1 Organic matter chemistry controls greenhouse gas emissions from

2	permafrost peatlands
	1 I

- 3
- 4 Running head: Carbon dynamics in permafrost peatlands
- 5
- 6 S. Sjögersten^{1*}, S. Caul², T. J. Daniell², A. P. S. Jurd³, O. O'Sullivan¹, C. S. Stapleton³ and J.
- 7 J. Titman³
- 8
- 9 ¹University of Nottingham, School of Biosciences, Sutton Bonington Campus, LE12 5RD,
- 10 UK
- 11 ²James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- 12 ³University of Nottingham, School of Chemistry, University Park, NG7 2RD, UK
- 13
- 14 Corresponding author:
- 15 Phone: 0044 115 9516239
- 16 Fax: 0044 115 9516162
- 17 E-mail: Sofie.Sjogersten@nottingham.ac.uk
- 18
- 19 Key words: ¹³C solid state NMR, carbon dioxide, climate change, methane, microbial,
- 20 permafrost peatland
- 21 Primary research article
- 22

23 Abstract

24	Large tracts of arctic and subarctic peatlands are underlain by permafrost. These peatlands
25	store large quantities of carbon (C), and are currently under severe threat from climate
26	change. The aim of this study was to determine the size and organic chemistry of the easily
27	degradable C pool in permafrost peatlands and link the functional organic chemistry to
28	temperature and moisture controls of greenhouse gas emissions. First, we used a combination
29	of field measurements and laboratory experiments to assess the influence of increased
30	temperature and flooding on CO2 and CH4 emissions from sixteen permafrost peatlands in
31	subarctic Sweden and Canada. Second, we determined the variation in organic matter
32	chemistry and the associated microbial community composition of the peat active layer with
33	depth using quantitative ¹³ C solid-state NMR and molecular biomarkers respectively. We
34	demonstrate that the peat organic chemistry strongly controls CO ₂ release from peat and that
35	ca. 35 and 26 % of the peat organic matter, at the Swedish and Canadian peatlands sites,
36	respectively, is easily degradable by heterotrophic microorganisms. In contrast to $\mathrm{CO}_2,\mathrm{CH}_4$
37	emissions were decoupled from peat functional organic chemistry. Furthermore we found
38	strong relationships between the microbial community structure and the peat organic
39	chemistry suggesting that substrate type and abundance is an important driver of microbial
40	composition in sub-arctic peatlands. Higher temperatures resulted in greater CO ₂ production
41	with comparable temperature sensitivity throughout the active layer despite considerable
42	variation in peat chemistry and microbial community composition with depth. Our study
43	shows that functional organic chemistry controls both soil respiration rates and the
44	composition of the microbial community. Furthermore, if these peatlands collapse and flood
45	on thawing, they are unlikely to become large emitters of CH4 without additional input of
46	labile substrates.

48 Introduction

- 4	n
4	ч
	-

50	Subarctic peatlands rich in carbon (C) account for ca. 20% of permafrost area across the
51	arctic and store ca. 94.3 Gt-C (Tarnocai et al. 2009; Schuuur et al., 2011). With current
52	estimates of anthropogenic fossil fuel emissions at 11.8 Gt-C yr-1 (Friedlingstein et al.,
53	2014), this represents a substantial C reservoir at risk with sever implication for future global
54	climate (Schneider von Deimling et al., 2012). The arctic is predicted to undergo mean
55	annual temperature increases of over 5 °C (IPCC 2014) leading to estimated C losses of 232-
56	380 GtC by 2011 from permafrost soils (Schuur et al. 2011). These high C loss rates is
57	supported by incubation and modelling studies suggest that within 50 years ca. 40 % of the
58	soil organic material (ca. 60 Gt-C) currently held in organic permafrost soils could be
59	mineralised and released to the atmosphere (Schädel et al., 2014).
60	
61	While it is well established that the extensive C stores in permafrost peatlands are especially
62	susceptible to losses through a combination of expected climate warming (Dorrepaal et al.,
63	2009; Wang et al., 2010; Harden et al., 2012) and high concentrations of labile constituents
64	(i.e. easily degraded by microorganisms) (Dorrepaal et al., 2009; Schuur et al., 2009; Schuur
65	and Abbott 2011; Schädel et al., 2014), uncertainties remain about the functional composition
66	of the permafrost peatland C pool (e.g. the proportion of alkyls, O-alkyls, aromatics in the
67	peat matrix) and how this may control C losses in a warming arctic. Furthermore, permafrost
68	thaw in this region will result in deeper active layers which may subside, flood and result in
69	thermokarst formation as the ice rich core is lost (Osterkamp 2007; Åkerman and Johansson
70	2008). This increased water logging, with associated anoxic conditions, may increase CH ₄
71	emissions and potentially lower heterotrophic CO ₂ losses (Christensen et al., 2004; Schuur et
72	al., 2008; Treat et al., 2014).

Formatted: Font: Not Italic

-	\mathbf{a}
1	1
'	-

74	The susceptibility of peat to decomposition by microbes is linked to its organic chemistry.
75	Peat chemistry has been shown to influence potential CO_2 and CH_4 emissions from subarctic,
76	temperate and tropical peats in short term incubations with higher CO ₂ and CH ₄ production
77	resulting from peat high in carbohydrates (O-alkyls) and proteins (White et al., 2002;
78	Andresen and White 2006; Reiche et al., 2010; Wright et al., 2011; Treat et al., 2014).
79	However, anaerobic CH4 production is both less efficient and more strongly limited by
80	substrate quality (Ström et al., 2012) than aerobic CO ₂ production.
81	
82	One of the factors determining if a given exothermic reaction will occur is the activation
83	energy (E_a) of the reaction (Atkin1994). For organic materials, such as peat and litter, the
84	relationship between E_a and the structure of molecules are described by kinetic theory (e.g.
85	Lloyd and Taylor 1994; Craine et al., 2010): Kinetic theory postulates that decomposition of
86	recalcitrant, structurally complex, organic compounds, that have greater activation energies,
87	puts higher energy demands on microorganisms. Recalcitrant organic compounds therefore
88	have greater temperature sensitivity than more labile compounds with lower E_a (Fierer et al.,
89	2005). In the context of permafrost peatlands, understanding the temperature response and $E_{\rm a}$
90	of peat decomposition in different peat layers provides information which can be used to
91	assess peat lability and vulnerability to decomposition at higher temperatures. However, there
92	exists a severe lack of data quantitatively linking functional organic chemistry of peat to its
93	temperature sensitivity (but see Treat et al., 2014 who used a semi-quantitative pyrolysis-
94	GCMS biomarker approach to link peat chemistry to temperature sensitivity). In the context
95	of permafrost soils, the temperature sensitivity of the constituent organic material may
96	regulate how climate warming affects C release to the atmosphere.

98	The microbial community, through use of carbon for respiration and growth ultimately
99	controls the release of stored carbon from organic soils, and its activity is dependent on
100	environmental conditions such as temperature, hydrology and pH (Bergman et al., 1999; Yu
101	et al., 2007) as well as the quality and quantity of resources as influenced by organic
102	chemistry and the nutrient status of the soils (Webster et al 2001; Basiliko et al., 2006).
103	Greater fungal abundance in peat has been associated with more efficient microbial
104	communities i.e. communities with low respiration rates relative to the microbial biomass and
105	lower respiration quotients (q CO ₂ , i.e. the respiration rate per unit biomass) (Basiliko et al.,
106	2006), although others have found less clear cut depth effects (Myers et al., 2012). Fungi are
107	limited to aerobic environments and lower O_2 levels in deeper peat layers are likely to inhibit
108	fungal growth, with implications for degradation of more complex organic molecules
109	(Freeman et al., 2004). For example, lignin degradation by lignolytic microorganisms (mainly
110	fungi) require O ₂ to efficiently depolymerize and solubilize lignin (Zeikus, 1981) and is thus
111	likely to be hampered in deep and/or waterlogged peat layers.
112	
113	To further our understanding the fate of permafrost peatland carbon and greenhouse gas
114	feedbacks under future climate change conditions, this study explored the overarching
115	hypothesis that organic matter chemistry is the primary driver of decomposition in permafrost
116	peatlands, through its influence on greenhouse gas production, the temperature sensitivity of
117	decomposition processes, and microbial community composition in sub-arctic peatlands. The
118	objectives of this study were therefore to determine the peat functional chemistry, microbial
119	community composition, and CO_2 and CH_4 release from permafrost peatlands under different
120	moisture and temperature treatments. The study focused on the seasonally thawed active
121	layer which stores ca. 500 Pg of C (mineral and peat soils combined) across the Pan arctic
122	(Hugelius et al., 2014).

1	24	To achieve our objectives we tested the following specific hypothesis relating to the
1	25	vulnerability of the peatland carbon store to environmental change:
1	26	1. Ex situ experimental flooding of permafrost plateau peat will result in a shift from net
1	27	CH ₄ uptake under mesic conditions to CH ₄ efflux throughout the active layer.
1	28	2. Peat organic chemistry, as determined by quantitative 13 C NMR MAS, are linked to CO ₂
1	29	and CH ₄ emissions rates from plateau peat with higher CO ₂ and CH ₄ emissions from peat
1	30	with a greater proportion of labile peat.
1	31	3. Deeper and more degraded peat contains more recalcitrant organic matter (e.g. alkyls),
1	32	have higher E_a and Q_{10} values, and its decomposition is hence more sensitive to increases
1	.33	in temperature than surface peat, provided that other limiting factors are controlled (e.g.
1	34	optimal pH, moisture and nutrient conditions).
1	35	4. The composition of the microbial decomposer community is driven, at least in part, by
1	36	peat organic chemistry.
1	37	
1	38	Materials and Methods
1	39	Site description
1	40	Two study areas were investigated, the Torneträsk area, northern Sweden (68°12'N, 19°03'E,
1	41	351 m asl) and the Churchill area, north eastern Canada (58°44'N, 93°49'W, 25 m asl). These
1	42	areas were chosen as they are currently undergoing permafrost thaw (Lawerence et al., 2008;
1	43	Sannel and Kuhry 2011; Åkerman and Johansson 2008). The mean annual temperature
1	44	(MAT) in the Torneträsk area ranged between 0.8 and 1.0 °C and the mean annual

- 145 precipitation (MAP) ranged from 304 mm in the west to 424 mm in the east), in Churchill,
- 146 MAT was -7 $^{\circ}$ C was and MAP was 414 mm. Both areas support peatlands with permafrost
- 147 cores, so called palsas. The initiation of peat formation in the Torneträsk area is ca. 800-900

148	(Kokfelt et al., 2009) and ca. 3500-5200 years BP in the Churchill area (Hugelius et al.,
149	2010). Total peat depths, including the permanently frozen layer, range from 90 to 160 cm
150	with a maximum active (i.e. seasonally thawed) layer depth of 95 cm (Kuhry 2008; Åkerman
151	and Johansson 2008). The depth to the permafrost varies between wetter and drier areas with
152	a shallower active layer in drier areas. The sites were characterised by areas of raised peat
153	plateaus, supported by an ice-rich core, with relatively dry surface conditions (mesic),
154	dominated by bryophytes, lichens and evergreen dwarf shrub (Supplementary information 1).
155	At the Torneträsk sites Sphagnum fuscum was the dominant moss species while Dicranum
156	elongatum contributed to ground cover to a large extent at the Churchill sites. The main
157	evergreen shrubs species at both areas were Empetrum nigrum and Ledum sp. while Betula
158	nana was the dominant deciduous shrub. Lichens were more abundant at the Churchill
159	peatlands than in the Torneträsk area. The most common herbaceous species for both areas
160	was Rubus chamaemorus. The Torneträsk sites showed signs of small scale permafrost thaw
161	and areas of peat collapse, with collapsed areas ranging between tens to hundreds of meters
162	across). In Churchill, thermokarst areas were actively forming adjacent to plateau areas.
163	Marginal collapsed areas tended to be vegetated by graminoids mainly Carex and
164	Eriophorum species. See Supplementary information 1 for full species lists.
165	
166	Sampling strategy
167	Eight mesic (i.e. moderately moist) peat plateau sampling sites were selected from discrete
168	peatlands within each region (i.e. $n = 8$; with a total of 16 peatlands sampled). Sampling
169	locations were distributed over a total distance of ca. 100 km at Torneträsk and ca. 15 km at
170	Churchill (Supplementary information 2). Site selection was based on vegetation type,
171	hydrology and an active layer consisting entirely of peat. The size of the sites varied from ca.
172	2 ha at the shore of lake Torneträsk to several kilometres across. Peat cores were collected at

173	the time of maximum permafrost thaw; the Torneträsk peat sampling performed in September
174	2008 and the Churchill sampling end of August 2009. Measurements of $\rm CO_2$ and $\rm CH_4$
175	exchange, soil temperature, active layer depth was assessed in situ, and vegetation turf
176	samples were collected for above and below ground biomass determination at each site.
177	Methods and data describing the in situ CO2 and CH4 flux data are presented in
178	supplementary information 3.
179	
180	From each site eleven peat monoliths were collected through the active layer in a 4m×4m plot
181	a using a 7 cm \times 7 cm Macaulay peat corer. From each monolith intact peat sections of 10 cm
182	length were collected from three depths throughout the active layer at each site,
183	corresponding to the top 0-10 cm peat layer (L1), the bottom 10 cm layer just above the
184	permafrost table (L3), and an intermediate 10 cm sample (L2) half way between L1 and L3
185	(note that at one of the Churchill peatlands shallow active layer depth only allowed for two
186	10 cm samples to be collected, designated L1 and L3). Samples were placed in plastic bags
187	and placed in sealed plastic containers at 4°C for transport and storage prior to analysis. In
188	the laboratory a subset of 7 randomly selected cores were homogenised to provide a large
189	pooled sample from each layer (seven of the eleven cores) which were used for the chemical
190	and microbiological characterisation of the peat. The remaining monoliths were randomly
191	assigned to either one of two experiments (a flooding experiment and a temperature response
192	experiment).
193	
194	Site properties

- 195 To determine total above and below ground plant biomass we harvested the biomass in three
- subplots $10 \text{ cm} \times 10 \text{ cm}$ in area ca. 4 m apart at each peatland site. We determined root

biomass at three depths from the peat surface to just above the permafrost table,

Formatted: Font: Not Italic

198	corresponding to L1, L2 and L3 i.e. $7 \text{ cm} \times 7 \text{ cm} \times 10 \text{ cm}$ samples, in each of the three
199	subplots harvested for above ground biomass. We separated the above ground biomass into
200	moss, deciduous shrubs, evergreen shrubs, graminoids, lichen and leaf litter and washed in
201	deionised water. The total root biomass was manually separated from the soil using tweezers
202	and gently washed in deionised water to remove any peat attached to the roots. Samples were
203	then dried at 50 °C for 48 hours and weighed to estimate root biomass.
204	
205	Soil temperature and moisture was determined in parallel with the CO_2 flux measurements
206	using digital thermometers and a hand held Theta meter connected to a Theta probe (Delta-T
207	Devices, Cambridge UK). The maximum active layer depth was determined by measuring the
208	depth at which frozen peat was present at the base of the peat cores.
209	
210	Long term flooding experiment
211	To investigate the impact of peat moisture status on CO_2 and CH_4 fluxes (hypotheses 1 and 2)
212	we used paired intact peat monoliths from each layer (L1, L2 and L3) and from each peatland

213 (six peat samples per peatland) in a flooding experiment whereby monoliths were randomly 214 allocated to either aerobic (field capacity) or anaerobic (flooded) moisture conditions. To 215 achieve the two treatments we saturated all of the peat cores by raising the water levels to 1 216 cm above the peat surface. For the anaerobic treatment the water levels were maintained at 217 this level for the duration of the experiment, while for the aerobic treatment the cores were 218 allowed to drain until field capacity were reached (ca. three days). The peat samples were 219 then loosely covered by parafilm and incubated at 15 °C, which reflected the summer soil 220 temperature at 10 cm depth (Table 1). CO2 and CH4 fluxes for each sample were determined 221 after 14 days incubation and 2-3 weeks thereafter over a period of four months (a total of five 222 sampling occasions). The samples moisture levels were maintained during the length of the

223	incubation experiment by regular addition of deionised water to target weight. For the
224	Torneträsk peats an additional sampling was made ca. 10 months after the initiation of the
225	flooding experiment to assess more long term effects of flooding on gas production. $\ensuremath{\text{CO}}_2$ and
226	CH_4 fluxes were determined from gas sampled taken at 0 and 30 minutes from each peat core
227	placed in air tight 1.5 L jars with sampling ports and analysed by gas chromotography (GC)
228	(Sjögersten et al., 2011).

230 This data, in conjunction with quantitative data on peat organic chemistry (see below), was 231 used to determine the lability of the soil organic carbon (SOC). We defined "labile SOC" as 232 functional organic groups associated with high heterotrophic CO₂ production and, based on 233 kinetic theory, low Ea's (see temperature response experiment below). 234 235 To quantify acetate concentrations (a precursor for anaerobic CH₄ production - Ström et al., 236 2003) in the flooded treatment, 20 ml porewater samples were collected at the end of the 237 experiment using Rhizon samplers (Rhizosphere Research Products, UK) and analysed using 238 an anion HPLC system fitted with a Synergi Hydro-RP column for acetic acid detection. The 239 flow rate was 1 ml min⁻¹, detection was made using UV at 220 nm (photo-diode array 240 detection). 241 242 Temperature response experiment 243 Hypothesis 3 was assessed by determining the temperature sensitivity of CO₂ production and 244 peat lability down the peat profile, expressed both as E_a and Q_{10} (proportional increase in 245 CO₂ production per 10 °C rise in temperature) values, by measuring the potential CO₂ efflux

246 at different temperatures. Conditions for decomposition in the peat were optimized by

247 aerating the peat to avoid O₂ limitation of decomposition, adjusting peat moisture and

248	improving pH and N and P levels. We focused on N and P additions as these nutrients are
249	known to limit decomposition in northern peatlands (Gerdol et al., 2007; Moore et al., 2008;
250	Bragazza et al., 2012). For the experimental nutrient (N and P combined) and pH
251	amendments we used homogenised peat from each layer taken from two combined peat
252	monoliths after roots were removed. The pooled peat sample was then split into equal masses
253	(ranging between 150 and 330 g fresh weight in each container depending variation in the
254	original peat sample masses) and packed loosely into aluminium containers to ensure the
255	samples were fully aerated. The nutrient treatment involved addition of $0.5 \text{ mmol of } NH_4 NO_3$
256	and 0.3 mmol of KH ₂ PO ₄ per g dwt peat together with 0.12 mmol Ca(OH) ₂ per gram fresh
257	peat to raise the pH to 6.5. Both control and optimised samples were adjusted to 300%
258	moisture content, to reflect field moisture conditions (Table 1). Optimized peat samples were
259	then incubated at four increasing temperatures for a week. On day one samples were placed
260	in an incubator (2 $^{\circ}$ C) equilibrated for 24 hours. On day two gas samples for flux
261	determination were collected (see above), after which the temperature was raised to 8°C for
262	24 hours. Gas collection (from the 8°C incubation) on day three and the temperature raised to
263	14°C and samples were again incubated for 24 hours followed by gas samples collection.
264	After this sampling the temperature was brought to 20 °C for 24 hours prior to the final gas
265	sampling.
266	
267	Based on the short-term temperature response activation energies (E_a) were derived by
268	plotting the natural logarithm of k against the inverse of the temperature (T) according to the
269	following equation (Lloyd and Taylor 1994):
270	
271	$\ln k = \ln A - E_a / (R \times T) \tag{1}$

273	where k is the respiration rate, A is the frequency factor, R is the gas constant and T is
274	temperature. The slope of the Arrhenius curve gives $-Ea/R$ and the intercept at $1/T = 0$ gives
275	lnA.
276	
277	The Q_{10} value describes the increase in respiration rates with a 10°C increase in temperature
278	(Hamdi et al., 2013) and was calculated using eq. 2
279	
280	$Q_{10} = e^{10k}$. (2)
281	
282	where k is the rate coefficient from exponential relationship between temperature and
283	respiration rates.
284	
285	Peat organic chemistry
286	To address hypotheses 2, 3 and 4 we investigated the organic composition of the peat
287	material in a fully quantitative way using solid state $^{13}\mathrm{C}$ NMR MAS to determine the % of
288	different chemical functional groups present (Preston et al., 1996). Quantitative ¹³ C NMR
289	MAS spectra were recorded at ambient temperature using direct polarization, experimental
290	details are described below: For the NMR measurements the soils were packed into 7.5 mm
291	diameter MAS rotors aiming to maximise the amount of sample to improve the signal to
292	noise ratio. ¹³ C MAS spectra were recorded on a Varian Infinity plus spectrometer operating
293	at 75.47 MHz using a direct polarization experiment and a spinning rate of 7 kHz. Settings
294	were optimized during test runs of peat samples. Specifically, continuous wave (CW) proton
295	decoupling with a radio frequency (rf) amplitude of 65 kHz applied during the acquisition
296	time which lasted 34.1 s. The spectral width was 300 kHz and 10240 points were collected.
297	Background signals were suppressed by inserting a short spin echo prior to acquisition.

298	Before recording quantitative data, similar spectra were obtained as a function of relaxation
299	delay for a selection of samples in order to check for saturation. A relaxation delay of 64 s
300	was found to be sufficient to provide quantitative spectra and this delay was used in all
301	experiments. The resulting FIDs were digitally filtered to remove noise outside the central 20
302	% of the spectral width and reduced by a factor 5. Line broadening of 100 Hz was applied
303	before Fourier transformation, which was followed by automatic phasing. No baseline
304	correction was applied to the data. Spectra were referenced externally to solid adamantane
305	(resonance at δ = 38.5 ppm) to provide a chemical shift scale relative to neat TMS
306	(Morcombe and Zilm 2003). After processing, the spectra were integrated over chemical shift
307	ranges corresponding to the major organic functional groups (Sjögersten et al., 2003).
308	
309	The presence of spinning sidebands with significant intensity in MAS spectra results in errors
310	in quantitative analysis by solid-state NMR. Efficient suppression of sidebands from a ^{13}C
311	site with a given shift anisotropy $\zeta = \delta_{zz} - \delta_{iso}$ is achieved either by increasing the MAS rate
312	or decreasing the magnetic field. Note that the MAS rate chosen was the maximum possible
313	with the 7.5 mm MAS probe. Use of smaller MAS rotors with faster maximum spinning rates
314	was precluded here by the unacceptable loss of sensitivity from smaller sample volumes.
315	However, the relatively low B ₀ field employed in this work ensures that spinning sideband
316	intensities can be ignored during quantification. Experimentally, this assumption is shown to
317	be justified by the lack of significant intensity in all spectra between 210 and 300 ppm (see
318	Fig. 1 for examples). This region of the spectrum is where the most intense downfield
319	sideband is expected for aromatic, phenolic and carbonyl $^{13}\!C$ sites which normally have δ_{iso} =
320	120 - 200 ppm and $\zeta \sim 100$ ppm. Other ¹³ C sites have $\zeta < 70$ ppm for which the theoretical
321	intensity of the most intense sideband is always less than 5% of that of the isotropic line for
322	$\omega_0 = 75.47$ MHz and $\omega_r = 7$ kHz.

2	0	2
5	4	3

324	To determine peat C content, a sub sample of the pooled samples from each layer from each	
325	peatland (total of 47 samples) was homogenised using a ball mill and analysed for C and N	
326	using a total element analyser (Flash EA 1112, CE Instruments, Wigan, UK).	
327		
328	Microbial community composition and biomass	
329	To address hypothesis 4 we determined the microbial community composition using standard	
330	ELFA techniques (Frostegård & Bååth 1996; Zogg et al., 1997; Schutter and Dick 2000).	
331	Briefly, ester linked fatty acids (ELFA) were extracted from 0.5g of freeze dried peat using	
332	alkaline methanolysis (Frostegård & Bååth 1996). The resultant methyl esters were re-	
333	dissolved in isohexane and analysed by GC. Double bonds of the fatty acids were related to	
334	the methyl end (v) of the molecule (Zogg et al., 1997). The fatty acid 23:0 was added as a	
335	known standard. The total biomass of bacteria included all fatty acids from the Gram	
336	negative and Gram positive bacteria and fatty acids 15:0 and 17:0. Fatty acid 18:2w6,9 was	
337	used as an indicator for fungal biomass (Frostegård & Bååth 1996). Total microbial fatty acid	
338	biomass was estimated by adding together fungal and bacterial fatty acid biomarkers.	
339		
340	Data analysis and calculations	
341	Differences between region and depth were analysed using mixed linear models with 'site' as	
342	the random effect and 'region' and 'depth' and their interaction as fixed effects. For the	
343	flooding experiment a repeated measures structure was applied with 'site' as the random	
344	effect and 'region', 'depth' and 'treatment' and their interactions as fixed effects. Regression	
345	analysis was used to investigate the relationship between of the CO ₂ and CH ₄ emissions, the	
346	microbial community structure and peat organic functional chemistry. Normality was	
347	assessed using residual plots. In the case of regression analysis, the % variance explained by	

348 the relationship is reported as σ^2 . All the statistical analysis was done using Genstat 13th

- 349 edition.
- 350
- 351 Results
- 352 Site properties

353 The plant biomass at the Torneträsk peatlands was strongly dominated by mosses. In

- 354 Churchill, lichens contributed the highest biomass followed by mosses and evergreen dwarf
- 355 shrubs (Table 1, Supplementary information 2). Root biomass was comparable with above
- 356 ground biomass. The maximum active layer depth in mesic areas of these peatlands was 49.9
- ± 0.9 cm and 31.2 ± 1.4 cm, in Torneträsk and Churchill, respectively (Supplementary
- information 1). During the sampling period the peatlands were net CO₂ sources and weak
- 359 CH4 sinks in situ (methods and data are shown in Supplementary information 3 and 4), mean
- 360 soil temperatures were 8 and 5 °C and soil moisture content were ca. 540 and 450 % at the
- 361 time of the flux measurements in Torneträsk and Churchill, respectively.
- 362
- 363 Long term flooding experiment
- 364 Ex situ incubation of intact peat cores, both in flooded and non-flooded cores, showed that
- 365 surface peat produced more CO₂ than deeper layers on a mass basis (Fig. 2a). In contrast,
- 366 more CH₄ was produced at depth, while net CH₄ oxidation was found in the two layers
- 367 closest to the surface (Fig. 2b). Experimental flooding induced increased CH₄ emissions (with
- 368 170 % over 4 months) at both sites (Fig. 2b). In the surface layer, flooding reduced CH₄
- 369 oxidation but did not result in net CH₄ emission. Long term incubation of the peats from the
- 370 Torneträsk site, revealed no further increase in the CH₄ production 10 months after the
- flooding treatment was applied (Time: P > 0.05; data not shown). In line with the low CH₄

372 fluxes, acetate concentrations in the pore water solution were below the detection limit (<

 $12.5 \text{ mg } l^{-1}$, data not shown).

374

375 Peat organic chemistry

376 The peat chemistry at the two areas differed with respect to their aromaticity, which was 377 higher in Churchill peat, but the alkyl to O-alkyl ratios did not differ between areas (Fig. 3 a 378 and b, Table 2). The most pronounced changes in peat chemistry with depth were a relative 379 loss of carbohydrates (O-alkyls) with depth at the Torneträsk sites, and a relative reduction in 380 aromatics with depth in Churchill (Fig. 3 c and d, Table 2). There were consistent shifts in 381 concentrations of acetals (declining) and alkyls (increasing) with depth at both sites, while 382 concentrations of phenolics decreased with depth in Churchill but not in Torneträsk (Fig. 3 c, 383 d, e and f, Table 2). The peat functional organic chemistry was related to the composition of 384 the vegetation: The ratio between cryptogams and vascular plants showed a positive 385 relationship with both amounts of O-alkyls ($\sigma^2 = 18.4$; F_{1,15} = 4.38, P = 0.055), and overall 386 carbohydrate type compounds (O-alkyls+n-alkyls+acetals) ($\sigma^2 = 27.9$, $F_{1,15} = 6.81$, P < 0.05) 387 (Supplementary information 6), but not the aromatic or aliphatic fraction of the peat. 388 389 At each site the most abundant functional group (Fig. 3 a and c) was the strongest predictor of 390 CO2 efflux under non-flooded conditions (flooding experiment; Fig. 4a and b): There was a 391 strong positive relationship between peat CO₂ efflux and the proportion of carbohydrates (O-392 alkyls) at the Torneträsk sites and a somewhat weaker regression between the amount of 393 aromatics and the CO₂ efflux at the Churchill sites. Although the other functional groups 394 present in the peat are, to a degree, likely to contribute to total CO₂ effluxes, no other 395 functional groups were significantly related to the CO₂ efflux. Using the relationship between 396 the CO₂ efflux and the concentration of carbohydrates and aromatics as a lability indicator,

397	we estimated the size of the labile C pool to 35 (O-alkyls only) and 26 $\%$ (O-alkyls +
398	aromatics) of the peat organic matter content, i.e. mean concentrations of the respective
399	functional groups through the active layer, at the peatland sites in the Torneträsk and
400	Churchill areas, respectively (Figure 3 b-d). In contrast, the peat chemistry (as determined by
401	^{13}C solid state NMR) was not a significant predictor of CH_4 fluxes from flooded peat at either
402	of the two sites.

404 Temperature response experiment

- 405 The potential release of CO₂ from optimized peat (aerated peat with adjusted moisture, pH
- 406 and N and P levels) increased significantly as temperatures were raised experimentally from
- 407 2 to 20 °C (Supplementary information 5 a and b). For example, CO₂ release from L3
- 408 increased with 330 and 130 % in response to this temperature increase at Torneträsk and
- 409 Churchill respectively. This demonstrates that the organic C decomposition per se is sensitive
- 410 to increased temperature, even though low nutrient content and pH in situ can limit the
- 411 temperature sensitivity of decomposition. The overall temperature response of the peat in the
- 412 active layer from the two sites was exponential (Supplementary information 5 c).
- 413
- 414 The shifts in peat chemistry with depth did not significantly alter either the $E_{a,}$ 48.3 ± 6.0 kJ
- 415 mol⁻¹ (range 5.5 to 125) or the Q_{10} values, mean 2.3 ± 0.2, with depth. However, the E_a

416 showed a positive relationship with the phenolic content of the peat from the Torneträsk sites

- 417 (Fig. 4c), while there was no relationship between E_a and the functional organic chemistry of
 418 Churchill peats.
- 419
- 420 Microbial community composition

421	The total microbial biomass differed between areas and with depth (Fig. 5a). The changes
422	with depth were driven by a strong decline in fungal biomass and a more modest decrease in
423	gram negative bacteria, while gram positive bacteria did not change in abundance with depth
424	or site (Fig. 5b - d). These shifts in microbial community resulted in a pronounced decline in
425	the fungal to bacterial ratio with depth, 8.4 ± 2.0 , 3.7 ± 1.7 , 0.3 ± 0.1 for L1, L2 and L3,
426	respectively in Churchill and $4.3\pm0.7,1.1\pm0.4,0.2\pm0.0$ for L1, L2 and L3, respectively, in
427	Torneträsk (overall depth effect: $F_{2,26} = 13.65$, $P < 0.001$). Fungal to bacterial ratios was
428	greater in Churchill than Torneträsk, 4.5 \pm 1.1 and 1.9 \pm 0.5, respectively (F_{1,13} = 6.34, P <
429	0.05). In addition to variation in microbial communities with area and depth, peat organic
430	chemistry was a strong driver of the microbial community composition (Fig. 6). Specifically,
431	the fungal to bacterial ratio declined in response to higher concentrations of alkyls in the peat,
432	while fungal biomass became relatively more abundant in response to higher concentrations
433	of aromatics (Fig. 6 a and b). Total bacterial fatty acid biomarkers increased significantly in
434	response to increasing amounts of carboxyls in the peat, while greater biomass of gram
435	positive bacteria was found in peat with higher concentration of phenolics (Fig. 6 c and d).
436	Note that these relationships remained highly significant also after area and depth was fitted
437	in the statistical model indicating that the relationships were independent of area and depth.
438	

439 Discussion

440 Variation in soil organic chemistry with depth and across geographic areas

441 The difference in the dominant organic functional groups in peat among areas (Fig. 3 and

442 Table 2) is likely due to a combination of contrasting litter inputs and decomposition

443 environment (Turetsky 2004). With regards to litter inputs, peat from Churchill, where the

- 444 vegetation was more lichen dominated, contained more aromatics, likely from aromatic
- 445 lichen litter (Yoshikawa et al., 2008) than peat from the Torneträsk region (Table 1 and 2). In

446	contrast, the peat from Torneträsk, where the vegetation was moss dominated (predominantly
447	by Sphagnum species) which have high concentrations of carbohydrates and generally low
448	amonts of lignin (Maksimova et al., 2013), contained more O-alkyls.
449	
450	The changes in peat functional chemistry with depth at the Torneträsk sites (Table 2) reflect
451	the decline in carbohydrates (O-alkyls) found with depth in moss peat (Treat et al., 2014 and
452	Reice et al., 2010) and are likely linked to preferential decomposition of these functional
453	groups. At the Churchill sites the preferential loss of aromatics with depth (Table 2) clearly
454	suggests that this component of the peat material, which generally is considered recalcitrant,
455	is degradable in line with findings by Reice et al., (2010). The contrasting litter inputs from
456	the vegetation, together with the lower fungal biomass at the Churchill sites, may be
457	responsible for the different depth profiles in peat chemistry between the study areas (Table 1
458	and 2; Fig 5b). It is also plausible that the change in the microbial community structure
459	contributes to the changes in peat chemistry with depth through both preferential degradation,
460	as fungi and bacteria are able to degrade different functional groups, and have different cell
461	wall composition (Strickland and Rousk 2010).
462	
463	Impacts of experimental flooding on greenhouse gas emissions
464	Flooded CH ₄ emissions were several orders of magnitude lower than CO ₂ emissions under
465	non-flooded conditions throughout the peat profile (Fig. 3), highlighting the lower efficiency
466	of anaerobic decomposition processes found in a range of different peatlands (Moore and
467	Dalva 1997; Inglett et al., 2012; Treat et al., 2014). In support of our first hypothesis, we
468	found that flooding increased overall CH ₄ emissions (Fig. 3). However, the CH ₄ emission
469	induced by experimental flooding of mesic peat was small compared to CH4 emissions from
470	old areas of collapsed peat colonised by graminoids (Bubier et al., 1995). The small increase

471 in CH₄ emissions following flooding in deeper peats indicate that although present, the 472 activity of the methanogenic community remained low over the time frame of the experiment. 473 474 Relationship between peat organic chemistry and greenhouse gas emissions 475 Our data supported our second hypothesis that functional organic chemistry controls CO2 476 emissions from drained peatlands, but we found no link between the bulk peat organic 477 chemistry and CH4 emissions under either non-flooded or flooded conditions. The lack of 478 relationship between peat organic chemistry and CH₄ production is important as it suggests 479 that peat chemistry may not influence CH4 emissions in the shorter term, should these 480 peatland plateaus subside and flood. We speculate that CH₄ production following flooding of 481 plateau peat is limited by the availability of the specific substrates i.e. sugars and low 482 molecular weight organic acids which are fermented to acetate, the precursor for CH4 483 production (Joabsson et al., 1999; Ström et al., 2003; Ström et al., 2012), together with slow 484 establishment of a functioning methanogenic community (Treat et al., 2015). It is plausible 485 that the peat at our study sites supports limited, or no, acetate production due to low plant 486 litter, low root exudate inputs from the low productivity vegetation, and high decomposition 487 rates under the relatively dry conditions found on peat plateaus. Indeed, acetate levels in 488 flooded peats were very low, which suggests either that hydrogenotrophic methane production was driving the weak increases in CH₄ production observed in the deeper peat 489 490 layers in response to flooding or simply that low acetate levels indicate rapid consumption. 491 Similarly low CH₄ production and low substrate quality of the dissolved organic matter has 492 been reported for recently collapsed palsas in northern Sweden (Hodgkins et al., 2013). 493 Therefore, collapsed peat plateaus may only become substantial CH₄ sources after the 494 establishment of a more productive plant community and associated release of root exudates 495 and plant litter into the peat (Ström et al., 2003, Prater et al., 2007; Koelbener et al., 2010;

496	Ström et al., 2012; Hodgkin et al., 2013). This time-lag, prior to conditions that allow for a
497	substantial increase in CH4 emissions following peatland collapse (Jackowicz-Korczynski et
498	al., 2010), has implications for the net radiative forcing resulting from rapid thawing.
499	
500	The strong positive relationship between peat CO_2 emissions and peat composition (Fig. 4a
501	and b), particularly O-alkyl and aromatics content at the two sites respectively, demonstrates
502	the potential for rapid degradation of these functional groups under optimal conditions in line
503	with findings from the boreal forest in Canada (Preston et al., 2014). Indeed, the higher
504	concentrations of these functional groups in surface peats (Fig. 3) may, in part, explain the
505	higher CO ₂ production in this layer (Fig. 2 a). Comparable strong relationships between peat
506	quality and CO ₂ emissions have been shown in peatlands at high latitude (Turetsky 2004;
507	Wickland and Neff 2008; Hodgkins et al., 2014; Treat et al., 2014) as well as in temperate
508	and tropical regions (Reiche et al., 2010; Wright et al., 2011). Together, our study and those
509	of Wickland and Neff (2008) and Treat et al., (2014) shows that the large pool of
510	carbohydrates (up to 35 % of the peat at the Torneträsk sites; Table 2) in permafrost peatlands
511	are easily converted to CO ₂ and released to the atmosphere.
512	
513	Temperature sensitivity of decomposition
514	The high potential CO ₂ loss rates in response to increased temperature demonstrated in this
515	study compare with CO_2 loss rates following permafrost thaw in arctic tundra (Dorrepaal et
516	al., 2009; Schuur et al 2009; Paulter et al., 2010). Specifically, our study indicated a ca. 20 %
517	increases in potential CO ₂ release when comparing current temperatures to temperature
518	predictions for 2100 (Fig. 4f; IPCC 2014). Our data did not fully support our third hypothesis
519	which postulated that deeper, more degraded peat is more sensitive to increases in
520	temperature than surface peat. In our study we did not see a significant shift in the E_a and Q_{10}

521	with depth while the positive relationship between E_a and the content of phenolics (Fig. 4e)
522	found at the Torneträsk sites lend some support to the C quality – temperature hypothesis.
523	The lack of a clear change in E_a or Q_{10} with depth suggests that the shifts in peat chemistry
524	with depth are not large enough to substantially alter the energy demand of decomposition
525	organisms, or that an Arrhenius temperature relationship does not apply. This contrasts with
526	studies in boreal peatlands where Q_{10} values increase from 3.5-4.5 in surface peat (0-20 cm)
527	to 4.5-6 in deeper peat (26-32 cm) containing more recalcitrant carbon (Hilasvuori et al.,
528	2013). However, in the study by Hilasvuori et al. (2013), the change in the soil organic matter
529	chemistry with depth was not quantified, making comparisons difficult.
530	
531	Microbial community structure and functioning
532	The strong decline in fungal biomass with depth (Fig. 5b), is most likely due to reduced peat
533	O ₂ levels in deeper layers (Freeman et al., 2004; Jaatinen et al., 2007), in agreement with
534	findings in boreal peatlands (Golovchenko et al., 2002). The relative shift in the bacterial
535	community (Fig. 5c and d) with depth is also likely related to the more anoxic conditions
536	and/or colder temperatures and more decomposed organic material (Andersen et al., 2013). It
537	is plausible that the large decline in CO_2 production with depth (Fig. 3) is linked, at least in
538	part, to microbial community composition and/or size (Coolen et al., 2011). The decline in
539	fungi and their oxidative enzymatic systems in lower layers, together with changes in peat
540	chemistry, may explain of the decline in the CO ₂ production (Basilko et al., 2006; Bragazza
541	et al., 2013). The strong relationships between substrate type and microbial community
542	composition suggest that the abundance of particular microbial groups is governed, at least in
543	part, by substrate type (Dimitriu et al., 2010). The relatively high abundance of bacterial
544	biomass in alkyl rich peat may suggest that bacterial groups are the main degraders of alkyl
545	functional groups. In parallel, the positive relationships between total bacteria and gram

546	positive bacteria and carboxyl and phenolics, respectively, suggest that these peat functional
547	groups promote bacterial decomposition. The greater fungi to bacteria ratio found in peats
548	with high concentrations of aromatics may reflect the greater enzymatic capacity of fungi
549	with regards to decomposition of large complex aromatic compounds in soil (Strickland and
550	Rousk 2010). Taken together, is it clear that the microbial community respond strongly both
551	to the changes in the abiotic environment, associated with the peat depth, and substrate
552	availability and may drive differences in peat chemistry.
553	
554	
555	Conclusion
556	In conclusion, we demonstrate that peat functional organic chemistry is strongly related to
557	CO_2 but not CH_4 emissions. With regards to E_a and $Q_{10}-values,$ only the relationship
558	between phenolic concentrations and E_a supported the notion of higher E_a 's being found in
559	peat with higher concentrations of recalcitrant, complex organic molecules and that such
560	relationship may only be noticeable when differences on the soil organic chemistry e.g. with
561	depth, is more pronounced than in our study. Finally, the strong relationships between the
562	microbial community structure and substrate type suggests that peat functional organic
563	chemistry modifies the decomposer community with implications for decomposition
564	processes.
565	

568 Acknowledgments

- 569 We thank the NERC for funding this work through a New Investigator grant
- 570 (NE/F00091X/1) awarded Dr S Sjögersten. We are grateful to Ms K Anderson for field work
- 571 support and Dr B Lomax for comments on the manuscript. The James Hutton Institute is, in
- 572 part, financially supported by the Scottish Government Rural and Environment Science and
- 573 Analytical Services Division. The data underpinning this paper is freely available from Dr
- 574 Sofie Sjögersten.
- 575
- 576 Correspondence and requests for materials should be addressed to
- 577 sofie.sjogersten@nottingham.ac.uk.
- 578
- 579

580	References
581	Andersen, S.K., White, D.M., 2006. Determining soil organic matter quality under anaerobic
582	conditions in arctic and subarctic soils. Cold Regions Science and Technology, 44, 149-158
583	
584	Andersen, R., Chapman, S.J., Artz, R.R.E., 2013. Microbial communities in natural and
585	disturbed peatlands: A review. Soil Biology & Biochemistry, 57, 979-994.
586	
587	Atkin, P., W., 1994. Physical chemistry. 5th edition. Oxford University Press, Oxford, UK.
588	
589	Basiliko, N., Moore, T.R., Jeannotte, R., Bubier, J.L., 2006. Nutrient input and carbon and
590	microbial dynamics in an ombrotrophic bog. Geomicrobiology Journal, 23, 531-543.
591	
592	Basiliko, N., Stewart, H., Roulet, N.T., Moore, T.R., 2012. Do root exudates enhance peat
593	decomposition? Geomicrobiology Journal, 29, 374-378.
594	
595	Bragazza, L., Buttler, A., Habermacher, J., Brancaleoni, L., Gerdol, R., Fritze, H., Hanajík,
596	P., Laiho, R. and Johnson, D. (2012), High nitrogen deposition alters the decomposition of
597	bog plant litter and reduces carbon accumulation. Global Change Biology, 18, 1163–1172.
598	doi:10.1111/j.1365-2486.2011.02585.x
599	
600	Bragazza, L., Parisod, J., Buttler, A., Bardgett, R.D., 2013. Biogeochemical plant-soil
601	microbe feedback in response to climate warming in peatlands. Nature Climate Change 3,
602	273-277.

604	Breeuwer, A.,	Robroek, B.J.M.	I., Limpens, J	., et al., 20	009. Decreased	summer water table
-----	---------------	-----------------	----------------	---------------	----------------	--------------------

605 depth affects peatland vegetation. Basic and Applied Ecology, 10, 330-	339.
--	------

6	0	6
~	~	~

- 607 Bubier, J.L., Moore, T.R., Bellisario, L., Comer, N.T., Crill, P.M., 1995. Ecological controls
- 608 on methane emissions from a northern peatland complex in the zone of discontinuos
- 609 permafrost, Manitoba, Canada. Global Biogeochemical Cycles, 9, 455-470.
- 610

612 organic matter and microbial community dynamics upon permafrost thaw. Environmental

613 Microbiology, 13, 2299-2314.

614

615	Craine, J.M., Fierer, N., McLauchlan, K.K., 2010. Widespread coupling between the rate and
616	temperature sensitivity of organic matter decay. Nature Geoscience, 3, 584-857.

617

618 Crow, S.E., Wieder, R.K., 2005. Sources of CO₂ emission from a northern peatland: root

- 619 respiration, exudation, and decomposition. Ecology, 85, 1825-1834.
- 620
- 621 Dimitriu, P., A., Lee, D., Grayston, S., J., 2010. An evaluation of the functional significance
- 622 of peat microorganisms using a reciprocal transplant approach. Soil Biology and
- 623 Biochemistry, 42, 65–71.
- 624
- 625 Dorrepaal, E., Toet, S., van Logtestijn, R.S.P., Swart, E., van de Weg, M.J., Callaghan, T.V.,
- Aerts, R., 2009. Carbon respiration from subsurface peat accelerated by climate warming inthe subarctic. Nature 460, 616-619.
- 628

⁶¹¹ Coolen, M.J.L., Van de Giessen, J., Zhu, E.Y., Wuchter, C., 2011. Bioavailability of soil

629 Fierer, N., Craine, J.M., McLauchlan, K., S	chimel, J.P., 2005. Litter Quality and the
---	--

630	Temperature	Sensitivity	of Decom	position.	Ecology,	86, 320-326.
					- 01 /	,

632	Freeman,	С.,	Ostle,	N.J.,	Fenner,	N., I	Kang,	Н.,	200^{2}	1. A	regul	latory	role	for p	henol	oxidas	е
-----	----------	-----	--------	-------	---------	-------	-------	-----	-----------	------	-------	--------	------	-------	-------	--------	---

- 633 during decomposition in peatlands. Soil Biology & Biochemistry, 36, 1663–1667.
- 634
- 635 Friedlingstein, P., Andrew, R. M., Rogelj, J., Peters, G. P., Canadell, J. G., Knutti, R.,
- 636 Luderer, G., Raupach, M. R., Schaeffer, M., van Vuuren, D. P., Le Quéré C., 2014. Persistent
- 637 growth of CO₂ emissions and implications for reaching climate targets. Nature Geoscience, 7,638 709-715.
- 639
- 640 Frostegård, A., Bååth, E., 1996. The use of phospholipid fatty acid analysis to estimate
- 641 bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-6.
- 642
- 643 Gerdol, R., Petraglia, A., Bragazza, L., Iacumin, P. and Brancaleoni, L. (2007), Nitrogen
- 644 deposition interacts with climate in affecting production and decomposition rates in
- 645 Sphagnum mosses. Global Change Biology, 13, 1810–1821. doi:10.1111/j.1365-

646 2486.2007.01380.x

- 650 West Siberia. Microbiology, 71, 575–581.
- 651
- Harden, J.W., Koven, C., Ping, C., Hugelius, G., McGuire, A.D., Camill, P., Jorgenson, T.,
- Kuhry, P., Michaelson, G., O'Donnell, J.A., Tarnocai, C., Johnson, K., Grosse, G., 2012.

<sup>Golovchenko, A.V., Semenova, T.A., Polyakova, A.V., Inisheva, L.I., 2002. The structure of
the micromycete complexes of oligotrophic peat deposits in the southern taiga subzone of</sup>

654	Field Information	Links Permafrost	Carbon to Physi	cal Vulnerabilities of
-----	-------------------	------------------	-----------------	------------------------

655	Thawing. Geophysical Research Letters, 39 (L15704), doi:10.1029/2012GL051958
656	

- Hilasvuori, E., Akujärvi, A., Fritze, H., et al., 2013. Temperature sensitivity of decomposition
 in a peat profile. Soil Biology & Biochemistry, 67, 47-54.
- 659
- 660 Hodgkins, S. B., Tfaily, M. M., McCalley, C. K., Logan, T. A., Crill, P. M., Saleska, S. R.,
- 661 Rich, V. I., Chanton, J. P., 2014. Changes in peat chemistry associated with permafrost thaw
- increase greenhouse gas production. Proceedings of the National Academy of Sciences 111,5819-5824.
- 664
- Hugelius, G., Kuhry, P., Tarnocai, C., Virtanen, T., 2010. Soil Organic Carbon Pools in a
 Periglacial Landscape: a Case Study from the Central Canadian Arctic. Permafrost and
- 667 Periglacial Processes, 21, 16–29.
- 668
- 669 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C. L.,
- 670 Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling,
- 671 B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., Kuhry, P., 2014. Estimated stocks of
- 672 circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps.
- 673 Biogeosciences 11, 6573-6593.
- 674
- 675 Inglett K. S., Inglett P. W., Reddy K. R., Osborne, T. Z., 2012. Temperature sensitivity of
- 676 greenhouse gas production in wetland soils of different vegetation. Biogeochemistry, 108,
- 677 77–90
- 678

679	IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global
680	and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of
681	the Intergovernmental Panel on Climate Change [Field, C.B., Barros, V.R., Dokken, D.J.,
682	Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova,
683	R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White L.L.,
684	(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,
685	1132 рр.
686	
687	Jaatinen, K., Fritze, H., Laine, J., Laiho, R., 2007. Effects of short- and long-term
688	water-level drawdown on the populations and activity of aerobic decomposers
689	in a boreal peatland. Global Change Biology, 13, 491–510.
690	
691	Jackowicz-Korczynski. M., Christensen, T.R., Bäckstrand, K., Crill, P., Friborg, T.,
692	Mastepanov, M., Ström, L., 2010. Annual cycle of methane emission from a subarctic
693	peatland. Journal of Geophysical Research -Biogeosciences 115, G02009.
694	
695	Jenkinson, D.S., Brookes, P.C., Powlson, D.S., 2004. Measuring soil microbial biomass. Soil
696	Biology & Biochemistry, 36, 5–7.
697	
698	Jiang, C.S., Wang, Y., Zheng, X., Zhu, B., Huang, Y., Hao, Q., 2006. Methane and nitrous
699	oxide emissions from three paddy rice based cultivation systems in southwest China.
700	Advances in Atmospherics Sciences, 23, 415-424.
701	
702	Joabsson, A., Christensen, T.R., Wallen, B., 1999. Vascular plant controls on methane

r03 emissions from northern peatforming wetlands. Trends Ecology and Evolution 14, 385-388.

705	Jones, D.L., 1998. Organic acids in the rhizosphere – a critical review. Plant and Soil,
706	205, 25-44.
707	
708	Koelbener, A., Ström, L., Edwards, P.J., et al., 2010. Plant species from mesotrophic
709	wetlands cause relatively high methane emissions from peat soil. Plant and Soil, 326,147–58.
710	
711	Kokfelt, U., Rosén, P., Schoning, K., et al., 2009. Ecosystem responses to increased
712	precipitation and permafrost decay in subarctic Sweden inferred from peat
713	and lake sediments. Global Change Biology, 15, 1652-1663.
714	
715	Kuhry, P., Vitt D. H., 1996. Fossil carbon/nitrogen ratios as a measure of peat decomposition.
716	Ecology 77, 271-275.
717	
718	Kuhry, P., 2008. Palsa and peat plateau development in the Hudson Bay Lowlands, Canada:
719	timing, pathways and causes. Boreas 37, 316-327.
720	
721	Lawerence, D.M., Slater, A.G., Romanovsky, V.E., 2008. Sensitivity of a model projection of
722	near-surface permafrost degradation to soil column depth and representation of soil organic
723	matter. Journal of Geophysical Research, 113, F02011.
724	
725	Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional
726	Ecology, 8, 315–323.

728	Ma, K., Lu, Y., 2011. Regulation of microbial methane production and oxidation by
729	intermittent drainage in rice field soil. FEMS Microbiological Ecology, 75, 446-456.
730	
731	Maksimova, V., Klavina, L., Bikovens, O., Zicmanis, A., Purmalis, O., 2013. Structural
732	characterization and chemical classification of some bryophytes found in Latvia. Chemistry
733	& Biodiversity, 10, 1284-1294.
734	
735	Moore, T. R., Dalva, M., 1997. Methane and carbon dioxide exchange potentials of peat soils
736	in aerobic and anaerobic laboratory incubations. Soil Biology & Biochemistry, 29, 1157-
737	1164.
738	
739	Moore, T.R.; Trofymow, J.A.; Siltanen, R.M.; Kozak, L.M. 2008. Litter decomposition and
740	nitrogen and phosophorus dynamics in peatlands and uplands over 12 years in central
741	Canada. Oecologia, 157, 317-325.
742	
743	Morcombe, C.R., Zilm, K.W., 2003. Chemical Shift Referencing in MAS Solid State NMR.
744	Journal of Magnetic Resonance, 162, 173-180.
745	
746	Myers, B., Webster, K.L., Mclaughlin, J.W., Basiliko, N., 2012. Microbial activity across a
747	boreal peatland nutrient gradient: the role of fungi and bacteria. Wetlands ecology and
748	management, 20, 77-88.
749	
750	O'Donnell, J. A., Jorgenson, M. T., Harden, J. W., McGuire, A. D., Kanevskiy, M., Wickland
751	K. P., 2012. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics
752	in an Alaskan Peatland. Ecosystems 15, 213-229.

753	
754	Osterkamp, T.E., 2007. Characteristics of the recent warming of permafrost in Alaska.
755	Journal of Geophysical Research, 112, F02S02, doi:10.1029/2006JF000578.
756	
757	Pautler, B.G., Simpson, A., Mcnally, D.J., Lamoureax, S.F., Simpson, M.J., 2010. Arctic
758	permafrost active layer detachments stimulate microbial activity and degradation of soil
759	organic matter. Environmental Science Technology, 44, 4076-4082.
760	
761	Prater, J. L., Chanton, J. P., Whiting G. J., 2007. Variation in methane production pathways
762	associated with permafrost decomposition in collapse scar bogs of Alberta, Canada. Global
763	Biogeochemical Cycles, 21, GB4004, doi:10.1029/2006GB002866.
764	
765	Preston, C.M, Bhatti J.S., & Norris C.E, 2014. Chemical quality of aboveground litter inputs
766	for jack pine and black spruce stands along the Canadian boreal forest transect case study.
767	Ecoscience, 21, 1–15.
768	
769	Preston, C.M., 1996. Applications of NMR to soil organic matter analysis: History and
770	Prospects. Soil Science, 161, 3-144.
771	
772	Sannel, A.B.K., Kuhry, P., 2011. Warming-induced destabilization of peat
773	plateau/thermokarst lake complexes. Journal of Geophysical Research, 116, G03035.
774	
775	Schädel, C., Schuur, E.A.G., Bracho, R., Elberling, B., Knoblauch, C., Lee, H., Luo, Y.,

- Tro Schudel, C., Schudi, E.A.O., Brucho, R., Elberning, D., Kilobiuden, C., Ecc, H., Edo, T
- 776 Shaver, G.R., Turetsky, M.R., 2014. Circumpolar assessment of permafrost C quality and its

777	vulnerability over time using long-term incubation data. Global Change Biology, 20, 641-
778	652.
779	
780	Schutter, M.E., Dick, R.P., 2000. Comparison of fatty acid methyl ester (FAME) methods for
781	characterizing microbial communities. Soil Sciences Society of America Journal, 64, 1659-
782	1668.
783	
784	Schuur, E.A.G., Bockheim, J., Canadell, J.G., et al., 2008. Vulnerability of Permafrost
785	Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience 58, 701-
786	714.
787	
788	Schuur, E.A.G., Vogel, J.G., Crummer, K.G., Lee, H., Sickman, J.O., Osterkamp, T.E., 2009.
789	The effect of permafrost thaw on old carbon release and net carbon exchange from tundra.
790	Nature 459, 556-559.
791	
792	Schuur, E.A.G., Abbott B., 2011. Climate change: High risk of permafrost thaw. Nature 480, 32-33.
793	
794	Schuur, E. A. G., McGuire, A. D., Schadel, C., Grosse, G., Harden, J. W., Hayes, D. J.,
795	Hugelius, G., Koven, C. D., Kuhry, P.,. Lawrence, D. M,. Natali, S. M, Olefeldt, D.,
796	Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., Vonk, J. E., 2015. Climate
797	change and the permafrost carbon feedback. Nature 520 (7546): 171-179.
798	
799	Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huberm V., Frieler, K.,
800	Lawrence, D.M., Brovkin, V., 2012. Estimating the near-surface permafrost-carbon feedback
801	on global warming. Biogeosciences, 9, 649–665.

802 803 804	Sjögersten, S., Loonen, M.J.J.E., Van der Wal, R., Woodin, S.J., 2011. Recovery of
805	ecosystem carbon fluxes and storage from herbivory. Biogeochemistry, 106, 357-370.
806	
807	Sjögersten, S., Turner, B.L., Mahieu, N., Condron, L.M., Wookey, P.A., 2003. Soil organic
808	matter biochemistry and potential susceptibility to climatic change across the forest-tundra
809	ecotone in the Fennoscandian mountains. Global Change Biology, 9, 759-772.
810	
811	Smith, J., Gottschalk, P., Bellarby, J., et al., 2010. Estimating changes in Scottish soil carbon
812	stocks using Ecosse. II. Application. Climate Research, 45, 193-205.
813	
814	Smith, P., Fang, C., 2010. A warm response by soils. Nature 464, 499-500.
815	
816	Solomon, S. et al., (eds.) 2007. Contribution of Working Group I to the Fourth Assessment
817	Report of the Intergovernmental Panel on Climate Change. Cambridge University Press,
818	Cambridge, United Kingdom and New York, NY, USA
819	
820	Strickland, M.S., Rousk, J., 2010. Considering fungal:bacterial dominance in soils- Methods,
821	controls and ecosystem implications. Soil Biology & Biochemistry, 42, 1385-1395.
822	
823	Ström, L., Ekberg, A., Mastepanov, M., Christensen, T.R., 2003. Plant species from
824	mesotrophic wetlands cause relatively high methane emissions from peat soil. Plant and Soil
825	326, 147-158.

827	Ström, L., Tageson, T., Mastepanov, M., Christensen, T., 2012. Presence of Eriophorum
828	scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil
829	Biology & Biochemistry 45, 61-70.
830	
831	Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., Zimov, S., 2009. Soil
832	organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical
833	Cycles 23, GB2023.
834	
835	Treat, C.C., Wollheim, W.M., Varner, R.K., Grandy, A.S., Talbot, J., Frolking, S., 2014.
836	Temperature and peat type control CO2 and CH4 production in Alaska permafrost peat.
837	Global Change Biology, 20, 2674-2686.
838	
839	Treat, C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M., McGuire, A. D., Norby,
840	R. J., Roy Chowdhury, T., Richter, A., Šantrůčková, H., Schädel, C., Schuur, E. A. G., Sloan,
841	V. L., Turetsky M. R., Waldrop, M. P., 2015. A pan-Arctic synthesis of CH4 and CO2
842	production from anoxic soil incubations. Global Change Biology, doi: 10.1111/gcb.12875.
843	
844	Turetsky, M. R., 2004. Decomposition and organic matter quality in continental peatlands:
845	The ghost of permafrost past. Ecosystems 7, 740-750.
846	
847	Turetsky, M., Kotowaska, A., Bubier, J., et al., 2014. A synthesis of methane emissions from
848	71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183-2197.
849	
850	Vance. E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring
851	microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.

853	Wang, X.W., Li, X., Hu, Y., Lü, J., Sun, J., Li, Z., He, H.S., 2010. Potential carbon
854	mineralisation of permafrost peatlands in Great Hing'an Mountains, China. Wetlands 30,
855	747-756.
856	
857	Wickland, K.P., Neff, J.C., 2008. Decomposition of soil organic matter from boreal black
858	spruce forest: environmental and chemical controls. Biogeochemistry 87, 29-47.
859	
860	Wickland, K.P., Striegl, R.G., Neff, J.C., Sachs, T., 2006. Effects of permafrost melting on
861	CO2 and CH4 exchange of a poorly drained black spruce lowland. Journal of Geophysical
862	Research-Biogeosciences 111(G2): G02011.
863	
864	White, D.M., Garland, D.S., Dai, X., Ping, C., 2002. Fingerprinting soil organic matter in the
865	arctic to help predict CO ₂ flux. Cold Regions Science and Technology, 35, 185–194.
866	
867	Yoshikawa, K., Kokudo, N., Tanaka, M., Nakano, T., Shibata, H., Aragaki, N., Higuchi, T.,
868	Hashimoto, T., 2008. Novel abietane diterpenoids and aromatic compounds from Cladonia
869	rangiferina and their antimicrobial activity against antibiotics resistant bacteria.
870	Chemical & Pharmaceutical Bulletin, 56, 89-92.
871	
872	Zogg, G.P., Zak, D.R., Ringleberg, D.B., MacDonald, N.W., Pregitzer, K.S., White,
873	D.C., 1997. Compositional and functional shifts in microbial communities due to soil
874	warming. Soil Sciences Society of America Journal, 61,475-481.

- 876 Ågren, G.I., Bosatta, E., Magill, A.H., et al., 2001. Combining theory and experiment to
- understand effects of inorganic nitrogen on litter decomposition. Oecologia, 128, 94-98.
- 878
- 879 Åkerman, H.J., Johansson, M., 2008. Thawing Permafrost and Thicker Active Layers in Sub-
- arctic Sweden. Permafrost and Periglacial Processes, 19, 279–292.
- 881
- 882

883 Tables

- 884 Table 1. Site characteristics of the peatlands in the Torneträsk and Churchill areas. Above ground and root biomass is expressed in g m⁻², the root
- biomass is shown for each of 10 cm three peat layers (L) sampled, i.e. L1, L2 and L3, with L1 being surface peat and L3 being from just above
- the permafrost table. Soil temperature was measured at 10 cm depth, the soil moisture content (0-10 cm depth) is expressed on a dry weight
- 887 basis. Mean \pm SE are shown, n =8.
- 888

	Torneträsk	Churchill		
Moss	743.5 ± 78.0	475.4 ± 195.5		
Deciduous shrub	8.0 ± 3.5	13.6 ± 5.6		
Herbaceous	5.0 ± 0.9	19.1 ± 7.3		
Evergreen shrub	70.5 ± 20.2	311.7 ± 57.6		
Graminoids	1.2 ± 0.8	2.8 ± 1.8		
Lichen	9.3 ± 1.4	771.0 ± 202.6		
Leaf litter	41.4 ± 7.0	465.0 ± 82.0		
Total above ground biomass	837.4 ±77.9	1593.5 ±188.1		
Roots L1	505.7 ± 78.7	439.9 ± 147.7		
Roots L2	207.1 ± 38.0	77.2 ± 13.7		
Roots L3	71.0 ± 12.5	99.3 ± 34.1		
Soil moisture (%)	537.4 ± 63.4	449.4 ± 93.1		
Air temperature (°C)	14.5 ± 0.6	16.4 ± 0.5		
Soil temperature (°C)	8.0 ± 0.1	5.0 ± 0.4		
Permafrost depth (cm)	50.1 ± 0.7	31.2 ± 1.4		

889

- 892
- 893 Table 2. Significant differences for NMR derived C belonging to different functional groups among layer, area and their interactions is shown, n
- 894 = 8, ns denotes no significant difference. To enable comparison of differences between layers in Fig. 3 the standard error of the difference (SED)
- 895 for layer is included in the table.

	Significance of fixed effects						
	Area	Layer (SED)	Area*Layer				
Acetals	F _{1,13} = 3410.58***	F _{2,28} =10.01***, (0.5)	ns				
Alkyl	F _{1,41} = 24.49 ***	$F_{2,41}{=}9.84^{***},\ (0.9)$	ns				
Aromatics	F _{1,14} = 172.24***	$F_{2,27}\!\!=\!\!9.16^{***}, \hspace{0.2cm} (0.8)$	ns				
Carboxyls	F _{1,14} = 5.46*	F _{2,27} =4.24*, (0.5)	ns				
N-alkyls	F _{1,13} = 6.76*	$F_{2,27}\!\!=\!\!8.93^{***},\ (0.2)$	$F_{2,27} = 10.43^{***}$				
O-alkyls	F _{1,13} = 60.38***	ns, (1.0)	F _{2,27} =8.52***				
Phenolics	F _{1,14} = 13.41**	$F_{2,27}=8.16^{**}$, (0.3)	$F_{2,27} = 7.46^{**}$				
Alkyl to O-alkyl	ns	F _{2,28} =9.97***, (0.03)	ns				
Aromaticity	F _{1,13} = 230.8**	$F_{2,27}{=}10.01^{**},\ (0.9)$	$F_{2,27} = 4.00^*$				

897 Figure captions

898	Figure 1. Solid-state ¹³ C NMR spectra recorded as described in the text of representative
899	samples of peat from (left) the Torneträsk area and (right) the Churchill area collected from
900	three depths (top spectrum corresponds to upper level).

902	Figure 2. a) CO ₂ fluxes from peat collected throughout the active layer from the surface at
903	Torneträsk and Churchill (L1-3) incubated at field capacity at 15° C for four months (means
904	are based on five repeat sampling events) in the laboratory in Nottingham (Site: $P > 0.05$;
905	Layer: $F_{2,426} = 110.06$, $P < 0.001$, means, standard error of the mean (SE) and the standard
906	error of the differences (SED) are shown, b) CH ₄ fluxes measured from peat cores from L1-3
907	incubated at field capacity or flooded conditions at 15 $^{\circ}$ C for four month (five repeat
908	sampling events) (Flooding treatment: $F_{1,101} = 3.99$, P < 0.05; means, SE and SED are
909	shown). Note that CO_2 and CH_4 fluxes did not vary significantly (P > 0.05) over time over
910	the four months.

912	Figure 3. Concentration (%) of NMR derived C into different functional groups in peat cores
913	collected from three depths (peat layers 1-3) in the Torneträsk area, Sweden and the Churchill
914	area, Canada. a) Variation in of alkyls, N-alkyls, O-alkyls, acetals, aromatics, phenolics, and
915	carboxyls with depth at the Torneträsk sites. b) Variation in the alkyl to O-alkyl and the
916	aromaticity ratio with depth at the Torneträsk sites. c) Variation in alkyls, N-alkyls, O-alkyls,
917	acetals, aromatics, phenolics, and carboxyls with depth at the at the Churchill sites. d)
918	Variation in the alkyl to O-alkyl and the aromaticity ratio with depth at the Churchill sites.
919	Chemical shifts for different functional groups were: aliphatics δ = 0 – 47 ppm, N-alkyls δ =
920	47 – 59 ppm, O-alkyls $\delta = 59 - 92$ ppm, acetals $\delta = 92 - 112$ ppm, aromatics $\delta = 112 - 139$

921 ppm, phenolics $\delta = 139 - 162$ ppm, carboxyls $\delta = 162 - 220$ ppm. Mean and \pm SE are shown.

- 922 Statistics for differences among depths and areas are shown in Table 2.
- 923
- 924 Figure 4. Relationship between mean CO₂ emissions from peat L1, L2 and L3, white, grey
- 925 and dark grey circles, respectively, incubated at 15 °C, at field capacity and the dominant peat
- 926 functional groups in a) Torneträsk ($F_{1,18} = 24.47$, P < 0.001, $\sigma^2 = 57$) and b) Churchill ($F_{1,22} =$
- 927 6.70, P < 0.05, $\sigma^2 = 21$). c) Relationship between activation energy (log E_a) and the phenolic
- 928 content of the peat from the Torneträsk region ($F_{1,16} = 6.99$, P < 0.05, $\sigma^2 = 27$).
- 929

930 Figure 5. Microbial biomass markers determined through the active layer (L1-3) of a) total

931 microbial biomass (Depth: $F_{2,27} = 15.54$, P < 0.001, Site: $F_{1,13} = 8.33$, P < 0.05, Depth×Site:

- 932 F2,27 = 3.48, P < 0.05) b) fungi (Depth: $F_{2,27} = 14.36$ P < 0.001, Site: F1,13 = 8.11, P < 0.05,
- 933 Depth×Site: $F_{2,27} = 3.49$, P, P < 0.05) c) gram negative bacteria (Depth: $F_{2,27} = 11.33$ P <

934 0.001, Site: F1,14 = 3.66, P = 0.077, Depth×Site: P > 0.6) d) gram positive bacteria (Depth:

- 935 $F_{2,28} = 0.71$, P > 0.5, Site: F1,14 = 2.06, P > 0.1, Depth×Site: P > 0.2). Mean and SE is shown,
- 936 n = 8.
- 937
- 938 Figure 6. Relationship between peat functional organic chemistry and microbial biomarkers 939 relating to fungal and bacterial biomass at the two study areas and across the three peat 940 depths. a) Relationship between alkyl concentrations and fungal to bacterial ratios in the peat 941 $(F_{2,44} = 10.27, P < 0.001, \sigma^2 = 30)$, b) relationship between aromatic concentrations and 942 fungal to bacterial ratios in the peat ($F_{2,44} = 6.84$, P < 0.001, $\sigma^2 = 24$), c) relationship between 943 carboxyl concentrations and bacterial biomass in the peat (F_{1,22} = 6.70, P < 0.05, σ^2 = 21) and 944 d) relationship between phenolics concentrations and gram positive bacterial biomass in the peat (F_{2.46} = 6.84, P < 0.01, $\sigma^2 = 20$). 945

946 Figures 1-6

957 Figure 4

Area	Moss	Deciduous shrub	Herbaceous	Evergreen shrub	Graminoids	Lichen
Torneträsk	Sphagnum fuscum	Betula nana	Rubus chamaemorus	Empetrum nigrum	Eriophorum angustifolium	Cladonia rangiferina
	Polytricum sp.	Salix lanata	Pinguicula vulgaris	Ledum palustre	Carex acutiformis	Cladonia coccifera
	Scorpidium scorpioides	Salix phylicifolia		Andromeda polifolia	Eriophorum vaginatum	Cladonia pontentosa
	Racomitrium lanuginosum			Vaccinium vitis-ideae		Cladonia cervicornis
	Sphagnum cuspidatum			Vaccinium uliginosum		
	Sphagnum auriculatum Sphagnum palustre			Vaccinium oxycoccus		
Churchill	Dicranum elongatum	Betula gladulosa	Rubus chameomorus	Empetrum nigrum	Deschampsia flexuosa	Cladina stellaria
	Sphagnum fuscum	Salix arctophila	Pinguicula vulgaris	Ledum decumbens	Calamagrostis sp.	Cladina rangifera
		Salix lanata	Saxifraga aizodies	Andromeda polyfolia	Carex scirpoidea	Flavocetraria nivalis Flavocetraria
			Potentilla palustris	Vaccinium vitis-ideae	Carex vaginatum	cuculata
			Tofieldia pusilla	Rhodedendron lapponica	Carex capillaris	Bryoria nitidula
				Picea glauca		
				Arctostophalus sp.		

965 Supplementary information 1. Dominant plant species at the Torneträsk and Churchill peatlands. Species found in wetter areas are *italicised*.

Area	Site no	Site name	Fasting ^a	Northinga	Elevation (m absl)	Active layer depth (cm)	Laver ^b	Bulk density (g.cm ⁻³)	C (mg g ⁻¹)	N (mg g ⁻¹)	C·N	Moisture content (% dry weight)
meu	Site no	Abisko	Lusting	Tiontining	(11 400)	(cm)	Luyer	(g chi)	((0.11	(reight)
Torneträsk	1	Research station	7588331	1623701	343	49.3	1	0.03	44.0	0.6	75.1	777.2
							2	0.06	46.4	1.1	43.9	594.4
							3	0.09	48.6	1.6	30.0	372.6
		Kursflaket										
	2	(Abisko östra)	7587485	1626340	350	46.5	1	0.05	48.5	0.8	62.2	474.7
							2	0.05	47.4	1.3	36.0	495.2
							3	0.09	46.9	1.8	26.6	456.7
		Kärtosape		1 (2012)	200			0.04	10.0			207.6
	3	(Mellanflaket)	/586903	1628129	390	51.3	1	0.06	48.9	1.3	37.8	287.6
							2	0.11	50.1	1.3	37.5	247.2
							3	0.14	41.8	1.4	29.1	227.5
	4	Storflaket	7588147	1633139	350	49.0	1	0.07	48.7	0.9	51.4	358.7
							2	0.08	46.8	1.9	24.0	390.2
							3	0.07	48.5	1.6	30.9	526.3
	5	Stordalen väst	7588147	1633139	350	50.0	1	0.03	47.6	0.6	77.2	519.8
							2	0.08	49.6	1.9	25.8	421.9
							3	0.12	46.9	2.3	20.4	350.5
	6	Stordalen IBP	7588605	1633727	354	51.9	1	0.04	47.4	0.6	82.3	449.5
							2	0.06	53.1	1.0	50.6	439.8
							3	0.08	49.2	1.9	25.9	416.5
		Narkervare										
	7	(Torneträsk st.)	7575403	1663072	355	49.8	1	0.04	50.2	1.0	49.8	396.0
							2	0.07	49.4	1.2	42.6	426.3
							3	0.09	54.2	1.5	37.3	348.2
	8	Stenbacken	7572484	1664837	411	53.1	1	0.06	47.4	0.8	62.4	385.4

968 Supplementary information 2. Peatland locations and peat properties

							2	0.06	48.0	1.3	36.8	449.5
							3	0.09	49.5	1.8	28.1	356.9
			15V	UTM								
Churchill	1	PPD	0453504	6510605	15.9	37.3	1	0.07	44.2	1.2	35.4	275.3
							2	0.11	44.0	1.6	27.7	286.1
							3	0.13	33.0	3.6	9.2	226.7
	2		15V	UTM	15.0	25.2	1	0.06	40.0	1.0	20.2	297.0
	2		0431308	0310020	13.9	23.5	1	0.00	40.0	1.0	39.2	387.0
							2	0.09	42.5	1.2	35.2	401.0
			15V	UTM			*	*	*	*	*	*
	3		0451423	6509167	20.1	31.0	1	0.05	40.4	0.7	58.1	479.9
							2	0.09	40.1	1.9	21.0	509.8
							3	0.08	40.8	2.5	16.5	453.3
			15V	UTM			5	0.00	10.0	2.5	10.5	100.0
	4		0451423	6509167	20.1	30.2	1	0.06	43.2	1.3	34.1	284.3
							2	0.08	40.5	2.0	20.0	380.8
							3	0.08	40.3	2.0	20.4	396.6
			15V	UTM								
	6		0451283	6508919	22	30.0	1	0.06	40.4	0.7	58.6	325.8
							2	0.10	43.0	1.0	42.8	324.3
							3	0.08	41.9	2.2	18.9	390.8
	0		15V 0452510	UTM 6400406	22	20.2	1	0.02	29.2	0.4	00.7	1070-1
	0		0452519	0499490	33	29.5	1	0.02	26.9	0.4	120.0	1079.1
							2	0.04	30.8	0.5	128.8	1121.2
			15V	UTM			3	0.03	39.2	0.4	107.9	1113.9
	9		0452544	6499323	33.3	29.7	1	0.04	41.4	1.1	38.8	350.7
							2	0.07	43.0	1.0	42.8	393.7
							3	0.10	31.5	1.0	22.9	223.5
			15V	UTM			5	0.10	51.5	1.7	22.)	223.3
	10	Twin lakes	0451736	6498165	35.4	37.3	1	0.06	40.6	0.6	70.0	413.1
							2	0.06	30.6	0.6	52.3	485.3

|--|

969 ^aThe coordinates for the Torneträsk site are in RT 90 (Swedish grid), while the coordinates for the Churchill sites are in UTM

970 ^bThe peat layers are 1) surface peat, 2) half way through the active layer, 3) just above the permafrost table.

973 Supplementary	information 3	3.
-------------------	---------------	----

974

975 CO₂ and CH₄ flux measurement in the field

P76 At each peatland *in situ* gas exchange of CO₂ in three subplots ca. 4 m apart was measured on

977 three separate days over a two week period in July 2008 and Aug 2009, in Torneträsk and

978 Churchill, respectively. CO₂ fluxes were measured over 10 minutes using an EGM-4 Infra

979 Red Gas Analyzer with a 30 cm diameter cuvette (PP Systems, Hitchin, UK - see Sjögersten

- 980 et al. (2010) for details) between 10:00 and 17:00. At a subset of peatlands (n =3) in
- 981 Churchill we recorded CO₂ measurement over one 24 h period collecting reading each hour.
- 982 Methane fluxes from each plot were estimated in parallel with CO₂ measurements (i.e.
- sampling on three separate days from each peatland in between 10:00 and 17:00) using the
- 984 closed chamber technique with four samples taken at 15 minute intervals and injected into
- 985 evacuated glass vials for later analysis of CH₄ in the lab using a Gas Chromatograph (GC)
- 986 (Sjögersten et al., 2011). Positive values of CO₂ and CH₄ fluxes represent an efflux to the
- 987 atmosphere.

988

Formatted: Font: Not Italic

990 Supplementary information 4

⁹⁹²

Supplementary information 4. a) CO_2 and (b) CH_4 fluxes *in situ* at Torneträsk and Churchill, respectively. Mean and SE are shown, each data point is based on three sub samples per site, n = 8, collected at three occasions in July and August, at Torneträsk and Churchill, respectively. Additionally diurnal variation in CO_2 fluxes c) were recorded at three sites in August in Churchill. CO_2 fluxes (a) differed between Torneträsk and Churchill, $F_{1,38} = 15.16$, P < 0.001) but not for the CH₄ fluxes (b) $F_{1,28} = 0.58$, P < 0. 4).

997 Supplementary information 5

998

Supplementary information 5. Temperature response curves of optimised peat from three layers (L1-3) in the active layer in a) Torneträsk and b) Churchill (means \pm SE are shown, n = 8; overall temperature effect for all layers: $F_{3,159} = 6.02$, P < 0.001; difference between areas: $F_{1,14} = 7.00$, P < 0.05), c) modelled overall relationship between temperature and CO₂ release (CO₂ = 0.386+0.035×(1.137^T); $F_{2,179}$ = 6.68 P < 0.01) for all sites (i.e. both Churchill and Torneträsk) and peat depth combined.

