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Abstract—Semi-supervised deep learning (SSDL) is a popular
strategy to leverage unlabelled data for machine learning when
labelled data is not readily available. In real-world scenarios,
different unlabelled data sources are usually available, with
varying degrees of distribution mismatch regarding the labelled
datasets. It begs the question which unlabelled dataset to choose
for good SSDL outcomes. Oftentimes, semantic heuristics are
used to match unlabelled data with labelled data. However, a
quantitative and systematic approach to this selection problem
would be preferable. In this work, we first test the SSDL MixMatch
algorithm under various distribution mismatch configurations
to study the impact on SSDL accuracy. Then, we propose a
quantitative unlabelled dataset selection heuristic based on dataset
dissimilarity measures. These are designed to systematically assess
how distribution mismatch between the labelled and unlabelled
datasets affects MixMatch performance. We refer to our proposed
method as deep dataset dissimilarity measures (DeDiMs), designed
to compare labelled and unlabelled datasets. They use the feature
space of a generic Wide-ResNet, can be applied prior to learning,
are quick to evaluate and model agnostic. The strong correlation in
our tests between MixMatch accuracy and the proposed DeDiMs
suggests that this approach can be a good fit for quantitatively
ranking different unlabelled datasets prior to SSDL training.

Impact Statement—Semi-supervised deep learning is a technique
for training a deep learning model when few labelled observations
are available, leveraging unlabelled datasets. Different unlabelled
data sources may be available, introducing the possibility for
distribution mismatches between the labelled and unlabelled
datasets. In this work we assess the impact of distribution
mismatches on the outcomes of the semi-supervised MixMatch
algorithm. We propose a set of simple feature-space density dataset
distances, referred to as deep dataset dissimilarity measures
(DeDiMs). In our extensive test-bed, the evaluated DeDiMs yield
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linear correlation coefficients of up to 96% to MixMatch accuracy.

Index Terms—Semi-supervised deep learning, MixMatch, Out
of distribution data, Deep learning, Distribution mismatch, Dataset
similarity

I. INTRODUCTION

Training an effective deep learning solution typically requires
a considerable amount of labelled data. In specific areas, like
medical imaging technologies, high quality labelled data can
be expensive to obtain, leading to a paucity of labelled data
[4], [12]. Several approaches have been developed to address
this data constraint, including data augmentation, transfer,
weakly and semi-supervised learning, among others [34],
[46]. Semi-supervised learning is an approach for learning
problems where little labelled data is available, or a range
of labels is lacking. It leverages the use of unlabelled data
which is often cheap to obtain [44]. Formally, in a semi-
supervised setting both labelled and unlabelled datasets are
used. Labelled observations Xl = {x1, . . . ,xnl

} and their
corresponding labels Yl = {y1, . . . , ynl

} make up the labelled
dataset Sl. The set of unlabelled observations Su is repre-
sented as Xu = {x1, . . . ,xnu

}, therefore Su = Xu. Semi-
supervised deep learning (SSDL) approaches can be grouped
into pre-training [14], self-training or pseudo-labelled [15]
and regularization-based. Regularization techniques include
generative based approaches, along consistency loss term and
graph based regularization [12]. A detailed survey on semi-
supervised learning can be found in [44].

The practical implementation of SSDL techniques in different
contexts has been limited; barring few exceptions [32]. As with
other learning paradigms, the transfer of SSDL techniques from
lab to real-world is complicated by, among other reasons, the
violation of the Independent and Identically Distributed (IID)
assumption. In principle, we would like to exploit available
unlabelled data as flexibly as possible. In practice, distribution
mismatches between the labelled and unlabelled data sets can
lead to serious performance degradation [32]. The following
example illustrates this problem. We can train a Convolutional
Neural Network (CNN) to classify chest X-ray images between
COVID-19 ill and healthy patients, as for example seen in
[7]. The labelled dataset Sl can include a limited number of
observations for each class. However, the unlabelled dataset Su

can include observations of patients with other lung pathologies
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Fig. 1: A summary of the workflow presented in this paper. In step 1 a labelled, inside-of-distribution dataset SIOD, here
MNIST, is paired with different potential unlabelled datasets for semi-supervised learning. The unlabelled data SuOOD in our
experiments is of the three types TOOD other half (OH), similar (Sim) and different (Diff). In step 2 , a pretrained ResNet is
used to extract feature representations of the labelled and unlabelled datasets and a deep dataset dissimilarity measure (DeDiM)
is applied. Finally, in step 3 the dissimilarity scores can be used as a proxy for SSDL accuracy to select unlabelled data. This
example shows results from the MNIST SIOD experiment. The colors in the last scatter plot designate the number of labelled
samples.

not sampled in Sl, leading to a distribution mismatch between
the labelled and unlabelled datasets. The mismatching data can
be described as Out of Distribution (OOD) data [23] and it
can harm the performance of a SSDL solution [32].

It begs the question how we can systematically select labelled
and unlabelled data in non-IID settings such that performance
on the downstream task is increased. A common recourse are
what we call semantic matching heuristics. For example, Tiny
ImageNet (TI) may be judged more similar to the Canadian
Institute for Advanced Research dataset of 10 classes (CIFAR-
10) than to Modified National Institute of Standards and
Technology dataset (MNIST) because the first two datasets both
contain object whereas the last dataset contains handwritten
digits. Practices of semantic matching can be traced to other
fields of machine learning, too, including out-of-distribution
detection [52] or the domain adaptation literature [50], [47].
Insights from generative modelling should, at the very least,
make us feel uneasy about such an approach to determine
dataset similarity. Similarity can vary drastically depending
on whether it is determined through semantic heuristics or
quantified through the lens of a machine learning model [28].

A. Problem statement

The central premise of this work is the quantitative im-
pact assessment of distribution mismatch between labelled
and unlabelled data on SSDL. This notion stipulates that a
mismatch negatively affects the accuracy of models trained with
SSDL algorithms [32]. Distribution mismatch occurs when the
unlabelled data contains observations that do not correspond to
or are too dissimilar to the observations of any of the classes
present in the labelled data. It is not clear though what exactly
the effect is when this mismatch occurs:

• Does it always harm the model accuracy in the context of
SSDL?

• Does it help to use unlabelled data that is, supposedly,
semantically more similar to the labelled data?

• Furthermore, if certain unlabelled datasets indeed harm
accuracy of SSDL trained models, is there a reliable way to
select the unlabelled data in an informed way prior to SSDL
training?

We adopt the following definitions. Given a dataset S1

emanating from the data generating process y = f(x), with
y ∈ Y := {1, ...,K} being a set of labels, and a second dataset
S2 emanating from the data generating process y′ = g(x), with
y′ ∈ Y ′ := {1, ...,K ′}, we define the following concepts:

Definition 1. Inside of Distribution (IOD) data: Dataset S2 is
IOD relative to dataset S1 if f(x) = g(x). In particular, we
must have that Y = Y ′.

Definition 2. OOD data: Dataset S2 is OOD relative to dataset
S1 if f(x) ̸= g(x). In particular, we may have that Y ̸= Y ′.

Definition 3. Distribution mismatch in SSDL: A distribution
mismatch occurs if the unlabelled data Su used for SSDL is
OOD relative to the labelled data Sl.

In practice, f(x) and g(x) are typically not known explicitly.
Thus, given two datasets S1 and S2 a definite formal verification
of the distribution mismatch property is not possible. Instead, it
is usually assumed that two different datasets, e.g., CIFAR-10
and MNIST, derive from different data generative processes.
This working definition of OOD data follows the existing
literature on distribution mismatch in SSDL [32] as well as
OOD detection in deep learning [37]. We adopt this working
definition for the OOD scenarios of our test bed. Note that
different degrees of OOD contamination for Su are possible
as we describe in Section IV-A.

B. Contribution

In order to address the questions outlined in Section I-A
we first study the effect of distribution mismatch on SSDL
accuracy in systematic test-bed. Then, we present a set of Deep
Dataset Dissimilarity Measure (DeDiM)s to assess, prior to
training, the effectiveness of unlabelled datasets for MixMatch
SSDL [5]. A visual summary of the process is provided in
Figure 1. All code and experimental scripts, with automatic
download of test bed data for ease of reproduction, is made
publicly available1. It entails the following contributions:
• We present and make available a comprehensive simulation

sandbox, called non-IID-SSDL, for stress testing SSDL

1https://github.com/luisoala/non-iid-ssdl

https://github.com/luisoala/non-iid-ssdl
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algorithms under various non-IID (distribution mismatch)
configurations. We demonstrate that including OOD data in
the unlabelled training dataset for the MixMatch algorithm
can yield different degrees of accuracy degradation compared
to the exclusive use of IOD data. However, in most cases,
using unlabelled data with OOD contamination still improves
the results when compared to the default fully supervised
configuration.

• Markedly, unlabelled that is supposedly semantically similar
to the IOD labelled data does not always lead to the highest
accuracy gain. This counter-intuitive result suggests that
using semantically similar unlabelled datasets does not
always yield the best accuracy gain for SSDL.

• We propose and evaluate four DeDiMs that can be used to
rank unlabelled datasets according to the expected accuracy
gain prior to SSDL training. They can be considered to be
less expensive to compute and model agnostic, which make
them amenable for practical application.

• Our test results reveal a strong correlation between the tested
DeDiMs and MixMatch accuracy, making them useful for
unlabelled dataset selection. Therefore, we propose the usage
of the tested DeDiMs to select the unlabelled dataset for
improved MixMatch accuracy. The best performing DeDiMs
use a non-parametric density function approximation of the
feature space, which provides a method to quantitatively
describe the distribution mismatch between two datasets.

II. RELATED WORK

In this work we address a combination of three overlapping
problems that are often dealt with separately in the literature:
OOD detection, distribution mismatch in SSDL, and dataset
dissimilarity measures.

A. OOD data detection

In the context of machine learning, OOD data detection refers
to the general problem of detecting observations that belong to
a data distribution different from the distribution of the training
data [18]. OOD detection can be considered as a generalization
of outlier detection, since it considers individual and collective
outliers [40]. Further variations of the OOD data detection
problem are novel and anomaly data detection [33], with
different applications such as rare event detection and artificial
intelligence safety [17], [1]. Classical OOD and anomaly
detection methods rely on density estimation, e.g., Gaussian
Mixture Models [24], robust moment estimation, like the
Minimum Covariance Determinant method [38], prototyping,
e.g., k-nearest neighbor algorithm [24], as well as kernel based
variants such as Support Vector Data Description [43]. Also,
a variety of neural network based approaches for novelty
detection can be found [24], implementing a more data-oriented
approach.

With the success of deep learning, recent works have
addressed the generic problem of discriminative detection
of OOD data for deep learning architectures. In general,
discriminative OOD detectors can be categorized in output-
and feature-based. For instance, a simple output based OOD
detection approach was proposed in [18]. The authors framed

OOD detection as a prediction confidence estimation problem.
The proposed method relies on the Softmax output, sampling
the maximum value. [23] introduced OOD data detection
in neural networks using input perturbations. A temperature
coefficient T is used in the calculation of the Softmax output
with a calibrated decision threshold δ for OOD data detection.

More recently, in [22] authors argue that deep neural
networks with Softmax output layers are over-confident for
inputs dissimilar from the training data and hence propose the
usage of the Mahalanobis distance in latent space. Similarly
[41] also exploit latent representations, defining what they
refer to as learning certificates: neural networks that map
feature vectors to zero for IOD data. A more challenging
OOD detection setting was tested, where half of each tested
dataset is used as IOD data, and the other half is used as OOD
data, making OOD detection harder. [52] proposes an OOD
detector using the feature space as well. The approach fits
different parametric distributions in the feature space of the
data. The decision to discriminate between OOD and IOD data
is done based on the estimation of the approximated parametric
model. Unfortunately, no comparison with other popular OOD
methods was presented. A similar approach with a simpler
linear model trained with the statistical moments of the feature
space can be found in [35].

In this concise overview of OOD detection methods, two
different main categories for OOD detection can be found:
output and feature space based. The datasets selected for
benchmarking OOD detection methods are usually different
for each work, and quantitative evaluation of the difficulty of
performing OOD detection is rare.

B. Distribution mismatch in SSDL

The distribution mismatch between Su and Sl can be
interpreted as a violation of the IID assumption. Different
causes for this distribution mismatch can be distinguished, as
discussed in [19]. We summarize them as follows:
• Prior probability shift: The density of the targets in Sl is

different to the real target densities in Su (increasing the
possibility of sampling noise). Class imbalance in the labelled
dataset Sl is a special case of this setting, as discussed in
[8].

• Covariate shift: The labelled dataset Sl might sample a
different density of the features when compared to the
unlabelled dataset Su, causing a distribution mismatch
between the two datasets. For example, for handwritten digit
recognition, the sample of Sl might capture different stroke
widths, when compared to Su. Concept drift is a similar
setting where the change of features causes the concept to
semantically change.

• Concept shift: It corresponds to a label change for a similar
set of features. For instance, for sentiment analysis in audio,
an observation might have different labels depending on the
labeler (this is also related to label noise). In the context
of distribution mismatch between Sl and Su, as no label
information is used from Su during training.
In this work, we analyze the impact of distribution mismatch

between Sl and Su caused by a concept drift, as a mild
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distribution mismatch cause (for instance using SVHN as Su

and MNIST as Sl). To create more significant distribution
mismatch settings, we contaminate the unlabelled dataset Su

with different percentages of observations from completely
different datasets (with different labels or features). For
example, using MNIST as Sl and for Su 50% Gaussian Noise
(GN) images plus 50% MNIST images.

As previously highlighted, in [32] the authors call for the
need of a more extensive testing of SSDL techniques in real-
world testing scenarios. One of them is the possible data
distribution mismatch between the labelled and unlabelled
training data can adversely impact SSDL results. Real Mix was
proposed [27] in response, implementing a masking coefficient
to OOD data for the unlabelled dataset. The masking coefficient
is used as a threshold of the Softmax output of the model,
discarding unlabelled data used only in the unsupervised term.
The authors performed limited testing on the significance
of using OOD unlabelled data, with relatively few OOD
contamination scenarios tested. The OOD dataset consisted
of the splitted CIFAR-10 dataset, in two halves with different
semantics. A total of four levels of OOD contamination were
tested. We extend OOD datasets to more configurations.

More recently, the work in [11] proposes a simple approach
to deal with OOD data, by using soft labels averaged by
the output of the model along a number of epochs. The
evaluation includes a benchmark with different proportions
of distribution mismatch. The results yielded demonstrate an
improved accuracy of the proposed method over other state
of the art SSDL approaches when dealing with OOD data
in the unlabelled dataset. However, MixMatch is not among
the compared approaches. Moreover, the distribution mismatch
scenarios were not extensive, testing only different degrees
of mismatch contamination, and not evaluating the impact of
different OOD data sources.

In [51] a SSDL robust framework to OOD data was proposed.
Authors claim that OOD data far away from the decision
boundaries affects SSDL performance less than OOD data
lying very close to the decision boundaries. However, no
explicit quantitative measure of distribution similarity was
used. The authors also noted a high influence of data batch-
normalization, where normalizing the data using far away
OOD data can impact the accuracy of the model more. To
address this issue, the authors proposed a dynamic approach to
re-weight the observations in both batch-normalization and
training time, using a gradient optimization approach for
both. The model was tested using virtual adversarial training
and the Π model, excluding the usage of MixMatch. The
experiments included different degrees of OOD contamination
and unlabelled datasets, however no comparison to other
approaches explicitly designed for SSDL with OOD robustness
was performed.

In [11] another approach for OOD robust SSDL was
proposed, using also a per observation re-weighting and giving
less weight to the observations that are most likely OOD. To
calculate the per-observation weights, an uncertainty proxy,
as in [16], was implemented, using an ensemble of models
yielded during the past epochs. The model was tested with the
CIFAR-10 dataset (6 classes) with a varying degrees of OOD

contamination (the other 4 classes left from CIFAR-10). No
other unlabelled contamination data-sources were used.

Unlike previous studies, in this work we aim to quantify the
notion of OOD data, correlating it with the SSDL accuracy
using different unlabelled datasets with varying degrees of OOD
contamination and different data sources. This quantification
can be used to select one unlabelled dataset among many, prior
to SSDL training. This also allows us to analyze the influence
of OOD data. Finally, the proposed method can be extended
to weight how harmful an unlabelled observation can be for
SSDL. Using the feature distribution to this end has not been
fully explored in previous work.

C. Dataset dissimilarity measures

The need of comparing two datasets, in this case the labelled
Sl and unlabelled datasets Su to quantify the prior data
mismatch between them, leads us to the need for dataset
comparison measures. Computing a notion of dissimilarity
between two sets of points (also known as shape matching [25])
is typically computationally more expensive than calculating the
dissimilarity between a set of points and another single point.
Strategies to reduce this burden are primarily centered around
enriching the object space with a probability measure which
helps guide attention to important areas of comparison [25].
When starting with raw datasets, as is typically the case when
trying to decide which data to use for SSDL, additional pre-
processing or modelling steps would be necessary to obtain this
probability measure. Methods explicitly designed to compute
dissimilarities between raw datasets for deep learning are,
to the best of our knowledge, rare. In [42] authors define a
dissimilarity measure based on the Euclidean distance between
the frequency of a given feature function on two datasets,
referred as the constrained measure distance. The calculation
of the proposed measure can be efficiently performed using
the covariance matrix of the feature function in the dataset.

More recently, authors in [6] proposed a distance dissimilar-
ity index based on the statistical significance difference of the
distance distributions between the two datasets. To calculate
it, each data point in the test set is matched with the training
data. After exchanging the associated observations, changes
in the topology are assessed, using the distance distribution.
The confidence p-value of the difference between the two
distributions is calculated and used as a dissimilarity measure.

Note that our requirements differ from the above OOD
detection and dissimilarity measure methods: we are interested
in computationally inexpensive, prior-to-training and SSDL
model agnostic quantification of the OOD degree between
two datasets. Approaches that are computationally expensive
or retrospective, applied after the model has been trained,
are not feasible to address distribution mismatch before
SSDL training. Closest to our work are the OOD detection
ideas developed by [37]. The authors present introductory
experiments on the correlation between OOD detection and the
dataset dissimilarity using a genome distance [36]. We explore
a similar comparison: the relationship between SSDL accuracy
and OOD-IOD dissimilarity, which can be useful for a prior
evaluation of unlabelled datasets for SSDL. This enables an
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interesting quantitative insight on the real impact of OOD data
to SSDL accuracy, which we explore in this work.

III. PROPOSED METHOD

Our approach is based on a simple idea: if OOD data indeed
affects MixMatch SSDL accuracy we would like to be able
to select the unlabelled data prior to SSDL training such that
resulting test accuracy of the model is maximized. To that end
we propose and evaluate a number of DeDiMs. They provide a
quantitative notion of similarity between the inputs of the IOD
labelled data and the inputs of the OOD unlabelled data. The
DeDiMs are based on dataset subsampling, as image datasets
are usually large, following a sampling approach for comparing
two populations, as seen in [21]. We compute the dissimilarity
measures in the feature space of a generic Wide-ResNet pre-
trained on ImageNet, making our proposed approach agnostic
to the SSDL model to be trained. This enables an evaluation
of the unlabelled data before training the SSDL model. The
proposed measures in this work are meant to be simple and
quick to evaluate with practical use in mind. We propose
and test the implementation of two Minkowski based distance
sets, dℓ2 (Sa, Sb, τ, C) and dℓ1 (Sa, Sb, τ, C), corresponding to
the Euclidean and Manhattan distances, respectively, between
two datasets Sa and Sb. Additionally, we implement and test
two non-parametric density based dataset divergence measures;
Jensen-Shannon (dJS) and cosine distance (dC). For all the
proposed dissimilarity measures, the parameter τ defines the
sub-sample size used to compute the dissimilarity between the
two datasets Sa and Sb, and C the total number of samples to
compute the mean sampled dissimilarity measure. The general
procedure for all the implemented distances is detailed as
follows.
• We randomly sub-sample each one of the datasets Sa and
Sb, with a sample size of τ , creating the sampled datasets
Sa,τ and Sb,τ .

• We transform an input observation xj ∈ Si, with xj ∈ Rn,
where n is the dimensionality of the input space, using the
feature extractor f , yielding the feature vector hj = f (xj).

• The feature vector hi ∈ Rn′
has dimension n′, with n′ < n.

For instance, the implemented feature extractor f uses the
ImageNet pretrained Wide-ResNet architecture, extracting
n′ = 512 features. This yields the two feature sets Ha,τ and
Hb,τ .
For the Minkowski based distance sets dℓ2 (Sa, Sb, τ, C),

dℓ1 (Sa, Sb, τ, C), we perform the following steps for the sets
of features obtained in the previous description Ha,τ and Hb,τ :
• For each feature vector hj ∈ Ha,τ , find the closest feature

vector hk ∈ Hb,τ , using the ℓp distance, with p = 1 or p = 2

for the Manhattan and Euclidean distances, respectively: d̂j =
mink ∥hj − hk∥p . We do this for a number of C samples,
yielding a list of distance calculations dℓp (Sa, Sb, τ, C) ={
d̂1, d̂2, ..., d̂C

}
.

• We compute a reference list of distances for the same
list of samples of the dataset Sa to itself (intra-dataset
distance), thereby computing dℓp (Sa, Sa, τ, C). This yields
a list of reference distances ď1, ď2, ..., ďC . In our case Sa

corresponds to the labelled dataset Sl, as the distance to

different unlabelled datasets Su is to be computed. We
highlight that this should result in values close to zero.
However, as different samples are used for each distance
computation, the results are not exactly zero.

• To ensure that the absolute differences between the reference
and inter-dataset distances dc =

∣∣∣d̂c − ďc

∣∣∣ are statistically
significant, we compute the p-value associated with a
Wilcoxon test.

• After the distance set between two datasets dℓp (Sa, Sb, τ, C)
is obtained, its average reference subtracted distance d and its
corresponding statistical significance p-value are computed.
As for the density based distances implemented we follow

a similar sub-sampling approach, with these steps:
• For each dimension r = 1, ..., n′ in the feature space,

we compute the normalized histograms to approximate the
density functions pr,a, in the sample Ha,τ . Similarly, we
compute the normalized histograms to yield the set of
approximate density functions pr,b for r = 1, ..., n′, using
the observations in the sample Hb,τ .

• For the Jensen-Shannon divergence (dJS) and the cosine
distance (dC), we compute the sum of the dissimilar-
ities between the density functions pr,a and pr,b, to
yield the estimated dissimilarity for the sample j: d̂j =∑n′

r=1 δg (pr,a, pr,b), where g = JS and g = C for
the Jensen-Shannon divergence and the cosine distance,
respectively. We do this for all the C samples, yielding
the list of inter-dataset distances: d̂1, d̂2, ..., d̂C . To lower the
computational burden, we assume that the dimensions are
statistically independent. This assumption also simplifies the
likelihood calculation, as seen in other methods [20].

• Similar to the Minkowski distances, we compute the intra-
dataset distances for the dataset Sa, in this context the
labelled dataset Sl, to obtain the list of reference distances
ď1, ď2, ..., ďC .

• Similarly, to verify that the inter- and intra-dataset distance
differences dc =

∣∣∣d̂c − ďc

∣∣∣ are statistically significant, we
compute the p-value associated with a Wilcoxon test. The
distance computation yields the sample mean distance d and
its statistical significance p-value.
The proposed dissimilarity measures do not fulfill the

conditions of a mathematical metric or pseudo-metric since
the distance of an object to itself is not strictly zero (but tends
to be close) and symmetry properties are not fulfilled for the
sake of evaluation speed [13]. Despite these relaxations, we
will see that these dissimilarity measures, especially the two
that are density based, are an effective proxy for estimating
the Su,OOD accuracy gain.

To quantitatively measure the relationship between Sl and
Su distances and SSDL accuracy, we calculate the Pearson
coefficient between them. This verifies the linear correlation
between both. Table III describes the Pearson coefficient
for each implemented dissimilarity measure and each SSDL
configuration.

In summary, we propose to quantitatively rank a set of
candidate unlabelled datasets Su,1, Su,2, ..., Su,k according to
a dissimilarity measure d(Sl, Su), instead of using semantic
matching heuristics. In all the tests of this work, we used
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n′ = 512, τ = 80 and C = 10.

IV. EXPERIMENTS

A. Semi-supervised deep learning setup

The basis for all SSDL experiments in this paper is the
MixMatch algorithm, a state of the art SSDL method [5].
MixMatch estimates pseudo-labels for unlabelled data Xu, and
also implements an unsupervised regularization term. Pseudo-
label ŷj estimation is performed with the average model
output of a transformed input xj , with K number of different
transformations. The pseudo-labels ŷ are further sharpened with
a temperature parameter ρ. To further augment the data using
both labelled and unlabelled samples, MixMatch makes use of
the MixUp algorithm by [49] which builds linear interpolations
between labelled and unlabelled observations. For supervised
and semi-supervised loss functions, the cross-entropy and the
Euclidean distance, are used, respectively. The regularization
coefficient γ controls the direct influence on unlabelled data.
Unlabelled data also influences the labelled data term since
unlabelled data is used also to artificially augment the dataset
with the Mix Up algorithm. This loss term is used at training
time, for testing, a regular cross entropy loss is implemented.
For a detailed description of the MixMatch algorithm we refer
to [5]. We use the recommended hyperparameters documented
in the supplementary material.

B. SSDL with OOD data test bed

To assess the effect of OOD unlabelled data Su on the
accuracy of SSDL models trained with MixMatch, we construct
the non-IID-SSDL test bed, with five variable parameters: (1)
base data SIOD which constitutes the original task to be learned,
(2) the type of OOD data TOOD, (3) the OOD data source Su,OOD,
(4) the relative amount of OOD data among the unlabelled
data %u,OOD, (5) and the amount nl of labelled observations.
Each of the five axes is explored by varying only one of the
variables at a time while keeping the others constant. This
allows us to isolate the effect of the individual variables. We
consider three configurations for SIOD comprising MNIST,
CIFAR-10 and FashionMNIST. A total of three configurations
for TOOD (Other-Half (OH), Similar (Sim) and Different (Dif))
are tested. We derived the possible types of OOD data from
the existing literature cited in Section II. In the OH setting
half of the classes and associated inputs are taken to be the
SIOD data, whereas the other half of classes are taken to be
the Su,OOD data. Similar is a Su,OOD dataset that is assumed
to be semantically related to SIOD, e.g., MNIST and Street
View House Numbers dataset (SVHN). Different is a Su,OOD
dataset that is supposedly semantically unrelated to SIOD, e.g.,
MNIST and TI. There are five configurations for Su,OOD as
explained above: the other half OH, a similar dataset, and three
different datasets including two noise baselines. They include
SVHN, TI, GN, Salt and Pepper Noise (SAPN) and Fashion
Product (FP). Please see Table I for the per task pairings. Each
configuration represents a multi-class classification task with
|Y| = 5, that is a random subset of half of the classes of base
data SIOD.

We vary the relative amount of OOD data %u,OOD between
0, 50 and 100 as well as the amount of labelled datapoints nl

between 60, 100 and 150. We study the behaviour of MixMatch
under very limited number of labels settings, where the benefit
of SSDL is usually higher. This makes the impact of distribution
mismatch more evident. Note that for each result entry you
can see in Table I we performed ten experimental runs and
report the accuracy mean and standard deviation of the models
performing best on the test data from each run, as overfitting
is very likely to happen with a low nl. For each run we
sampled a disjunct subset of data from SIOD and Su,OOD to
obtain the required number of labelled nl and unlabelled nu

samples for the run. Descriptive statistics (mean and standard
deviation) for standardization of the neural networks inputs
were only computed from these subsets to keep the simulation
realistic and not use any information from the global training
data. All other parameters (number of unlabelled observations
nu = 3000, neural network architecture , the set of optimization
hyperparameters, number of training epochs) are kept constant
across all experiments to enable direct comparison with respect
to the variable parameters of the system. We clarify that the
goal of this test-bed is to assess the impact of distribution
mismatch for MixMatch, rather to achieve state of the art
performance with MixMatch on the given data. Such hyper-
parameters are described in the supplementary material. Note
that it is possible to extend the test bed to other effects of
interest. We address some of these ideas in Section VI.

C. Deep Dataset Dissimilarity Measures

In Table II we show the dissimilarity results for the tested
labelled and unlabelled dataset combinations. We tested the
dissimilarity measures detailed in Section III, namely the
Manhattan or ℓ1 distance dℓ1 , the Euclidean distance dℓ2 , the
cosine distance dC and the Jensen-Shannon dJS divergence.
The distances and divergences are computed without the need
for training a model, making the proposed approach appealing
to choose unlabelled datasets before SSDL training.

As a complementary quantitative test, in Figure 2 we show
the probability density function approximation plots of some
of the features for the MNIST dataset, using both the similar
dataset chosen (SVHN) and the different dataset selected (TI).
We picked the features presenting the smallest divergences for
the chosen datasets. The density functions were built using
random samples for both data pairs. The probability density
function approximation plots illustrate in a summarized manner
the similarity computed between the two compared datasets,
and its correlation with the measured Jensen-Shannon and
cosine divergences.

V. RESULTS

The experimental setup used in this work is detailed in
the supplementary material. Table I shows the results of the
distribution mismatch experiment described in Section IV-A.
We make a number of observations.

We find in the majority of cases that using IOD unlabelled
data or a 50-50 mix of IOD and OOD unlabelled data beats
the fully supervised baseline. For instance take the results in
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TABLE I: Results for the distribution mismatch experiment, best OOD
performance in bold per configuration (mean ± standard deviation). Each
result entry in the table represents the mean and variance of accuracy across
ten random experimental runs per entry. For a detailed description of symbols
and the experiment see Section IV-B.

SIOD TOOD SuOOD %uOOD
nl

60 100 150 row #

M
N

IS
T

Fully supervised baseline 0.457± 0.108 0.559± 0.125 0.645± 0.101 0
SSDL baseline (no OOD data) 0.704± 0.096 0.781± 0.065 0.831± 0.062 1

OH OH-MNIST 50 0.679± 0.108 0.769± 0.066 0.802± 0.054 2
100 0.642± 0.111 0.746± 0.094 0.798± 0.070 3

Sim SVHN 50 0.637± 0.098 0.745± 0.081 0.801± 0.069 4
100 0.482± 0.113 0.719± 0.058 0.765± 0.072 5

Dif

TI 50 0.642± 0.094 0.739± 0.074 0.809± 0.066 6
100 0.637± 0.097 0.732± 0.074 0.804± 0.071 7

GN 50 0.606± 0.0989 0.713± 0.087 0.786± 0.065 8
100 0.442± 0.099 0.461± 0.073 0.542± 0.062 9

SAPN 50 0.631± 0.102 0.735± 0.082 0.813± 0.057 10
100 0.48± 0.0951 0.524± 0.09 0.563± 0.095 11

C
IF

A
R

-1
0

Fully supervised baseline 0.380± 0.024 0.445± 0.042 0.449± 0.022 12
SSDL baseline (no OOD data) 0.453± 0.046 0.474± 0.019 0.501± 0.033 13

OH OH-CIFAR-10 50 0.444± 0.040 0.472± 0.039 0.525± 0.050 14
100 0.443± 0.023 0.472± 0.047 0.499± 0.054 15

Sim TI 50 0.435± 0.054 0.473± 0.039 0.543± 0.040 16
100 0.417± 0.020 0.480± 0.039 0.498± 0.042 17

Dif

SVHN 50 0.419± 0.027 0.464± 0.044 0.469± 0.056 18
100 0.385± 0.034 0.418± 0.035 0.440± 0.046 19

GN 50 0.409± 0.047 0.454± 0.048 0.491± 0.032 20
100 0.297± 0.029 0.306± 0.034 0.302± 0.038 21

SAPN 50 0.438± 0.029 0.455± 0.037 0.485± 0.034 22
100 0.236± 0.031 0.246± 0.032 0.232± 0.022 23

Fa
sh

io
nM

N
IS

T

Fully supervised baseline 0.571± 0.073 0.704± 0.066 0.720± 0.093 24
SSDL baseline (no OOD data) 0.715± 0.049 0.760± 0.044 0.756± 0.069 25

OH OH-FashionMNIST 50 0.714± 0.049 0.721± 0.104 0.765± 0.053 26
100 0.660± 0.061 0.711± 0.090 0.747± 0.061 27

Sim FP 50 0.707± 0.039 0.724± 0.030 0.778± 0.078 28
100 0.546± 0.101 0.542± 0.099 0.540± 0.105 29

Dif

TI 50 0.690± 0.065 0.745± 0.093 0.792± 0.058 30
100 0.690± 0.073 0.728± 0.066 0.794± 0.056 31

GN 50 0.644± 0.061 0.689± 0.075 0.755± 0.055 32
100 0.352± 0.025 0.366± 0.065 0.361± 0.057 33

SAPN 50 0.671± 0.072 0.708± 0.095 0.729± 0.088 34
100 0.276± 0.069 0.297± 0.046 0.283± 0.059 35
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Fig. 2: A: Dataset samples. B: Feature distribution
for a model trained with MNIST labelled data
(continous orange line in both plots), and TI and
SVHN unlabelled data (left and right column,
respectively, blue dashed line in both). For each
plot a different dataset partition was used. Top row:
feature 372, bottom row: feature 159.

row 0 vs. the results yielded in rows 2-7 (for the SSDL model).
A clear advantage of the SSDL model is revealed over the
supervised model, even under distribution mismatch settings.
The gains range from 15% to 25% for MNIST, 10% to 15%
for CIFAR-10 and 7% to 13% for FashionMNIST across all
Su,OOD and nl. As expected, in most of the cases the accuracy
is degraded when including OOD data in Su, with a more
dramatic hit when noisy datasets (SAPN, GN) are used as
OOD data contamination.

Another interesting observation from the experiment results
is related to semantic matching heuristics and the yielded
SSDL accuracy. Sometimes, using an unlabelled dataset that
is semantically supposedly less similar can result in greater
accuracy. This is observed for example in Table I, when
Sl =CIFAR-10, nl = 100 and nl = 150, where OOD
unlabelled data from TI (row 16) results in a similar accuracy
(with no statistical significance gain, according to the Wilcoxon
test performed) than using the other half of CIFAR-10 as Su,OOD
(row 14). It is interesting that an Su,OOD dataset of type different
can have a similar benefit than a Su,OOD dataset of type similar.
A clearer case of this tendency is found for FashionMNIST and
TI (row 31) versus FP at nl = 150 (row 29). In such case using
the TI (different) dataset, brings a higher SSDL accuracy, than
using the FP (similar) dataset. This contradicts the common
heuristic that unlabelled data that appears semantically more

related to the labelled data is always the better choice for SSDL.
Rather, as we demonstrate in the second set of results below,
a notion of distance in the feature space between labelled and
unlabelled data offers a more consistent and quantifiable proxy
for the expected benefit of an unlabelled dataset.

As for qualitative illustration, Figure 2 shows an example
of the density functions approximated for randomly selected
samples for the MNIST-TI and MNIST-SVHN dataset pairs.
The plots reveal a stronger density based similarity between the
MNIST and ImageNet than the MNIST and SVHN datasets.
This in spite of the higher semantic similarity of SVHN to
MNIST (both represent numbers, the first one in natural scenes,
and the second one in handwritten images). This correlates
well with the quantitative figures yielded in Table II. For
instance, in row 3, the MNIST dataset is more dissimilar
to the SVHN dataset (MNIST contaminated by 100% with
the SVHN dataset), than the TI dataset (MNIST contaminated
by 100% with the TI dataset), revealed in row 5. This also
highly correlates with the final SSDL accuracy yielded with
both unlabelled datasets (MNIST contaminated by 100% with
SVHN, in row 5, and TI, in row 7) shown in Table I.

MixMatch shows a marginally higher accuracy (with no
statistical significance, after performing a Wilcoxon test) when
using TI as an unlabelled dataset compared to using SVHN as
unlabelled data.
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TABLE II: Distance measures between the labelled and unlabelled datasets Sl and
Su (mean ± standard deviation). Numbers in italics correspond to results with
p > 0.05 for the Wilcoxon test.

Sl Su %uOOD dℓ2 dℓ1 dJS dC row #

M
N

IS
T

OH 50 0 .011 ± 0 .006 0 .459 ± 0 .28 0 .266 ± 0 .221 0 .811 ± 0 .512 0
100 0 .014 ± 0 .019 0 .38 ± 0 .507 1.001± 0.725 1.263± 0.665 1

SVHN 50 0 .09 ± 0 .017 1.569± 0.504 6.789± 0.924 12.021± 1.757 2
100 0.25± 0.053 4.702± 1.04 52.349± 3.292 42.026± 4.311 3

TI 50 0.008± 0.023 1.519± 0.223 3.663± 0.772 5.512± 0.767 4
100 0.217± 0.04 4.3± 0.636 10.305± 1.667 15.18± 2.698 5

GN 50 0.11± 0.0219 1.958± 0.534 14.785± 1.052 23.59± 1.859 6
100 0.357± 0.081 5.987± 1.091 52.349± 4.253 86.21± 3.471 7

SAPN 50 0.089± 0.0311 2.479± 0.7433 15.116± 1.475 20.151± 1.619 8
100 0.323± 0.07 6.308± 1.366 53.397± 4.253 77.456± 4.474 9

C
IF

A
R

-1
0

OH 50 0 .056 ± 0 .023 0 .915 ± 0 .934 0 .338 ± 0 .325 0.892± 0.402 10
100 0 .061 ± 0 .04 0.769± 0.461 0 .451 ± 0 .41 0.648± 0.407 11

TI 50 0.082± 0.037 0 .928 ± 0 .815 0 .388 ± 0 .243 0 .423 ± 0 .362 12
100 0 .056 ± 0 .048 0 .992 ± 0 .517 0 .469 ± 0 .426 0.415± 0.232 13

SVHN 50 0 .055 ± 0 .032 0 .948 ± 0 .699 0 .665 ± 0 .565 0 .414 ± 0 .357 14
100 0 .075 ± 0 .036 1.291± 0.925 0.736± 0.658 0.581± 0.343 15

GN 50 0 .107 ± 0 .083 1.344± 1.156 1.708± 0.421 3.001± 0.696 16
100 0.127± 0.087 1.531± 0.767 5.855± 0.552 8.703± 0.926 17

SAPN 50 0.1146± 0.044 1.854± 0.894 2.299± 0.691 2.561± 0.762 18
100 0.208± 0.05 5.502± 1.156 8.225± 0.866 9.554± 0.489 19

Fa
sh

io
nM

N
IS

T

OH 50 0 .02 ± 0 .012 0 .34 ± 0 .162 0 .669 ± 0 .566 0 .575 ± 0 .423 20
100 0.059± 0.032 0.801± 0.402 0.305± 0.237 0.774± 0.343 21

FP 50 0.105± 0.0526 2.168± 0.774 7.263± 0.622 5.305± 0.405 22
100 0.195± 0.0457 4.819± 1.077 9.056± 0.462 11.286± 0.751 23

TI 50 0 .04 ± 0 .03 0 .798 ± 0 .542 0 .897 ± 0 .516 0.897± 0.516 24
100 0.065± 0.03 1.66± 0.45 1.4± 0.488 1.912± 0.683 25

GN 50 0 .047 ± 0 .03 0 .533 ± 0 .347 2.819± 0.703 3.843± 0.704 26
100 0.074± 0.041 1.325± 0.631 9.042± 0.699 15.511± 0.445 27

SAPN 50 0.036± 0.022 0.52± 0.303 2.799± 0.497 2.799± 0.497 28
100 0.076± 0.044 1.411± 0.548 8.464± 0.553 8.464± 0.553 29

TABLE III: Correlation results for the dis-
similarity measures between Sl and Su with
OOD contamination and SSDL accuracy.

Sl nl dℓ1 dℓ2 dJS dC

MNIST
60 -0.876 -0.898 -0.969 -0.944
100 -0.805 -0.83 -0.786 -0.948
150 -0.794 -0.822 -0.81 -0.944

CIFAR-10
60 -0.823 -0.853 -0.944 -0.921
100 -0.826 -0.878 -0.966 -0.947
150 -0.808 -0.838 -0.952 -0.927

FashionMNIST
60 -0.2 -0.268 -0.735 -0.789
100 -0.264 -0.326 -0.781 -0.824
150 -0.286 -0.347 -0.785 -0.827

The second set of results demonstrate the potential of using
distance measures as a systematic and quantitative ranking
heuristic when selecting unlabelled datasets for the MixMatch
algorithm. The exact distances, as described in Section III,
for all OOD configurations from the ablation study can be
found in Table II. We can observe that these distances trace the
accuracy results found in Table I, as confirmed by the Pearson
correlation. This correlation is quantified in Table III with
the cosine based density measure dc correlating particularly
well with the accuracy results of Table I. Also, the p-values
are consistently lower for the density based distances (with
fewer p-values that exceed 0.05, as shown by the italicized
entries in Table II), meaning that density based distances
present more confidence. We suspect that this is related to the
quantitative approximation of the feature distribution mismatch
implemented both in the dJS and dC distances. In Table I we
indicate the distance-based preference ranking in parentheses.
The OOD configurations resulting in the best SSDL accuracy
are contained in the top two selections seven out of nine times.
Note that with our proposed approach we can do this selection
before SSDL training and thus improve the overall result.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this work we extensively tested the behavior of the
MixMatch algorithm under various OOD unlabelled data
settings. We introduced a set of quantitative data selection
heuristics, DeDiMs, to rank unlabelled datasets prior to model
training according to their expected benefit to SSDL. Our
results lead us to the following conclusions:
1) In the experiments conducted in this study the implemented

DeDiMs correlate strongly with SSDL accuracy. In partic-

ular, density based measures yield high correlation with
MixMatch accuracy. This suggests that DeDiMs can be
applied in SSDL prior to learning, aiding the unlabelled
data selection process and mitigate the distribution mis-
match problem. The proposed method is agnostic to the
downstream SSDL algorithm, simple and fast to compute
making it particularly suitable for practical application in
SSDL. Different OOD detectors [52] use the feature space
for building a discrimination criteria to filter OOD data. Our
results suggest that online OOD data filtering approaches
for SSDL as the ones developed in [27], [11] might benefit
from using the feature space for OOD detection. Other
criteria for online OOD detection during training as the
model Softmax output used in [27] might discard data that
might be useful for learning. This is tested in [10] for a
practical application.

2) In real-world usage scenarios of SSDL the unlabelled dataset
Su may contain observations of classes not present in
labelled dataset Sl . We simulated a similar scenario with the
OH setting which resulted in a subtle accuracy degradation
in most cases. However, the accuracy gain obtained vis-a-
vis the fully supervised baseline is still substantial, making
the application of SSDL attractive in such a setting.

3) Another plausible real-world scenario for SSDL is the
inclusion of widely available unlabelled datasets, e.g., built
with web crawlers, where shifts in crawl queries can lead
to different unlabelled datasets. This scenario has been
simulated with the OOD types similar and different. We can
observe that notions of semantic similarity between labelled
and unlabelled dataset pairings, e.g., (MNIST-SVHN) or
(FashionMNIST-FP), do not necessarily imply an SSDL
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accuracy gain. The quantitative comparison of the density
function plots in Figure 2 suggest a higher similarity for
dataset pairs with less semantic similarity, for some of the
tested dataset setups. Distance measures, in particular dC ,
seem to be an accurate and systematic proxy for SSDL
accuracy, according to our test results. This is visible when
comparing the accuracy and distance results of the previous
pairings to (MNIST-TI) and (FashionMNIST-TI) which have
higher accuracies and, also, surprisingly, lower distance
measurements. We speculate that using more diverse data
for pre-training might yield an even better feature extractor,
similar to results in self-supervised learning methods [48].

4) As suggested, our method can be used to rank different
unlabelled datasets. The proposed DeDiMs can be consid-
ered efficient to implement, requiring only small samples,
and with no need for model training, as a pre-trained
ImageNet feature extractor is used. According to our tests, a
ResNet model pre-trained on ImageNet without further fine-
tuning works surprisingly well for quantifying unlabelled-
to-labelled dataset affinity. As preliminary studies show a
growing concern for the carbon footprint of training deep
learning models [2], inexpensive and quantified data selec-
tion heuristics like DeDiMs can help to avoid unnecessary
computation loads. Further studying our method to decrease
training time and resources is an interesting future research
path.

5) The claim in [51] regarding the impact of OOD data close
to the decision boundary compared to OOD data far from
it, relies on an Euclidean space projection of the data. In
this work, we have gathered evidence that Euclidean based
similarity measures correlate worse with SSDL accuracy
than the density function based measures tested. Using a
density based divergence like Jensen-Shannon might not
correlate well with semantic similarity, but according to
our tests, it better explains the obtained SSDL accuracy.
This shows how the feature extractor and the consequent
feature space projections play a more important role in the
final model performance than the original input space, as
the feature space is built through non-linear convolution
operations that significantly change the input representation.

Based on these results, we can draw a number of recom-
mendations for the researchers in the field, which we enlist as
follows:

1) Our results shift the attention to data-oriented approaches
to improve the model performance. Similar to [26], where
dataset sparsity is related to downstream model accuracy,
our method allows the use of DeDiMs to assess the impact
of unlabelled datasets on SSDL training. This enables the
exclusion of datasets that are not beneficial for a given
SSDL task.

2) The use of SSDL can also improve other model properties
like uncertainty [9]. Hence, exploring the impact of OOD
data in other aspects of SSDL performance, such as
robustness [30], explainability [39] and confidence [3], as
recommended in [29], [31], is a promising next step for
distribution mismatch analysis. For instance, in [3] the
impact of OOD data is tested in the overall model robustness

and explainability. Evaluating the impact of distribution
mismatch between Sl and Su in other performance aspects
opens up further questions for research.

3) In unsupervised domain adaptation we find similar chal-
lenges where the target domain presents a different dis-
tribution than the source domain. Using SSDL for such
setting can leverage unlabelled data in the target domain.
For instance, in [50], an SSDL approach is proposed for
unsupervised domain adaptation. Quantifying the degrees
of OOD for the unlabelled data could improve the anal-
ysis of the test results and estimate the performance for
unsupervised domain adaptation.

4) Finally, the proposed test bed and distance measures can
be used for a more systematic quantitative evaluation of
SSDL algorithms. Counterintuitively, datasets with a high
perceived semantic similarity can be less beneficial for
SSDL than other unlabelled datasets with less perceived
semantic similarity, adding further evidence that we should
be wary to conflate human and machine perception.

In future work, we plan to extend the test bed to other
SSDL variants, depth-first analyses (e.g., fewer tasks with more
training epochs), additional axes of test bed variables (e.g., nu)
and more testing around the appropriate dissimilarity measures
parameters. Investigating the relationship between generic
feature similarity and SSDL downstream performance further
is a promising topic in data-centric machine learning. The
fact that feature dissimilarity scores can be calculated before
SSDL training and independent of the SSDL model offers
an interesting profile for application. Connections to OOD
detection [52], concept drift [45] and distribution mismatch [11]
could be explored further. Efficient and effective quantitative
dataset evaluation prior to training a deep learning model
offers an opportunity to push the envelope in computationally
efficient deep learning further and to narrow the gap between
deep learning research and its real-world application.
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