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Abstract 

Discrete element modelling of normal compression has been simulated on a sample of breakable 

two-ball clumps and compared to that of spheres. In both cases the size effect on strength is 

assumed to be that of real silica sand. The slopes of the normal compression lines are compared and 

found to be consistent with the proposed equation of the normal compression line. The values of 

the coefficient of earth pressure at rest K0,nc are also compared and related to the critical state 

fiction angles for the two materials.  The breakable samples have then been unloaded to establish 

the stress ratios on unloading.  At low overconsolidation ratios the values of K0 follow a well-

established empirical relationship and realistic Poisson ratios are observed. On progressive 

unloading both samples head towards passive failure, and the values of the critical state lines in 

extension in q-p’ space are found to be consistent with the critical state angles deduced from the 

values of K0 during normal compression. The paper highlights the important role of particle shape in 

governing the stress ratio during both normal compression and subsequent overconsolidation. 

Introduction 

The authors have recently shown that it was possible using the discrete element method (DEM) to 

accurately model the one-dimensional compression of sand [1]. They showed that the normal 

compression line (NCL) for a sand should be linear when plotted on double-logarithmic axes, and 

that the compression index—i.e. the slope of the compression line in log e-log σ space—is a function 

solely of the size-hardening law for the particles. This proposition was further demonstrated by 

supplementary work modelling isotropic normal compression [2], which explored how isotropic 

boundary conditions give rise to anisotropic local shear stresses with the sample. For one-

dimensional normal compression, the McDowell and de Bono [1] compression law is given by the 

equation:  

log 𝑒 = log 𝑒y −
1

2𝑏
log

𝜎

𝜎y
         (1) 

where e is the current voids ratio, σ is the applied stress, ey is the value on the linear log-log plot at a 

stress corresponding to the yield stress σy, and b controls the size effect on average particle strength 

σav: 

𝜎av ∝ 𝑑−𝑏           (2) 

where d is the particle diameter. This new compression law is able to correctly predict the slope of 

the NCL for a range of simulations using spheres, and demonstrates agreement with experimental 

results. To determine whether fracture should occur or not, the average octahedral shear stress 

within each particle was used: 

𝑞 =
1

3
[(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2]1 2⁄       (3) 
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which was calculated from the average principal stresses (σ1, σ2, σ3) within each particle. This 

method provided a simple criterion to facilitate breakage taking into account multiple contacts as 

well as different contact forces on a particle surface, while avoiding the use of computationally-

demanding agglomerates. 

Following Jaeger [3], McDowell [4] measured the tensile strength of sand grains by diametral 

compression between flat platens as σ = F / d2, and showed that the stresses at failure for a given 

particle size satisfied a Weibull distribution of strengths. These distributions were described by a 

characteristic value of strength, σ0 and a Weibull modulus, m. In PFC3D, the value of octahedral 

shear stress, q induced in a particle compressed diametrically between two walls is proportional to 

F / d2 [2]; hence, McDowell and de Bono [1] assumed that for a particle under multiple contacts, the 

particle would break if the octahedral shear stress was greater than or equal to its strength, where 

the strengths of the particles satisfy a Weibull distribution of q values. Assuming the Weibull size 

effect is applicable to soil particles [e.g. 5], then the size-hardening parameter b in Equation 2 is 

equal to (3 / m); rewriting this equation in terms of octahedral shear strength, the particle strengths 

can be related to size by: 

𝑞0 ∝  𝑑−
3

𝑚           (4) 

where q0 is the characteristic particle strength, and is a value of the distribution such that 37% 

(exp[-1]) of random strengths are greater (and for a given m is proportional to the mean), and m is 

the modulus (which is related to the coefficient of variation). It should be noted that the Weibull size 

effect need not necessarily apply (i.e. b ≠ 3 / m), and that a Weibull distribution of strengths exists 

for each size. 

In their previous work on normal compression [1, 2, 6], the authors allowed each particle to split into 

two new fragments, with the new sphere fragments overlapping enough to be contained with the 

bounding parent sphere, while obeying conservation of mass. An alternative to using this 

replacement method would be using agglomerates [7–10], i.e. modelling individual soil particles as 

bonded groups of smaller particles, which fragment as and when the bonds between the sub-

particles are broken. However, as discussed at more length in previous work [e.g. 1, 2], a problem 

with using agglomerates is that the sub-particles themselves cannot break, and therefore an 

arbitrary comminution limit exists. In addition, although agglomerates can provide useful qualitative 

insight, they are not capable of quantitatively modelling the evolution of voids ratio, as they contain 

internal voids which are released upon agglomerate fracture. 

The following work presents the results of simulations similar to the authors’ previous work but 

featuring non-spherical particles. The simulation procedure used here is identical to that in the 

above references [1, 2, 6]; to which the readers are directed to for full details. 

Particle Shape 

To investigate the influence of particle shape on the behaviour of granular material, two simulations 

are presented—one using spheres, the other using elongated, non-spherical particles. Both samples 

are created in a scaled-down oedemeter, 30 mm in diameter and 7 mm in height. 
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For the first simulation—using spheres—a dense random sample of 640 particles of diameter 2 mm 

were created using the radius expansion method [11]. This sample is identical to that used in 

de Bono and McDowell [6]—although statistically slightly different to the sample used in McDowell 

and de Bono [1]; however the behaviour will be shown to be the same. The sample has an initial 

voids ratio of e0 = 0.84, which was as dense as possible without any locked-in contact forces. To 

minimise the boundary effects that are initially present, a larger sample size and/or smaller initial 

particles are desirable. However, exploratory simulations using larger samples resulted in the same 

compression behaviour, but were unable to reach high pressures due to the large number of 

particles covering a wide range of scales, which rendered the numerical timestep too small. 

Furthermore, any boundary effects that are present, affect both of the simulations presented here in 

a similar way. 

For the sphere simulation, as mentioned above when a particle breaks it is replaced by two new 

smaller fragments, contained within the bounding parent sphere, shown in Figure 1. The axis joining 

the new spheres is aligned in the direction of the minor principal stress. Although the choice of 

replacing breaking particles with 2 fragments may seem simplified, previous exploratory simulations 

showed that the number of fragments produced from each breakage has no influence on the normal 

compression behaviour or the resulting particle size distributions [1]. 

 

Figure 1 Particle Breakage Mechanism for spheres 

For the second simulation, to capture more realistic particle shape, the ‘clump’ feature of the 

software PFC3D [11] is used. Clumps consist of rigid bodies of overlapping spheres, in which internal 

contacts are ignored. In this case, two-ball clumps are used, comprising two equi-sized spheres, with 

the centre of mass of each constituent sphere located on the surface of its partner-sphere, as shown 

in Figure 2(a). The sample is generated by creating spheres (at greatly reduced radii), replacing these 

spheres with two-ball clumps of the same volume, then expanding the clumps using the same 

technique as for the spheres. For the sake of comparison, a uniform sample of 640 clumps is used, 

with the same volume and initial voids ratio as the spheres—although it should be noted that this 

sample of clumps has a lower relative density, as the clumps have a significantly lower minimum 

voids ratio due to their geometry. 
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(a)       (b) 

Figure 2 Cross-section clump particle (a) and Particle Breakage Mechanism for clumps (b) 

As for the spheres, when a clump breaks, it is replaced by two new smaller, identically-shaped 

fragments; however, in this case, due to the geometry, placement of the new fragments is not 

bounded by the parent clump. The new fragments are placed in a perpendicular manner, with the 

line connecting their centres of mass aligned with the longitudinal axis of the original parent clump. 

They are not created within the space of the parent clump, however their placement is bounded by 

the longitudinal extent of the original clump—indicated by the thin dotted lines in Figure 2(b). 

During placement, the new fragments are given a random perpendicular orientation by applying a 

rotation about the longitudinal axis of the parent clump; also indicated in the figure. Although this 

method of placement is somewhat arbitrary—and different to that for the spheres—it did not seem 

scientifically realistic, considering the geometry, to create the new fragments entirely within the 

original particle space (as was the case for spheres). Additionally, although the principal stress axes 

are not utilised in this case, one would however expect an entity with such an aspect ratio to 

fracture perpendicularly—as opposed to splitting longitudinally. The difference in breakage 

mechanism between the simulations is not a cause for concern, as McDowell and de Bono [1] 

demonstrated that the breakage mechanism itself has no effect on the compression behaviour; 

furthermore, for the case with clumps, there is less artificial overlap occurring immediately after 

fracture. 

Immediately following the placement of new fragments, no further particles are allowed to break for 

a number of timesteps. During this stage, the samples are cycled continuously until the particles 

have moved apart, and the artificial forces resulting from overlap have dissipated. Once the sample 

is stable, the simulations continue, as described in more detail in [1] 



5 
 

The two initial samples have the same number of particles, the same mass, and before application of 

the first vertical stress increment, the same voids ratio. The initial spheres (size d0 = 2 mm) are given 

random strengths from a Weibull distribution—with a characteristic value of octahedral shear 

strength, q0 of 37.5 MPa, and a modulus, m of 3.3. These strengths were determined from data 

obtained from single particle crushing tests by McDowell [4], and are the same as used in most of 

the authors’ previous work using spheres. The size-hardening law for the spheres is governed by 

Equation 4, which is used to attribute random strengths to new fragments. Due to their elongated 

shape, the clumps cannot be unambiguously defined by their diameter; however, for the sake of 

comparison, the initial clumps are given strengths from the same Weibull distribution—i.e. q0 = 37.5 

MPa and m = 3.3. If one considers the equivalent or nominal diameter, de of the initial clumps—i.e. 

the diameter of a sphere of the same volume—then this will be equal to the initial diameter of the 

spheres (de = d0 = 2 mm), and is used with Equation 4 when attributing strengths to new clump 

fragments. Hence both materials have the same initial strengths, and follow the same size-hardening 

law. 

To achieve a simple comparison, and to isolate the effects of particle shape, both simulations use the 

octahedral shear stress within a particle to determine breakage. The octahedral shear stress in a 

particle is calculated in the same manner for both spheres and clumps, from the average particle 

principal stresses. The principal stresses themselves are obtained from the average stress tensor, 

which is calculated in the software [11] according to: 

�̅�𝑖𝑗
(𝑝)

=
1

𝑉(𝑝)
∑ (𝑥𝑖

(𝑐)
− 𝑥𝑖

(𝑝)
)

𝑁c
(𝑝) 𝐹𝑗

(𝑐,𝑝)
        (5) 

where V(p) is the volume of the particle (p), Nc
(p) is the number of contacts on the particle, xi

(c) and xi
(p) 

are the locations of the contact and particle respectively, and Fj
(c,p) is the force acting on the particle 

at contact (c). For more discussion on the choice of breakage mechanism, the number of fragments, 

the influence of different hardening laws and the choice of breakage criteria, readers are directed to 

prior publications for further information [1, 2, 12, 13]. The default local damping scheme, with a 

coefficient of 0.7 is used whereby a damping force is applied to all particles. The Hertzian contact 

model is used, in which the particles are attributed a shear modulus and Poisson’s ratio, which are 

specified (along with other initial sample details) in Table 1 

Table 1 DEM Parameters 

Oedometer Sample 
Properties 

Spheres Clumps 

Particle Diameter, d0 (mm) 2.0  
Nominal/Equivalent Particle Diameter (mm)  2.0 
Size: Height x Diameter (mm) 7 x 30 
No. of Particles 640 
Voids Ratio 0.84 
Particle Friction Coefficient 0.5 
Contact Model Hertz-Mindlin 
Shear Modulus, G (GPa) 28 
Poisson’s Ratio, ν 0.25 
Density (kg/m3) 2650 
37% Strength, q0 (MPa) 37.5 
Weibull Modulus, m 3.3 
Wall Friction Coefficient 0 

 

(a) 
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Normal Compression 

The one-dimensional compression behaviour for the two simulations is given in Figure 3, with the 

data plotted using log e-log σ axes (instead of the conventional e-log σv axes used in the critical state 

soil mechanics framework [14]). As discussed in McDowell and de Bono [1], the use of double-

logarithmic axes to describe the compression behaviour has been proposed experimentally [15] as 

well as theoretically [16]. The normal compression line for the spheres in Figure 3 has the expected 

slope according to Equation 1, with a negative gradient of approximately 0.5, and is in agreement 

with previously published results. For the clump simulation, the most obvious difference at first 

glance is that the compression line appears to begin at a significantly lower voids ratio. This is not 

surprising, because although the two samples are generated with the same number of particles, at 

the same voids ratio, in identically sized oedometers, the spheres are in a relatively very dense state, 

while the clumps are comparatively relatively loose. Upon application of the first stress increment, 

the sample of clumps experiences an immediate reduction in voids ratio as the clumps pack together 

more efficiently. 

 

 

Figure 3 One-dimensional compression results for spheres and clumps 

Although the NCL for the clump simulation has not developed to the same extent (i.e. it does not 

cover as wide a range of stress), it can be speculatively seen that it tends to the same slope as the 

spheres. This is to be expected, as according to the McDowell the de Bono [1] theory, the slope of 

the compression line is solely a function of the size hardening law—which is the same for both 

shapes of particles. This also is consistent with experimental results for compression tests on 

samples consisting of different-shaped particles of the same material [17, 18], in which the 

angularity affects the yield stress but the compressibility is the same. At the end of the simulations, 

the sphere sample comprises almost 15000 particles, whilst the clump simulation consists of 

approximately half as many, due to the simulation being terminated earlier. Images of the two final 

samples are given in Figure 4. The smallest particles in existence at final stage are 0.1 and 0.2 mm 

respectively for the sphere and clump simulations. 
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Figure 4 Images of the two crushed samples, spheres (a) and clumps (b) 

What can also be observed from Figure 3 is the difference in yielding between the two samples. 

Although the first evidence of yielding—i.e. the first deviation from the approximately linear initial 

compression line—appears to occur at approximately the same vertical stress, the clumps 

demonstrate less rapid yielding. If one were to consider the point of maximum curvature to 

represent the yield stress, then the clump simulation would demonstrate a higher yield stress. This 

difference in yield stresses may intuitively be attributed to the different packing of the two samples; 

and the fact that the clumps, due to their lower voids ratio, have a larger number of contacts. For 

example, before yielding, at a vertical stress of 8 MPa—the sample of spheres has a voids ratio of 

approximately 0.77, while the clumps have a voids ratio of 0.71—and average coordination number 

for the spheres is 4.8 while for the clumps it is 5.8. Hence, on average, the spheres have fewer 

contacts, and are therefore likely to have larger induced octahedral shear stresses; the clumps have 

more contacts, and are therefore more likely be loaded more uniformly and have lower induced 

shear stresses. However, as de Bono and McDowell [13] noted, another factor is that because the 

clumps are packed more densely, and the voids are therefore smaller, for these voids to be filled, the 

fragments filling these voids must also be  smaller—which requires more breakage, and therefore 

higher stress levels. 

Although the two materials have the same coefficient of friction, due to the different particle shapes 

they should exhibit different coefficients of lateral earth pressure (K0,nc = σh / σv) during normal 

compression. The values of K0,nc measured from the simulations are given in Figure 5, which are 

plotted against the applied stress. At low stresses, the clumps demonstrate a noticeably lower value 

of K0,nc; this is consistent with a higher mobilised shear strength, which one would expect from the 

clumps. In both simulations, K0,nc increases rapidly at the onset of crushing, before appearing to 

approach a steady value at high stresses. For the spheres, the value of K0,nc appears to stabilise in the 

region 0.75–0.80; while the clumps appear to approach a final value of approximately 0.65–0.70. 



8 
 

 

Figure 5 Coefficient of lateral earth pressure, K0,nc as a function of applied stress during normal compression, for spheres 
and clumps 

Recent work by McDowell et al. [19], who performed one-dimensional compression simulations 

using the same model but with a different aspect ratio, reported a K0,nc value of approximately 0.7 

for spheres, slightly lower than the value found in the present simulations for the same material. 

This is almost certainly due to the different shape of the samples, their sample [19] had a different 

aspect ratio more suitable for triaxial shearing (it was taller than it was wide), which reduced the 

influence of the boundaries, and resulted in a larger volume of dense random packing. McDowell et 

al. [19] used their value of K0,nc to predict a critical state friction angle using the Jâky equation [20]: 

𝐾0,nc = 1 − sin 𝜙          (6) 

which in turn was used to predict a critical state friction constant Mc, using: 

𝑀c =
6 sin 𝜙

3−sin 𝜙
           (7) 

Their predicted value of Mc (the subscript denoting triaxial compression) was then compared with 

the value measured from simple triaxial compression tests performed on isotropically compressed 

samples unloaded to different stresses; their results agreeing well. The focus in this paper is to 

compare the behaviour of two different-shaped particles, as well as to examine the behaviour of 

such samples upon unloading and reloading. 

As shown above in Figure 5, the spheres and clumps exhibit different lateral earth pressure 

coefficients. Hence for a given applied vertical stress, σv the clumps will have a lower mean stress, p’, 

due to their greater ability to interlock. This is confirmed in Figure 6, which shows the compression 

lines plotted in terms of mean stress (log e-log p’), where the two NCLs again appear parallel. At high 

stresses, both NCLs appear to exhibit the same slope of approximately 0.5, which is to be expected if 

the slope is solely a function of the hardening law, and assuming K0,nc approaches a constant value 

for each material. 
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Figure 6 One-dimensional compression results for spheres and clumps plotted against mean stress 

If the value of K0,nc achieves a constant value during normal compression, then, from the definitions 

of q and p’, a one-dimensional compression line can be plotted in q-p’ space, with constant 

proportionality between q and p’. The gradient of this normal compression line, η0,nc, is related to 

K0,nc by: 

𝜂0,nc =
3(1−𝐾0,nc)

1+2𝐾0,nc
          (8) 

The stress paths followed in q-p space for the spheres and clumps are shown in Figure 7(a) and (b) 

respectively. Constant proportionality between q and p is not observed throughout the whole test, 

due to the change in K0,nc that occurs during yield. Once an approximately constant K0,nc value is 

reached, the stress paths should begin to follow a linear path directed from the origin, this 

behaviour can be witnessed somewhat in (a), but not clearly in (b) for the clumps. If the simulations 

were continued to much larger stresses, then it is expected that this trend would be more visible. By 

fitting various η0,nc-compression lines to the data, it appears that a slope of η0,nc = 0.26 is appropriate 

for the spheres, and a slope in the region of η0,nc = 0.40 may be suitable for the clumps. These η0,nc-

compression lines are shown by the dotted lines in Figure 7. From Equation (8), these η0,nc values 

reflect lateral earth pressure coefficients of K0,nc = 0.78 for spheres, and K0,nc = 0.68 for clumps, which 

are consistent with those values indicated by Figure 5. 
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(a)       (b) 

Figure 7 Stress paths for spheres (a) and clumps (b) plotted in the q-p’ stress plane 

Unloading 

At the termination of the compression tests, i.e. the point at which at the simulations were very 

computationally demanding, whereby any further breakage would render them unsustainable, the 

two samples were each unloaded to 250 kPa, before then being reloaded as far as possible. The 

stress-strain results for this stage of the tests, shown in log e–log σv space are given in Figure 8. Due 

to the extensive crushing that has occurred, distinct, elastic unload-reload lines can be seen, a 

phenomenon not possible in such regular samples without considering particle breakage. During the 

reloading phase for the clump simulation, there is a slight decrease in voids ratio visible, this is most 

likely due to particle rearrangement occurring during this unload-reload cycle; whilst the reloading 

line for the sphere sample follows an apparently identical path to the unloading line. Although it 

should be noted that the two samples were unloaded from different stress levels, this observation 

could be a reflection of the clumps’ increased ability to interlock—and hence during the unload-

reload cycle, some interlocking is reduced (i.e. the sample undergoes compaction); whilst the 

spheres have very little ability to interlock, and therefore cannot easily be compacted further. 
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Figure 8 One-dimensional compression results showing unload and reloading behaviour 

The lateral earth pressure coefficient K0 during unloading and reloading for the two samples is given 

in Figure 9. As expected [21–23], the value of K0 in both simulations increases quite dramatically as 

the stress level reduces. This is due to the horizontal stress reducing more slowly than the vertical 

stress as the sample is unloaded. Although the fact that the two samples were unloaded from 

different stresses makes a conclusive comparison difficult, it can be seen from Figure 9 that the 

value of K0 increases more rapidly for the clumps. This implies that the horizontal stress decreases 

more slowly than in the sample of spheres, which is also due to the increased ability of the clumps to 

interlock. 

 

Figure 9 Lateral earth pressure coefficient as a function of applied stress during unloading and reloading 
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Traditionally, the value of the lateral earth pressure coefficient for soils during unloading, K0 is often 

expressed as [24]: 

𝐾0 = 𝐾0,ncOCR𝑎          (9) 

where OCR is the overconsolidation ratio, and a is an empirical parameter. The value of a is typically 

around 0.5 [e.g. 23, 25] for clays; however, for sands, one can expect a similar relationship to exist, 

considering both granular soils and clays exhibit the same behaviour during normal compression, 

and Jâky’s equation applies to both [19]. Feda [21] noted that values as high as 0.6 are suitable for 

dense sands. The lateral earth pressure coefficients during unloading, K0 are plotted against values 

of OCR for the two simulations in Figure 10, on double logarithmic axes (where a power law of the 

form of Equation (9) would appear linear). The data shows that K0 increases rapidly at first, between 

OCRs of 1 and 3, beyond which K0 does not increase as rapidly. Interestingly, it appears that Equation 

(9), using an approximate value of a = 0.5 is sufficient to loosely describe the behaviour of both 

simulations for OCRs ranging between 1 and 3, which is shown in Figure 10 by the dotted lines. 

Equation (9) cannot be valid for the entire range of possible OCRs (otherwise K0 would tend to 

unrealistically large values [21]). In reality, the limiting value of K0 is a function of the frictional 

strength of the material. In Figure 9, both materials show approximately the same maximum value 

of K0, however it would be expected that the clumps would exhibit a higher value if unloaded from 

the same stress as the spheres. 

 

Figure 10 Lateral earth pressure coefficient for the spheres and clumps as a function of overconsolidation ratio, plotted 
on double logarithmic axes 

The unloading stress paths in q-p’ space are given in Figure 11(a) and (b). If one assumes that the 

material as a whole behaves elastically and isotropically immediately upon unloading, then the 

following expression can be deduced: 

𝛿𝑞

𝛿𝑝′
=

3(1−𝜈)

1+𝜈
           (10) 

where ν is the Poisson’s ratio of the material. Taking the gradients of the stress paths immediately 

upon unloading as (δq / δp’), rearranging Equation (10) produces a Poisson’s ratio of 0.18 for 
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spheres and 0.15 for the clumps. The observation that the clumps have a lower Poisson’s ratio 

seems logical, again due to the ability of the clumps to interlock and maintain their structure. 

Wood [23] shows that beyond an overconsolidation ratio f 1, where the horizontal stress is the 

major principal stress, the stress path leads towards passive failure in q-p’ space, where: 

𝑞
𝑝′⁄ = −𝑀e           (11) 

and: 

𝑀e =
6 sin 𝜙

3+sin 𝜙
           (12) 

Assuming that the critical state angle of friction is constant for both compression and extension. 

Fitting a trendline to the q-p data in Figure 11(a) and (b), at the end of unloading gives failure lines 

with slopes Me = -0.49 for spheres and Me = -0.57 for clumps. Substituting the values of Me obtained 

from the data in Figure 11 into Equation (12), gives critical state angles of ϕ = 15.5° for spheres and 

ϕ = 18.36° for clumps; the clumps exhibiting a larger value as one would expect. Using these values 

in the Jâky equation (6) gives values of K0,nc of 0.73 for spheres and K0,nc = 0.69 for clumps, in 

qualitative agreement with the values obtained above. 
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(a)

(b) 

Figure 11 Stress paths plotted in q-p plane showing unloading and reloading behaviour, for both spheres (a) and clumps 
(b) 

It can also be seen in Figure 11 that the stress paths upon reloading do not appear to tend 

completely towards the original stress paths before unloading. It is clear from Figure 9 that this is 

due to the soils exhibiting lower values of K0 during recompression. The same behaviour has been 

observed experimentally, for example by Gao and Wang [26], albeit with a much smaller 

discrepancy. Once the soil is back on the normal compression line, it is expected that the stress 

paths in Figure 11 would be on the original path, with the same slope, η0,nc (and K0,nc) prior to the 

unload-reload cycle, obeying Jâky’s equation. 

Conclusions 

The one-dimensional normal compression of non-spherical particles (clumps) has been simulated, 

and the behaviour is in line with the authors’ previously proposed compression law. For the same 

hardening law, the two materials—spheres and clumps—reveal normal compression lines with the 
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same slope; confirming the slope to be solely a function of the particle size-hardening law, and 

which is linear when plotted on log-log axes. Particle shape was shown to give the clumps a lower, 

more realistic coefficient of lateral earth pressure at rest, K0,nc, due to the increased ability of the 

clumps to interlock. 

The samples were unloaded, and both the spheres and the clumps demonstrated an increase in K0 

during the unloading process, appearing to reach a maximum value. The coefficients during 

unloading also appear to agree with K0 = K0,ncOCR0.5 for overconsolidation ratios between 1–3. The 

unloading stress paths on the q-p’ plane were used to estimate bulk Poisson ratios, and the clumps 

gave a lower Poisson ratio compared to the spheres. On progressive unloading both samples tended 

towards passive failure. The values of ϕcrit estimated from K0,nc during normal compression using 

Jâky’s equation were found to be consistent with the slopes of the critical state lines in extension in 

q-p’ space as the samples progressed towards passive failure. 

It can therefore be concluded that the DEM samples exhibit the correct behaviour during normal 

compression and overconsolidation comparing with available data, and that the clumps give more 

realistic stress ratios due to the ability to interlock.  The simulations have therefore provided micro 

mechanical insight in the sense that these very simple DEM samples appear to obey the laws of soil 

mechanics, and the evolution of the coefficient of earth pressure at rest on unloading is a strong 

function of particle shape which governs interlock, with the value tending towards the theoretical 

passive limiting case as the sample is progressively one-dimensionally unloaded. 
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