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Abstract

This paper is concerned with analysing optimal wealth allocation techniques

within a defaultable financial market similar to Bielecki and Jang (2007). It

studies a portfolio optimization problem combining a continuous-time jump

market and a defaultable security; and presents numerical solutions through

the conversion into a Markov decision process and characterization of its value

function as a unique fixed point to a contracting operator. This work analyses

allocation strategies under several families of utilities functions, and highlights

significant portfolio selection differences with previously reported results.
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1. Introduction

Let T be a finite time horizon and denote by X = (Xt)t≥0 a continuous-time

stochastic process defined on a filtered probability space (Ω,F , {Ft}t≥0,P). Assume

that X describes the evolution of a wealth process dependent on an allocation strategy

or policy, taking values on a set Π. This paper is concerned with the study of a variation

of a portfolio optimization problem of the form

V (t, x) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x] , (1)
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for all (t, x) ∈ [0, T ]×R+. Here, the supremum is taken over all admissible policies in

Π and function U is the utility determining a certain performance criterion.

Research within the field of portfolio optimization was triggered during the late

60s with the work of Merton [16], who made use of stochastic control techniques to

maximize expected discounted utilities of consumption. Later, his work was extended

to different default-free frameworks where market uncertainty was mainly modelled by

continuous processes with Brownian components, such work includes those of Fleming

and Pang [11], Karatzas and Shreve [13] and Pham [17], among others. In the last

decade, however, it is the optimal investment linked to defaultable claims that has

attracted major attention. High yield corporate bonds offer attractive risk-return

profiles and have become popular in comparison to stocks or default-free bonds; recent

work in this area includes those of Bielecki and Jang [6], Bo et. al. [8], Lakner and

Liang [15] and Capponi and Figueroa-Lopez [9].

Bielecki and Jang [6] first considered a market including a defaultable bond, a risk-

free account and a stock driven by Brownian dynamics, and analysed optimal asset

allocations for a variation of problem (1) with a risk averse CRRA utility, given by

V (t, x, h) = sup
π∈Π

E
[ (Xπ

T )γ

γ

∣∣∣Xπ
t = x,Ht = h

]
, with 0 < γ < 1,

for all (t, x, h) ∈ [0, T ]×R+×{0, 1}; here h denotes the current value of a default process

H = (Ht)t≥0 that models the state of the defaultable bond under the intensity based

approach to credit risk (see Bielecki and Rutkowski [7]). For this matter, the authors

assumed constant parameters governing the system and default intensity, and derived

closed form solutions for the optimal allocations, pointing out that investments on

the defaultable security are only justified under the presence of reasonable interest

premiums. In addition, the results allocated a constant fraction of wealth in the

Brownian asset, in a similar fashion to Merton [16].

Bo et. al. [8] approached a perpetual allocation problem for an investor with

logarithmic utility, considering a defaultable perpetual bond along with a traditional

stock and a risk-free account in a similar manner to Bielecki and Jang [6]. Their work

modelled stochastically the intensities and premium process and made use of heuristic

arguments in order to postulate the price dynamics of the defaultable bond. Their

results established monotonicity conditions on the optimal investment on defaultable



Wealth Allocation with Defaultable Bonds 3

bonds with respect to the risk premium and recovery of wealth at default. On the

other hand, Lakner and Liang [15] employed duality theory to obtain similar optimal

allocation strategies in a 2-way market, including a continuous-time money market ac-

count and a defaultable bond whose prices can jump; and Capponi and Figueroa-Lopez

[9] extended the work in Bielecki and Jang [6] to a defaultable market with different

economical regimes, where all assets are dependent on a finite state continuous-time

Markov process Y = (Yt)t≥0; in their work they obtained the explicit solution to the

optimization problem

V (t, x, h; y) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x,Ht = h, Yt = y]

with logarithmic and risk averse CRRA utilities, for all (t, x, h) ∈ [0, T ] × R+ ×

{0, 1} and market regimes y ∈ {y1, ...yN}, with N > 0. Their numerical economic

analysis highlighted the preference of investors to buy defaultable bonds when the

macroeconomic regimes yields high expected returns and the planning horizon is large.

Results in the literature do however primarily relate to markets incorporating Brow-

nian assets and are limited with regards to the choices of utility functions that they

provide solutions for. This work incorporates the presence of a defaultable bond in a

finite horizon market with a bank account and a continuous-time jump asset driven by a

piecewise deterministic Markov process as introduced in Almudevar [1]. In this circum-

stance, it is possible to build a bridge between a problem formulated in continuous-

time and the theory of discrete-time Markov decision processes (MDPs), reducing

the optimization problem to a discrete-time model by considering an embedded state

process. Similar financial markets, in absence of the defaultable claim, have previously

been explored by Kirch and Runggaldier [14] and Bäuerle and Rieder [2]. Kirch and

Runggaldier [14] presented an algorithm for the evaluation of hedging strategies for

European claims, addressing an optimization problem aiming to minimize the expected

value of a convex loss function of the hedging error; in their work, stock dynamics are

driven by a geometric Poisson process.

On the other hand, Bäuerle and Rieder [2] considered the general portfolio utility

maximization problem (1). In their case, the wealth process X reflects the evolution

of wealth in a portfolio mixing a bank account and a generalized family of pure jump

models; in addition, utility U is any increasing concave function. The authors make
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use of the embedding procedure previously explored by Almudevar [1] in order to

convert the problem into a discrete-time MDP, and offer a proof for the validity of

value iteration and policy improvement algorithms to approximate optimal allocation

policies.

This paper makes use of the results on credit risk presented in Bielecki and Rutkowski

[7] along with the theory for MDPs reviewed in Putterman [18] and Bäuerle and

Rieder [4]; and extends the work of Bäuerle and Rieder [2, 3] to the context of

defaultable markets explored by Bielecki and Jang, Bo et. al., Lakner and Liang,

Capponi and Figueroa-Lopez [6, 8, 15, 9] and references therein. By means of a

conversion of the optimization problem into a MDP, its value function is characterized

as the unique fixed point to a dynamic programming operator and optimal wealth

allocations are numerically approximated through value iteration. Thus we overcome

the need to assume any particular form for the utility function and provide means

of analyzing portfolio strategies incorporating illiquid markets. This allows for us to

undertake a numerical analysis exploring the dependence of portfolio selections on the

risk premium and different parameters describing the system. In doing so, we are

able to examine extensions of the work in [6, 8, 15, 9] to more general families of

logarithmic and exponential utility functions. The results highlight the nature of the

significantly different allocation procedures under an exponential family of utilities,

and the existence of a dependency on optimal stock allocation to default event, in a

model with short selling restrictions. In order for the presented procedure to hold,

default intensities and interest rates are assumed constant in a similar manner to that

in Bielecki and Jang [6].

The paper is organised as follows. Section 2 provides an introduction to the market

analysed and presents the problem of interest. Section 3 derives the infinitesimal

dynamics of the evolution of a joint wealth process within the optimization problem.

Sections 4 and 5 are concerned with validating a procedure in order to introduce an

equivalent MDP to our optimization problem, and present the main technical results in

the paper. Finally, Sections 6 and 7 present a numerical analysis and make comments

on optimal portfolio strategies, drawing comparisons with previous results that lead to

the key contributions of this work. In addition, possible extensions of the model and

drawbacks of this approach are discussed.
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2. Introduction to the Market and Formulation of the Problem

Let (Ω,G,P) denote a complete probability space equipped with a filtration {Gt}t≥0.

Here P refers to the real world (also called historical) probability measure and {Gt}t≥0

is the enlargement of a reference filtration {Ft}t≥0 denoted Gt = Ft∨Ht and satisfying

the usual assumptions of completeness and right continuity; Ht will be introduced later.

We consider a frictionless financial market consisting of a risk-free bank account B =

(Bt)0≤t≤T , a pure-jump asset S = (St)0≤t≤T and a defaultable bond P = (Pt)0≤t≤T .

The dynamics of each of the components of the market are given as follows.

Risk free bank account. Let B0 = 1 and r > 0 denote the market fixed-interest

rate. The deterministic dynamics of B are given by dBt = rBtdt.

Pure jump asset. Let C = (Ct)0≤t≤T be a compound Poisson process defined on

(Ω,G, {Ft}t≥0,P), given by

Ct =

Nt∑
n=1

Yn , (2)

where N = (Nt)0≤t≤T denotes a Poisson process with intensity ν > 0 and (Yn)n∈N is a

sequence of independent and identically distributed random variables, with E[Yn] <∞,

Yn ≥ −1 and distribution γ(dy). Here {Ft}t≥0 is a suitable complete and right-

continuous filtration.

Asset S is a piecewise deterministic Markov process (cf. Almudevar [1]) adapted to

Ft and is given by

dSt = St−(µdt+ dCt) ,

where µ is the constant appreciation rate of the asset and S0 > 1.

Defaultable bond. We consider a tradeable zero coupon bond with face value of

one unit and recovery at default. Let τ > 0 be an exponentially distributed random

variable defined on (Ω,G, {Ht}t≥0,P) with intensity λP; we make use of the intensity-

based approach for modelling credit risk as introduced in Bielecki and Rutkowski [7]

and let the τ model the default time of the bond P . Here Ht = σ(Hs : s ≤ t) is

the filtration generated by the one-jump process Ht = 1{τ≤t}, after completion and

regularization on the right; Ct and Ht, as well as Ft and Ht, are assumed to be

independent and λP denotes the hazard rate of τ , so that the compensated process

dMt = dHt − λPd(t ∧ τ) (3)
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with M0 = 0 is a (Gt,P)-martingale, with Gt = Ft ∨ Ht. Lastly, we denote by Z =

(Zt)0≤t≤T the Ft-adapted recovery process of P , i.e. the process determining the wealth

recovery upon default.

Then, the time-t price of this defaultable bond P with maturity at T is given by

Pt = BtEQ

[
B−1
T (1−HT ) +

∫ T

t

B−1
u ZudHu

∣∣∣Gt] , (4)

where Q is a martingale measure equivalent to P. Intuitively, Pt models the discounted

Q-expected value of the pay-off (1−HT ) +HTZτ . The existence of such an equivalent

measure on (Ω,G) follows from the results on change of measures presented in Bielecki

and Rutkowski [7] (Chapter 4).

Consider now an investor wishing to invest in this market. Denote by πBt the

percentage of total wealth at time t invested on the risk-less bond; analogously πSt and

πPt denote the time-t proportions on the asset and defaultable bond. The portfolio

process π = (πBt , π
S
t , π

P
t )0≤t≤T is a Gt-predictable process taking values in

U = {(u1, u2, u3) ∈ R3
+ :

3∑
i=1

ui = 1} , (5)

so that short selling is not allowed and wealth is fully invested at all times and remains

positive; in addition, note that πPt = 0 for t > τ is a must.

Denote by Xπ = (Xπ
t )0≤t≤T the wealth process associated to a strategy π ∈ U ;

its infinitesimal dynamics and explicit form are derived later. Also, let Π denote the

family of all measurable portfolio processes π taking values in U . In view of (1), for a

given increasing and concave utility function U : (0,∞)→ R+, let

Vπ(t, x, h) = Et,x,h[U(Xπ
T )] (6)

denote the expected terminal reward associated to a portfolio strategy π ∈ Π, at

time t and with values Xπ
t = x and Ht = h. Here, Et,x,h denotes the expectation

under the conditional probability measure P|(Xπt =x,Ht=h). This paper is concerned

with identifying the optimal policy π∗ ∈ Π maximizing rewards (6), so that

Vπ∗(t, x, h) = sup
π∈Π

Vπ(t, x, h) , (7)

for all (t, x, h) ∈ [0, T ] × R+ × {0, 1}. Note that Vπ∗(T, x, h) = U(x) for all (x, h) ∈

R+ × {0, 1} and problem Vπ∗ is tractable since E[Yn] <∞.
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3. The P-Dynamics of the Defaultable Bond and Wealth Evolution

Following the results in Bielecki and Rutkowski [7] (Section 4.4) and Jeanblanc et.

al. [12] (Section 8.6), let η = η(τ) = φe−λP(φ−1)τ be a random variable satisfying η > 0

and EP[η] = 1, where φ is a strictly positive constant. Then, the change of measure

with Radon-Nikodým density process

ηt =
dQ
dP

∣∣∣
Gt

= EP[η(τ)|Gt] = EP[η(τ)|Ht] , (8)

is such that τ is an exponentially distributed random variable under Q, with intensity

λQ = φλP. We know (see Jeanblanc et. al. [12]) that the stochastic process ηt defined

by (8) is a (Gt,P)-martingale with η0 = 1 and

dηt = ηt−(φ− 1)dMt ,

where Mt is defined by (3). In practice, default intensities are independently estimated,

using credit ratings and company data for the real world intensity λP and derivatives

prices (including CDS and Options) for λQ; their underlying ratio φ is named the ‘Risk

Premium’ and represents the reward investors claim for bearing the risk of default in

P .

In order to obtain the P-dynamics of P defined by (4) we make use of the models

for valuation of contingent claims subject to default risk in Duffie and Singleton [10].

In addition, we make the following assumption.

Assumption 1. (Recovery of Market.) The wealth recovery upon default in P is given

by a fraction of its current market value, i.e. Zt = (1 − L)Pt− for all t < T , with

0 ≤ L ≤ 1 constant.

The application of Theorem 1 in Duffie and Singleton [10] shows that under Assumption

1 and real world probability measure P we have

dPt =

Pt− [(r + φλPL)dt− dHt] if t ≤ T ∧ τ,

0 if τ < t ≤ T,
(9)

with P0 = e−(r+φλPL)T . We note that the price of P drops to zero at default; however,

for portfolio optimization purposes we must account for the gain derived from its

recovery value, so that we consider the P-dynamics of a gain process for this purpose.
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We denote by G = (Gt)0≤t≤T the wealth gain process resulting from holding one

defaultable bond P , given by

dGt = dPt + ZtdHt , (10)

with G0 = P0. Note that P and G differ in the sense that G incorporates the wealth

recovered in case of default in P , so that Gt = Zτ for t ≥ τ . Also, we observe in (9)

that its dynamics are determined by

dGt = Gt− [(r + φλPL)dt− LdHt] for t ≤ T ∧ τ, and

dGt = 0 for τ < t ≤ T ,

with G0 = P0. Thus, the time-t infinitesimal gain of a wealth process associated to a

strategy π ∈ U , denoted by Xπ = (Xπ
t )0≤t≤T in (6), is given by

dXπ
t = Xπ

t− ·
[
(1− πPt − πSt )

dBt
Bt

+ πSt
dSt
St−

+ πPt
dGt
Gt−

]
.

The explicit form of X is derived using Itô calculus and is given by

Xπ
t = X0e

∫ t
0

(r+πSs (µ−r)+πPs φλPL)ds(1− πPτ L)Ht
Nt∏
n=1

(1 + πSTnYn) , (11)

where X0 stands for the initial wealth.

4. A Discrete-Time Markov Decision Process

Let Ψ = (Ψn)n≥0 denote the increasing sequence of joint jump times in N and H,

given by

Ψn = Tn1{Tn<τ} + τ1{Tn−1<τ<Tn} + Tn−11{τ<Tn−1} , (12)

with Ψ0 = 0. Intuitively, Ψ represents an ordered discrete counting process incorpo-

rating default time τ to jump times (Tn)n≥0 in asset S. In addition, we refer to the

counting steps n ≥ 0 of Ψ as decision epochs. We define the MDP composed by the

following 4-tuple (E,A, Q,R).

The state space E is given by E = [0, T ] × R+ × {0, 1} and supports times Ψn,

with associated wealth XΨn and states of default process HΨn , immediately after each

jump. We use the notation Ξn to denote the n-th state of the system, given by

Ξn =

(Ψn, XΨn , HΨn) ∈ E if Ψn ≤ T ,

∆ otherwise ,
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for n ≥ 0. ∆ /∈ E is an external absorption state, allowing to set up an infinite horizon

optimization problem as described in Putterman [18] and Bäuerle and Rieder [4].

The action space A stands for the set of deterministic control actions

A = {α : R+ → U measurable} , (13)

where U is given by (5). A control α ∈ A is a function of time and α(t) ∈ U determines

the allocation of wealth at time t after a jump in Ψ. We note that for a given state

Ξn ∈ E ∪{∆} only a subclass of actions Dn(Ξn) ⊆ A may be admissible (for example,

if bond P defaulted).

In addition to A, we denote by F the set of all deterministic policies or decision

rules given by

F = {f : E ∪ {∆} → A measurable} . (14)

At any decision epoch n, a policy fn ∈ F maps a state Ξn to an admissible control

action in Dn(Ξn); we denote the resulting control by fΞn
n . The policy determines, as

a function of the system state, the control chosen at epoch n. This, therefore results

in a function fΞn
n : R+ → U that models the time evolving allocation of wealth in our

portfolio π, so that

πt = fΞn
n (t−Ψn) for t ∈ [Ψn,Ψn+1) . (15)

A portfolio process π ∈ Π is called a Markov portfolio strategy if it is defined by a

Markov policy, i.e. a sequence of functions (fn)n≥0 with fn ∈ F . If policies fn ≡ f

for all n ≥ 0, the Markov policy is called stationary, implying that decisions are

independent of the epoch number and only dependent on the system state. It is key to

note that for a specified Markov policy, the controls to take at each epoch are random,

since they depend on the system states to be observed.

The transition probability Q. For current state Ξn ∈ E and control fΞn
n ∈ Dn(Ξn),

the transition probability describes the probability for the system to adopt a specific

state in epoch n + 1 (or time Ψn+1). Let fΞn
n (t) = (αBt , α

S
t , α

P
t ) ∈ U denote the

proportions of wealth allocated to each financial instrument at t time units after jump

time Ψn, according to control fΞn
n ; we note from (15) that this is equivalent to the

global portfolio wealth allocation πt+Ψn at time t+ Ψn. Analogously, let Γ
fΞn
n
t denote

the associated wealth at t time units after Ψn; this is equivalent to the global wealth
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Xπ
t+Ψn

at time t+ Ψn. Note from (11) that Γ
fΞn
n
t is a deterministic function of the last

system state, given by

Γ
fΞn
n
t (XΨn , HΨn) = XΨne

∫ t
0

(r+αSs (µ−r))ds[HΨn + (1−HΨn)e
∫ t
0
αPs λPLφds] . (16)

For an arbitrary Ξn = (t′, x, h), the transition probability Q is given by

Q(B|Ξn, fΞn
n ) = P(Ξn+1 ∈ B|GΨn , f

Ξn
n )

= ν

∫ T−t′

0

e−(ν+(1−h)λP)s

∫ ∞
−1

1B(t′ + s,Γ
fΞn
n
s (x, h)(1 + αSs y), h)γ(dy)ds

+ (1− h)λP

∫ T−t′

0

e−(ν+λP)s1B(t′ + s,Γ
fΞn
n
s (x, 0)(1− αPs L), 1)ds , (17)

for B ⊆ E; in addition Q({∆}|Ξn, fΞn
n ) = 1−Q(E|Ξn, fΞn

n ). Since ∆ is an absorbing

state we define Q({∆}|∆, α) = 1 for all controls α ∈ A. Intuitively, formula (17) gives

the probability for the system state at epoch n + 1 to fall within a subset B of the

state space, given all information in GΨn .

The reward function R is a function R : E ×A → R given by

R(t, x, h, α) = e−(ν+(1−h)λP)(T−t)U(ΓαT−t(x, h)) . (18)

The adoption of such a non-negative reward function ensures the reducibility of opti-

mization problem (7) to an infinite horizon discrete-time Markov decision process, as

it will be shown in Lemma 1 below. We note that the term e−(ν+(1−h)λP)(T−t) defines

the likelihood of no jumps in a Poisson process with rate ν + (1 − h)λP over a period

of time T − t, this will be a key observation in the proof of Lemma 1. In addition, we

define R(∆, α) = 0 for all α ∈ A.

For an arbitrary state (t, x, h) ∈ E, we let v(t, x, h) denote the optimal total expected

reward over all Markov policies (fn)n≥0 with fn ∈ F , given by

v(t, x, h) = sup
(fn)

Et,x,h
[ ∞∑
k=0

R(Ξk, f
Ξk
k )
]
. (19)

5. Main Results

We now present the result on the equivalence between the portfolio optimization

problem (7) and the MDP(E,A, Q,R).
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Lemma 1. For any (t, x, h) ∈ E, we have Vπ∗(t, x, h) = v(t, x, h), where v(t, x, h) is

defined by (19).

Proof. We treat the case t = 0. The result at arbitrary time points can be proved

similarly upon redefinition of terminal time T ′ = T − t and adjustment of notation

as pointed out in Bäuerle and Rieder [4] (Chapter 8). Denote by ΠM the set of all

Markovian portfolio strategies and note that ΠM ⊆ Π. Due to the Markovian structure

of the state process the optimal strategy in (7) must be Markovian (cf. Bertsekas and

Shreve [5]), so that

Vπ∗(0, x, h) = sup
π∈Π

Vπ(0, x, h) = sup
π∈ΠM

Ex,h[U(Xπ
T )] ,

i.e. the supremum is attained in the set ΠM . Any π ∈ ΠM is defined by a sequence of

decision rules fn ∈ F forming a Markov policy (fn)n≥0 as described in (15). Therefore,

for such a policy we need to show that Ex,h[U(Xπ
T )] = Ex,h

[∑∞
k=0R(Ξk, f

Ξk
k )
]
. For

this, we note that

Ex,h[U(Xπ
T )] = Ex,h

[ ∞∑
k=0

U(Xπ
T )1{Ψk≤T<Ψk+1}

]
=

∞∑
k=0

Ex,h
[
Ex,h

[
U(Xπ

T )1{Ψk≤T<Ψk+1}

∣∣∣GΨk

]]
,

where Ψ is the non-decreasing counting process in (12) incorporating default time in Ht

to jump times in Nt; we recall that these are Gt-adapted processes with exponentially

distributed jumps of intensities λP and ν. In view of (15) and (16) we note that wealth

Xπ can be expressed as a deterministic function of the previous system state, i.e.

Xπ
t = Γ

f
Ξk
k

t−Ψk
(XΨk , HΨk) ,

for t ∈ [Ψk,Ψk+1), with Xπ
0 = x. Therefore

Ex,h[U(Xπ
T )] =

∞∑
k=0

Ex,h
[
Ex,h

[
U(Γ

f
Ξk
k

T−Ψk
(XΨk , HΨk))1{Ψk≤T<Ψk+1}

∣∣∣GΨk

]]
=

∞∑
k=0

Ex,h
[
U(Γ

f
Ξk
k

T−Ψk
(XΨk , HΨk))P(Ψk+1 > T ≥ Ψk|GΨk)

]
. (20)

In addition, we note that

P(Ψk+1 > T ≥ Ψk|GΨk) = 1{T≥Ψk}P(Ψk+1 > T |GΨk)

= 1{T≥Ψk}e
−(ν+(1−HΨk

)λP)(T−Ψk) .
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Thus, the right hand side of (20) is

∞∑
k=0

Ex,h
[
1{T≥Ψk}e

−(ν+(1−HΨk
)λP)(T−Ψk)U(Γ

f
Ξk
k

T−Ψk
(XΨk , HΨk))

]
=

∞∑
k=0

Ex,h
[
R(Ξk, f

Ξk
k )
]
.

It has been shown that value function Vπ∗ in (7) can be derived as the sum of

expected rewards v in (19). Thus, the theory of MDPs exposed in Putterman [18]

and Bäuerle and Rieder [4] confirms the usefulness of iterative methods in order to

approximate optimal portfolio strategies for our problem. Concretely, it is possible

to construct a complete metric space with a reward operator in a similar manner to

Bäuerle and Rieder [2, 3], where Vπ∗ is identified as its fixed point.

Let M(E) define the set of measurable functions mapping the state space E into the

positive subset of the real line, i.e.

M(E) = {g : E → R+ : g measurable} .

We note that the maximal reward operator T for the MDP(E,A, Q,R) is a dynamic

programming operator acting on M(E), such that

(T g)(t, x, h) = sup
α∈A

{
R(t, x, h, α) +

∑
k

∫
g(s, y, k)Q(ds,dy, k|t, x, h, α)

}
,

for all g ∈M(E) and (t, x, h) ∈ E. Additionally, we denote by (Lg)(t, x, h|α) the term

within brackets, i.e.

(Lg)(t, x, h|α) = R(t, x, h, α) +
∑
k

∫
g(s, y, k)Q(ds,dy, k|t, x, h, α) ,

and refer to it as the reward operator, so that

(T g)(t, x, h) = sup
α∈A

(Lg)(t, x, h|α) .

Now, let Cϑ(E) be the function space defined by

Cϑ(E) = {g ∈M(E) : g continuous and concave in x and ‖g‖ϑ <∞} ,

where

‖g‖ϑ = sup
(t,x,h)∈E

g(t, x, h)

(1 + x)eϑ(T−t) ,

for some fixed and finite ϑ ≥ 0 .
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Theorem 1. Operator T is a contraction mapping on the metric space (Cϑ(E), ‖ · ‖ϑ)

and there exists an optimal stationary portfolio strategy π∗ ∈ Π, defined by a Markov

policy (f)n≥0 with f ∈ F as shown in (15), so that Vπ∗ in (7) is the unique fixed point

of T in Cϑ(E).

We refer the reader to [2], [3] and more generally [4] for an overview on the techniques

useful to prove the above Theorem; here, we have omitted it. We note that Theorem 1

implies that a single decision rule f : Ξn → A is optimal for all epochs n ≥ 0, and the

control chosen after each jump in Ψ is only dependent on the state of the system Ξ.

6. Numerical Analysis

We present and analyse computational results to our discrete-time infinite-horizon

optimization problem (E,A, Q,R) defined in (12)-(19), for different measures of risk

aversion. Numerical approximations to allocation strategies π∗ ∈ Π, along with optimal

values Vπ∗ , are obtained through the method of value iteration, using an homogeneous

space discretization as introduced in Bäuerle and Rieder [2] (Section 5.3).

The equivalence result of Lemma 1 warrants the optimality of these strategies in the

original portfolio optimization problem (7). Thus, we take advantage of the flexibility of

the method regarding the choice of utility function and, in view of the original problem,

determine characteristics of optimal wealth allocation strategies under different families

of utilities, as well as the impact of generalizing utilities towards risky investments.

Additionally, we assess the influence on allocation strategies of the different parameters

defining the model and, more importantly, the effect of the short selling restriction

imposed on the original definition of the problem.

Numerical calculations in this section are undertaken with a set interest rate of

r = 0.05. In addition, values such as jump intensities λ and ν, risk premium φ, loss

at default L and appreciation rate of the stock µ are, unless otherwise stated, fixed to

sensible positive values within a financial context. This is done using parameter choices

for numerical simulations in Bielecki and Jang [6] and Cappini and Figueroa-Lopez [9]

as a reference, therefore allowing for direct comparisons of our results with recent work

on portfolio management with defaultable bonds, and establishing general properties

on optimal strategies with respect to variations on utility functions and time, wealth
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and default state values.

The focus is on popular power, logarithmic and exponential utility measures of

risk aversion. Figure 1 presents pre-default value functions under different choices of

Figure 1: Approximation to pre-default V for different utility functions U . Results obtained

through the method of value iteration with convergence in 10 iterations. T = 1, r = µ = 0.05,

λ = 0.25 φ = 1.3, L = 0.5 and ν = 10.

measures. We note that these are increasing in wealth and decreasing in time. In these

cases, the optimal allocation strategies correspond to varying fractional distributions

of wealth between the defaultable bond and the bank account; and the convergences in

the grid have been in all cases achieved under 10 iterations, using an initial candidate

V according to the strategy of investing all wealth in bond B.

6.1. Performance Analysis of Utility Functions

Optimal allocations under different utilities vary on time, wealth values and level

of aversion towards risky investments. Under an exponential measure of constant

absolute risk aversion, the level of optimal risky investments is highly dependent on

wealth values; in this case, both πP and πS are decreasing functions of wealth for

x > κ, with κ ∈ R+ small as observed in the case of a defaultable bond in Figure 2.

In addition, the optimal allocation in P slightly increases as t → T ; this is opposed
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to previously reported optimal strategies under power and logarithmic utilities, where

a mild increase of aversion towards the exposure to risky bonds is observed as time

approaches deadline. Here, we also observe such aversion at times close to the deadline

under power and logarithmic utilities, while remaining nearly time-invariant when the

planning horizon is large. Certainly, as time approaches the deadline (and maturity in

P under definition (4)) there exists an increase on the value of P and a decrease on

the likelihood of default, implying that the defaultable bond gets relatively cheap only

when the planning horizon is large.

Figure 2: On the left, optimal πP , for U(x) = 1 − e−x and varying values of t ∈ [0, T ] and

x ≥ 0 (r = 0.05). On the right, optimal πS after default, as a function of the distance between

the appreciation and interest rates and for power utility measures U(x) = x1−c

1−c
. Maximum

allocation equals 1, since no short-selling is allowed. On both, λ = 0.25 and ν = 10.

Stock investments remain time-invariant under both power and logarithmic mea-

sures, consistent with the previous result. However, the short-selling restriction im-

posed to the portfolio optimization problem causes allocations πS to remain invariant

to a default event only if pre-default bond allocations πB are strictly positive; if πB = 0

at default time, both bond and stock percentage investments may increase following a

default event in P . Figure 2 presents varying levels of the optimal percentage allocation

πS for varying values of the difference between the appreciation rate of the stock µ and

the interest rate r under power utility functions U(x) = x1−c

1−c , showing that this is a

linearly increasing function on µ− r and a decreasing function on the level of constant

relative risk aversion R(x) = c.

Moreover, we note in Figure 3 that for fixed t ∈ [0, T ] and wealth x ∈ R+, the

value function V is such that V (t, x, 0) ≥ V (t, x, 1) for all (t, x) ∈ [0, t] × R+. In
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Figure 3: Approximation of the loss in V at default. Here T = 1, r = µ = 0.05, λ = 0.25

φ = 1.3, L = 0.5 and ν = 10. On the left hand side U(x) =
√
x
2

, on the right hand side

U(x) = 1− e−x.

addition, V (t, x, 0)−V (t, x, 1) is decreasing in time and equal to 0 at t = T , a common

feature under all utilities. Certainly, a default event decreases the dimensionality of

the problem through a reduction in the choices of investment opportunities. Under

exponential utilities and for x > κ, the losses in value are decreasing functions on

wealth.

Finally, utilities analysed present common properties with regards to alterations

on the values of several parameters defining the model. Optimal allocations πP are

increasing functions of the risk premium φ and decreasing functions of the loss value L

at default, as illustrated in Figure 4 for a given pre-default state (t, x, 0) ∈ E and utility

U(x) = 2
√
x in a two-bond market. A higher incentive for bearing risk in P motivates

a higher investment; on the contrary, the opposite effect is caused by decreasing the

return on recovery, despite the fact that it increases the yield on the bond. It is also

never optimal to invest in a defaultable bond provided φ ≤ 1. In addition, optimal

risky investments present a similar dependency on the level of aversion under different

utilities; these are decreasing functions of the level of relative/absolute risk aversion,

as observed in Figure 5 for a defaultable bond under power and exponential utilities.

7. Discussion

We have presented an extension of results in Bäuerle and Rieder [2, 3] to the context

of a defaultable market, in order to study optimal wealth allocation strategies for risk
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Figure 4: Approximation of pre-default πB in a two-Bond market, for different risk premium

φ and loss on default L. Parameters r = 0.05, ν = 10, λ = 0.25 and utility U(x) = 2
√
x.

adverse investors, allowing for the use of broad families of utility functions. The original

continuous-time portfolio optimization problem has been transformed into a discrete-

time Markov decision process and its value function has been characterized as the

unique fixed point to a dynamic programming operator, justifying the use of value

iteration algorithms to provide the approximations of results of our interest.

The numerical analysis has been focused on the dependence of optimal portfolio

selections on the risk premium, recovery of market value and several other parameters

defining the model, and it has extended the scope of the results in [6, 8, 15, 9] to broader

families of utility functions, highlighting relevant divergences on optimal strategies with

respect to variations and generalizations in choices of utilities. In addition, the work

has examined the impact of a short selling restriction within the market, identifying a

dependency on optimal stock allocations with respect to default event on a corporate

bond.

The analysis in Section 6 suggests that, similarly to [6, 8, 9], investments on default-

able bonds are only justified when the associated risk is correctly priced, measured in

terms of risk premium coefficients φ. Also, similar monotonicity properties on optimal

defaultable bond allocations have been identified in comparison to those presented in

Bielecki and Jang [6] and Capponi and Figueroa-Lopez [9], under power and logarithmic

utilities, so that these are decreasing on φ, increasing on L and there exists a reduction

of the risk aversion as time approaches maturity; this work suggests that such properties
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Figure 5: Optimal allocation πP for utilities U(x) = x1−c

1−c
, U(x) = 1 − e−cx

c
and varying

values of c ≥ 0 in a two-Bond market with fixed (x, t, 0) ∈ E. Parameters r = 0.05, ν = 10

and λ = 0.25

extend to generalizations of logarithmic utility functions. On the contrary, under

exponential measures, there exists a slight increase in the risk aversion towards P in

time, and optimal defaultable bond allocations are highly dependent on the wealth

value and decreasing for x > κ, for some small κ ∈ R+. Additionally, we observed

that in this case V (t, x, 0) − V (t, x, 1) is decreasing on x for x ≥ κ. We appreciate

that many of these monotonicity observations are merely empirical at this stage, and

definite scope for further work exists in trying to establish these properties in the

generality observed here.

Furthermore, we have shown that the investment in the risky bond and stock

is always prioritized as the levels of constant relative or absolute risk aversion are

diminished. Also, optimal stock investments have been identified as linear functions of

the appreciation rate of the stock and interest rate, similarly to Merton [16]. However,

unlike results reported in Bielecki and Jang [6] and Capponi and Figueroa-Lopez [9],

a short-selling restriction has been identified to trigger a dependency on the allocation

with respect to default event in P .

Finally, we note that the problem of considering a diversified portfolio involving

multiple assets and defaultable bonds is a natural extension to this work, but it is

not addressed in here to avoid technicalities part of extensive models. Other natural

extensions of the model under the reduction to an MDP approach were pointed out in
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Bäuerle and Rieder [2]. These include the introduction of regime switching markets,

where the different economical regimes are modelled by a continuous-time Markov chain

(It)t≥0 in a similar manner to Capponi and Figueroa-Lopez [9], so that parameters and

coefficients defining the bank account, asset and defaultable bond vary according to

the different states of I. In this scenario, the state space within the formulation of the

MDP gains a degree of dimensionality, but the embedding procedure remains similar

and overcomes making strong assumptions regarding parameters defining the model.
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