

Table 6: Antagonist potency of 2-aryl substituted tetrahydropyrido[4,3-d]pyrimidines on the 

mouse and chimpanzee P2Y14Rs.152 

 

Compound Ar Mouse P2Y14 IC50 

(μM) 

Chimpanzee P2Y14 IC50 (μM) 

106 3,4-(OCH2O)-Ph 0.010 0.081 

107 4-(CN)-3-Pyr 0.003 0.004 

108 5-pyrimidyl 0.012 0.008 

109 2-(CN)-5-pyrimidyl 0.001 0.001 

110 Me2-4-isoxazolyl 0.004 0.002 

 



 

Compounds 107 and 109 were not progressed due to potent hERG potassium ion channel 

binding (<200 nM), whereas compounds 106, 108 and 110 displayed reduced hERG binding 

(>5 μM).  Preliminary in vivo analysis of these compounds when dosed as suspensions (50 

mg/kg p.o. or iv at 5 mg/kg i.v.) in C57B6 mice revealed compounds with high volumes of 

distribution and extended half-lives.  Compound 106 gave the best overall PK parameters 

and was considered suitable for further in vivo experiments to interrogate the 

pharmacological role of P2Y14.  Further characterization of 106 revealed that its antagonistic 

activity was mediated through a non-competitive manner with respect to UDP-mediated 

receptor activation. 

The Merck group followed this report with a back-to-back manuscript highlighting a different 

scaffold, a 4,7-disubstituted naphthoic acid 111, which had been identified as displaying 

antagonism of UDP-Glc activation (IC50 = 3.5 μM) of both the mouse and chimpanzee 

P2Y14R variants using the same assay methodology.153-154  Unlike 106, this compound 

exhibited competitive antagonism of 3H-UDP in a recombinant simian P2Y14 binding assay 

(Ki 0.16 μM).  A comprehensive SAR study focused upon substituents in the 3-, 4- and 7-

positions of the naphthoic acid scaffold and revealed 112 as the most potent compound 

whilst confirming the essential role of aryl substituents at the 4- and 7-positions.  

 

Early PK assessment of 112 was undertaken through oral dosing of C57BL/6 mice at 50 

mg/kg and i.v. administration at 2 mg/kg.  (F = 12%, T1/2 = 2.7 h).  Further studies identified 

that 112 was extensively metabolized via phase II metabolism (>99%) to the glucuronide 

and excreted via the bile. 

A second round of synthetic variants were synthesized in an attempt to attenuate this level of 



 

glucuronidation through decreasing the electron density of the carboxylic acid moiety.  This 

ultimately led to identification of 113 as the best molecule in terms of its potency and PK 

profile (Ki = 4 nM, F = 67% (mouse) CL = 1.6 ml/min/kg, T½ = 3.0 h, Cmax = 113 μM). 

 

However, it was identified that 113 displayed high affinity for plasma proteins, being >99% 

bound in the presence of 4.5% human serum albumin (HSA).155  Further synthetic efforts 

identified zwitterion 114 as a compound which retained its pharmacological potency (Ki = 1.9 

nM in the chimpanzee P2Y14 binding assay) as well as displaying acceptable levels of HSA 

binding.  The latter assay was determined by using a binding assay incorporating 2% HSA 

for antagonist measurements.  Harden et al subsequently reported a more thorough 

evaluation of the pharmacology of 114.156 They successfully demonstrated that in C6 glioma 

cells stably expressing the P2Y14R, the concentration-effect curve of UDP-Glc for promoting 

inhibition of adenylyl cyclase was right-shifted in a concentration-dependent manner by 114.  

In addition, at a concentration of 1 μM 114 exhibited no agonist or antagonist effect at the 

P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12 or P2Y13Rs. 

The zwitterionic nature of 114 imbued detrimental effects upon its oral bioavailability (F = 

5%, C24h = 0.68 μM).  Therefore a series of ester derivatives were synthesized to investigate 

whether a pro-drug strategy would be beneficial. Of the ten esters described, four displayed 

good lability to afford high conversion rates to the parent drug 114 in the presence of whole 

blood. However of these, only 115 and 116 were able to replicate this in an in vivo setting 

with 116 being identified as the most promising candidate. 



 

 

Compound 116, when orally dosed in mice at 50 mg/kg, delivered plasma levels of 114 

(Fvirtual = 67%, C24h = 2.28 μM, AUC = 54 μM h and CL = 1.6 mL/min/kg) which were 

significantly higher than when 114 was administered as the free zwitterion (F = 5%, C24h = 

0.68 μM, AUC = 23 μM h). 

As a pharmacological tool, 114 was also identified as a potential congener for the 

development of a fluorescent tool for receptor interrogation.157  Molecular modelling studies 

of 114 bound to a homology model of the P2Y14R were undertaken, the model being 

constructed on the basis of X-ray crystal structures of the P2Y12R.13-14 Modelling established 

that the piperidyl nitrogen was suggested to be pointing towards the extracellular opening of 

the ligand binding pocket such that the charged piperidine nitrogen is solvent exposed and 

therefore a potential tether point on which to build a linker moiety. To this end an alkyl 

acetylene linker was appended to the piperidyl nitrogen to afford a congener primed for 

conjugation with an azide modified fluorophore via a copper-catalyzed [2+3] cycloaddition, 

ultimately affording Alexafluor488 117 and a BODIPY 630/650-X 118 fluorescent conjugates. 



 

 

117 exhibited exceptionally high affinity towards the P2Y14R (Ki = 80 pM) whereas 118 

displayed a much weaker interaction (Ki >100 nM) illustrating the critical influence of both the 

linker and the fluorophore on the final pharmacology of the conjugate.158 Fluorescent 

conjugate 117 was employed in flow cytometry studies to quantify specific binding to the 

P2Y14R and further utilized to confirm the binding selectivity’s and affinities of established 

P2Y receptor ligands. 

Conclusion 

Within the past 2 decades, numerous P2Y receptor antagonists have been reported in both 

peer-reviewed and patent literature. The therapeutic relevance and efficacy of some of these 

antagonists has been proven in vitro, ex vivo and in vivo. The most clinically relevant and 

successful antagonists to-date have centered on new anti-thrombotics targeting the P2Y12R. 

The serendipitous discovery of the thienopyridine class of irreversible P2Y12R binders led to 

the development and commercial success of clopidogrel (launched in 1998),101 followed by 

prasugrel (2009).104 Their successes encouraged numerous pharma-companies to invest 

into P2Y12R antagonist programs. It is commendable that taking ATP as a starting point, 

scientists at AstraZeneca developed the oral drug ticagrelor (2011);106 a program which has 

also led to the approval of cangrelor (2015).105 P2Y1R antagonists have also showed 

promise as anti-thrombotics and substantial research into developing suitable clinical 

candidates has been reported by scientists at BMS, Pfizer and GSK. To-date, it remains that 

no compounds have progressed to FDA approval.  Notwithstanding this fact, drug-like 



 

compounds (e.g. 27 and 31) are available to further optimize, however the core physico 

chemical properties of these P2Y1R antagonists have no doubt hindered their clinical 

development. Outside of anti-thrombotics, antagonists of the other P2Y receptors show 

promise for the treatment of a variety of diseases. P2Y14R antagonists show potential as 

preventative agents for type-2 diabetes, with Merck reporting both potent competitive and 

non-competitive antagonists, with the pro-drug 116 being the most advanced and promising 

clinical candidate.155 Antagonists of the P2Y2R look to be therapeutically viable in a variety of 

conditions, with a growing body of evidence to support their use as anti-metastatic agents.49 

Several patents published by AstraZeneca reported the most relevant P2Y2R antagonists; 

with 43 being used by many research groups in in vivo and ex vivo studies.55,56 There is a 

need to develop drug-like P2Y2R antagonists which would further validate the therapeutic 

potential of P2Y2R antagonism in many disease states.  

In our opinion there are at present no drug-like P2Y4R, P2Y6R, P2Y11R and P2Y13R 

antagonists in the published or patent literature. The structural class of the majority of these 

antagonists can, with exceptions, be derived from the broad-spectrum P2 receptor 

antagonists:  49, 53 and 54. Although some of these have shown potency and selectivity, 

their overall physico chemical properties are not commensurate with good oral absorption 

and metabolic stability. With growing evidence for these receptors having a fundamental role 

in a variety of disease states, the identification of new lead-like compounds, will hopefully 

afford new P2YR clinical candidates.   

Throughout the identification and optimization of P2Y1, P2Y12 and P2Y14R antagonists, radio-

ligand binding and Ca2+ mobilization (FLIPR-based) HTS assays have been reported, that 

helped identify new lead-like receptor antagonists. Importantly, several fluorescent ligands 

have recently been reported for the P2Y2, P2Y4, P2Y6 and P2Y14 receptors.157,159,160 We feel 

that these, and future fluorescent ligands, could underpin fragment-based approaches to 

identify new lead-like antagonists of the P2Y receptors. These fluorescent ligands will also 

be of huge importance in interrogating the pharmacology of these receptors in healthy and 

diseased cell lines. The most significant recent development towards understanding the 



 

binding of agonists and antagonists to P2YRs, has been the publication of ligand-bound 

P2Y1R12 and P2Y12R13,14 X-ray crystal structures. The homology models that have been 

reported for P2Y receptors have predominately focused on agonist-nucleotide binding. With 

this new structural information, and in-lieu of structural information for all P2Y receptors, 

there is now scope to develop antagonist-focused homology models across the two subsets 

of P2Y1-like and P2Y12-like receptors. This is something which will undoubtedly aid 

identification and optimization of new lead-like antagonists of P2Y receptors. 
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