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Abstract 

Rail disruption management is central to operational continuity and customer satisfaction. 

Disruption is not a unitary phenomenon - it varies by time, cause, location and complexity of 

coordination. Effective, user-centred technology for rail disruption must reflect this variety. A 

repertory grid study was conducted to elicit disruption characteristics. Construct elicitation 

with a group of experts (n=7) captured 26 characteristics relevant to rail disruption. A larger 

group of operational staff (n=28) rated 10 types of rail incident against the 26 characteristics. 

The results revealed distinctions such as business impact and public perception, and the 

importance of management of the disruption over initial detection. There were clear 

differences between those events that stop the traffic, as opposed to those that only slow the 

traffic. The results also demonstrate the utility of repertory grid for capturing the 

characteristics of complex work domains. 

 

 

Practitioner Summary 

The aim of the paper is to understand how variety in rail disruption influences socio-technical 

design. It uses repertory grid to identify and prioritise 26 constructs, and group 10 disruption 

types, identifying critical factors such as whether an incident stops or merely slows the 

service, and business reputation. 
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1. Introduction 

Delay and disruption on the railways has a financial cost in terms of lost patronage and delay 

attribution penalties (National Audit Office, 2008). The high priority placed by travellers on 

reliability (Thomas et al., 2006) means delay both undermines existing passenger confidence 

and inhibits potential mode shift from the car to the train. Tackling disruption is therefore a 

critical challenge if the railways are to offer a viable, sustainable travel option (EU, 2011). 

The following paper presents a repertory grid approach to explore and identify the 

characteristics of railway disruption with groups of railway incident practitioners. This was 

with the aim of contributing to a more nuanced understanding of rail disruption for an EU 

FP7 project (On-time) developing new tools for rail capacity management. The specific study 

objectives were (1) to understand the major characteristics of rail disruption as perceived by 

operational staff and (2) determine any variations or regularities of these characteristics over 

different disruption types. By doing so, the intention was to understand the variety (Flach, 

2009) inherent within events such as rail disruptions, so that this variety can be adequately 

reflected in new technology design, new processes or new organisational configurations. As 

such, this study contributes new data on disruption management within rail, and transport 

generally, and provides further insight into the personal, cognitive work of those people 

involved in disruption management (Farrington-Darby et al., 2006). The study also serves as 

an illustration of both a method and outputs that allow variety to be captured in a manner 

appropriate for cognitive work systems such as rail control. 

2. Background 

2.1 The nature of rail disruption management 
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Transport disruption can be defined as an event that leads to significant re-planning of a 

transport service (Pender et al., 2012). Specifically, for this paper, the focus is on unplanned 

disruption, as opposed to planned engineering. Unexpected events such as train failures or 

overhead line dewirements, or widespread restrictions due to high-winds or flooding, are a 

daily occurrence on the railways. Events such as these may take hours to resolve, and cause 

significant delay and frustration to passengers and freight customers. While this paper 

focusses on the experience of the railways of Great Britain, such disruption is common to all 

forms of heavy and light railway, globally (Pender et al., 2012), and some form of disruption 

is a reality for all forms of transportation system including aviation (Clausen, 2007) and 

highways (Koorey et al., 2008).  

Various approaches are proposed to support the management of incidents and disruption on 

the railways. One is to prevent disruptions, for example by predicting potential infrastructure 

faults (Dadashi et al., 2014) or through preventing fatality and trespass (Ryan, 2013). It is not 

feasible, however, to anticipate all forms of potential failures or incidents. An alternative 

approach is therefore to manage and mitigate disruption more effectively as it occurs. 

Observational (Farrington-Darby et al., 2006) and incident analyses (Golightly et al., 2013a) 

have captured the critical activities of rail disruption management. These include, first, 

notification and containment of an event, then coordinating and mobilising any trackside 

response such as maintenance staff or emergency services, re-planning the service to 

maintain continuity during the event including informing passengers, restoration of 

infrastructure to service and, finally, return to normal. All of this is conducted within the key 

performance criteria of safety, punctuality and cost effectiveness (Millen et al., 2011). In 

Great Britain, this process is led by incident controllers who have central responsibility for 

coordinating response. These responsibilities include making operational decisions to manage 

the rectification of disruption and to organise and disseminate alternative service 



5 

 

arrangements (further detail on the orchestration of incident control is presented in 

Farrington-Darby et al., 2006). These decisions are acted upon, and informed by, signallers, 

train crew, station staff, maintenance staff and sometimes external parties such as the 

emergency services. Naturally, a major set of stakeholders in the disruption are the 

passengers themselves, delayed in trains or stations. Two of the key roles, signallers 

(Golightly et al., 2010) and incident controllers (Farrington-Derby et al., 2006) are physically 

remote from the disruption  and, in the case of incident controllers, have no direct interface or 

means of control, acting through others via phone calls, emails and Information Technology. 

While roles vary for other countries (Golightly et al., 2013b), the major functions embedded 

within disruption management systems are typical for any rail system. 

Technology forms a central part of the strategy for the effective management of disruption 

events. Proposed solutions include traffic re-planning and operational decision-making tools 

(Kauppi et al., 2006; Pasquier, Rezillon and Pomerol, 2000), complemented by support tools 

for short-term crew and rolling stock re-planning (Jespersen-Groth et al., 2009). Re-planning 

tools such as predictive, interactive train graphs (Kauppi et al., 2006), could not only help 

individual decision makers to plan alternatives, but can act as a visual, shared representation 

so that a number of relevant stakeholders can see the proposed plan (Male and Baber, 2014).  

Technology also applies to passengers and the need to provide accurate information on the 

duration of delays and potential alternatives. This kind of information is transmitted through 

traditional means such as station staff, but also through more recent forms of technology such 

as mobile travel applications (Lyons, 2006) and social media (Pender et al., 2014; Golightly 

and Durk, accepted). 

2.2 Variation in disruption 



6 

 

Disruption is not, however, a unitary phenomenon. First, incidents and disruptions are not the 

same thing. Incidents, or events such as infrastructure failure, do not always lead to 

disruption and this can be down to the way the incident is managed, minimising or avoiding 

altogether any impact on timetabled services. Therefore, while the overall aim of the study 

was to understand the factors, decisions and processes that may or may not lead to disruption, 

the starting point for the elicitation was the potential cause of that disruption – termed here as 

an ‘incident’, in keeping with common GB rail nomenclature (for example, events are 

categorised and recorded on the ‘Control Centre Incident Log’ [Golightly et al., 2013a]). 

Incidents and resulting disruptions are dynamic, with different stages requiring different types 

of information and coordination amongst various stakeholders. For rail disruption, the 

opening stages, where the event is first noticed and immediate containment action is applied, 

may be brief (in the order of a few minutes) but critical if the situation is not to escalate 

(Belmonte et al., 2011). However, tools such as crew and rolling stock rescheduling may only 

be relevant to a later phase of re-planning to put alternative service plans in place. Also, 

railway disruptions do not always follow a single, linear process. Major incidents such as a 

break in the overhead electrification may take many hours to resolve. During the course of 

such incidents there may be many cycles of investigation, rectification and adaption of plans 

before normal service is restored (Golightly et al., 2013a).  

Another consideration is that incidents vary – their causes, timing and location can all 

influence the choice of effective strategy.  For example, at the busiest times on the busiest 

parts of the network the most adaptive course of action may be to apply temporary (though 

safe) repairs to keep a partial service running, and complete the fix overnight when there are 

fewer train services.   

The handling of incidents involving the railways requires close coordination between many 

parties across different organisations, such as different train operating companies, some of 
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whom have conflicting priorities (Steenhuisen et al., 2009).  For the most severe incidents 

and emergencies, these groups are rapidly configured between parties who do not regularly 

cooperate, such as the emergency service or air ambulance (Smith and Dowd, 2000) and may 

often be physically distributed, communicating primarily through telephones. These types of 

incidents may draw on different skills and competence compared to ‘routine’ disruption. For 

example, even highly experienced control staff feel least confident when dealing with third 

party emergency services during incidents (NAO, 2008; Cheng and Tsai, 2011). 

2.3 Expressing complexity 

All of these different sources of variation, and context, are acknowledged to make rail 

disruption very unpredictable. Any contingency plan, whether that is provided by technology 

or some other means (paper-based contingency plans are still the norm in many rail control 

centres), can only be a template. Contextualising decision support to reflect the specifics of 

an event is a major challenge (Lenior et al., 2006). In the naturalistic observation of incident 

controllers, Farrington-Darby et al. (2006) found that the work required significant elements 

of problem-solving and learning, as well as knowledge of the social context (people and 

responsibilities) that can put plans into effect. 

From a cognitive systems engineering perspective (Hollnagel and Woods, 2005; Flach, 2009) 

such complexity can be viewed as variety within the domain to be controlled. Effective 

control can only be achieved through understanding the nature of this variety and making it 

available and salient through the control system.  Therefore new technology, processes and 

organisational configurations (which often change at the same time [Wilson and Norris, 

2006]), should reflect this variety, making it salient to agents, both human and automated, 

involved in the decision making process.  
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Feltovich et al. (2004) identify a number of categories of complexity in socio-technical 

systems. These include the system being dynamic and non-linear, comprising interactive and 

heterogeneous components, and being conditional depending on context. The review of rail 

disruption above highlights that all of these aspects of complexity are present, but it would be 

useful to understand the specifics of this complexity in a more regular or structured manner. 

This would help to define the variables that might need to be expressed within a tool if it is to 

provide sufficient support, or set bounds on the type of disruption that realistically can be 

supported by any given approach. 

One means is through understanding current operational approaches to managing disruption, 

and complexity perceived by operational staff. This would be with a view to seeing where 

regularities lie. These regularities might be in both the overt characteristics of the event (e.g. 

its causes, location etc.) and also in the adaptive strategies and heuristics used to manage the 

event (Flach, 2009). Those strategies are dependent on factors associated with both the cause 

and means of managing a disruption. Eliciting these factors was the aim of the study 

described in the rest of this paper. 

2.4 Repertory grid 

While observation (Farrington-Darby et al., 2006), Critical Decision Method (CDM) 

(Dadashi et al., 2013) and post-hoc incident analysis (Smith and Dowd, 2000; Golightly et 

al., 2013a) can contribute to our understanding of rail incidents, they have certain limitations. 

Observation is dependent on being present while an incident takes place, CDM is extremely 

time consuming if the intention is to cover multiple incident types with multiple experts, and 

post-hoc analyses to date have looked at organisational rather than individual factors, as 

communication records and incident reports rarely give insight into individual strategies. The 

requirement for this study was to find a structured technique to elicit, compare and contrast 
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characteristics of multiple disruption types, as the people at the front line of incident 

management perceive them.  

Repertory grid technique is rooted in Kelly’s Personal Construct Theory (Bannister and 

Fransella, 2002). The theory postulates that people have a set of core hypotheses or 

expectations about the world that shape their interpretation of the environment and events. It 

is assumed that these expectations, termed ‘constructs’, are bi-polar with judgements of 

similarity between the world and the constructs being made along a continuum (Edwards et 

al., 2009). Also, Personal Construct Theory proposed that constructs are organised as a 

hierarchical system, and by examining groups of related constructs it may be possible to find 

superordinate constructs that shape a person’s understanding of a domain. The aim of the 

repertory grid technique, therefore, is to elicit a set of constructs and, through comparison, 

identify higher order beliefs, values or rules. 

The technique has been transposed from the personal and therapeutic setting, for use in 

knowledge elicitation and subsequently applied in the human factors arena for uses such as 

capturing product design characteristics (Baber, 1996; Kuru and Erbug, 2013), human 

computer interaction (Hassenzahl & Wessler, 2000), road and driving characteristics 

(Riemersma, 1988) and for identifying the characteristics of workload in rail signalling 

(Pickup et al., 2010). 

The aims of the repertory grid technique, as applied in this study, were to understand 

constructs relevant to the perception and management of rail disruption with the intention of 

determining similarities between different incident types. Repertory grid was chosen as the 

appropriate technique for this elicitation study, specifically because it allowed comparison 

across multiple types of event, which could draw out regularities and idiosyncrasies across 

several critical types of disruption.  



10 

 

3. Method overview 

The repertory grid technique is applied as follows. The first stage, construct elicitation, 

explores elements in groups of three. These elements are exemplars for a given domain. In 

the current case, the set of elements comprised a number of different incident types, presented 

in Table 1.These incidents were selected from series of discussions with experts working in 

rail disruption from across the rail sector. The incidents represent a range of cases that 

typically have a major impact on rail operations either because of their immediate severity 

(e.g. in the case of an overhead line dewirement), or because of their incremental effect on 

rail system performance (e.g. on-going passenger loading issues across a region because of 

icy platforms). 

[Table 1 about here] 

The researcher then presents the elements to participants and asks them to comment on a 

characteristic, or ‘construct’ linking two of the elements, but differentiating the third. To give 

an example, when presented with a fatality, a points failure and passenger loading issues, a 

participant may comment that the first two have a specific location, whereas passenger 

loading issues may be widespread during poor weather. Thus ‘disruption location’ has been 

elicited as a construct, with ‘specific’ and ‘widespread’ identified as the two poles. The 

process is repeated, theoretically until all combinations of three elements have been presented 

and all possible constructs have been elicited, though pragmatically the elicitation may stop 

once the participant is unable to provide any new constructs (Baber, 1996).  

The second stage consists of rating the constructs against each of the elements, either as a 

binary ‘yes’ or ‘no’ as to whether the construct is relevant to that element or a scaled rating of 

elements for each construct. Statistical analysis, through approaches such as cluster analysis 

or factor analysis can be used to identify groups of constructs that together indicate higher 
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order or underpinning constructs. The analysis can also identify variation between element 

types over these constructs, for example to identify which product rates most highly for 

comfort or appearance (see Edwards et al., 2009 for a useful review of the different variants 

of repertory grid application).  

Due to the time and availability of the railway experts that participated in this study, it was 

not possible to perform the first and second stage (construct elicitation and construct rating) 

with one group of participants. Also, there was a desire to capture the opinion of railway 

practitioners from a number of roles to increase the applicability of the results, using a ‘fixed 

grid’ (Edwards et al., 2009). This two stage approach to applying repertory grid has a 

precedent in the ergonomics literature (Riemersma, 1988). These two stages are reported 

separately in the following sections. The ethics panel at the Faculty of Engineering, 

University of Nottingham, approved both of these stages.   

4. Construct Elicitation 

4.1 Method 

4.1.1 Participants 

Seven members of staffs from the Great Britain railways agreed to take part in the study. 

These experts were from various roles including signallers (two participants), incident 

controllers (three participants) and station managers (two participants), with an average of 20 

years of experience. Participants were approached via contact with a senior manager at the 

railway infrastructure manager who facilitated recruitment.  

4.1.2 Apparatus 

The ten incidents selected as elements (see Table 1) were presented individually on cards. 

Identified constructs were recorded in an Microsoft Excel™ spread sheet in real-time during 
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the interviews. iTalk™ digital voice recorder was used to record participants’ comments. As 

one of the participants declined to be recorded, there were six recordings that were 

subsequently transcribed. 

4.1.3 Procedure 

After agreeing to take part in the study and signing a consent form, participants were 

presented with groups of three cards, representing incident types. Participants were asked to 

group two of the three over a criterion of their choice, to describe that criterion, and then 

offer a rationale for their decision. The criterion was then recorded as a construct in a 

Microsoft Excel™ spread sheet. A second set of three incidents was presented, and the 

process repeated until the participant was no longer able to offer a new construct. Typically 

this took around 30 minutes per participant.  

4.2 Results 

A total of 142 bipolar constructs were identified from the excel spreadsheets, supported 

by transcripts. Some constructs were noted by a number of participants, for example six 

participants stated ‘the number of people involved (i.e. multi-agent control/single-agent 

control)’ as one of the constructs that defines a railway incident. Also, in some cases a 

construct was identified more than once by the same participant despite the intention that 

each of their constructs should be unique. Removing duplications within and between 

participants led to 26 constructs. These, as well as their contrasting poles, are presented 

in Table 2. The table also presents the number of participants who mentioned the 

constructs, total references to those constructs and an example of incident trio that would 

elicit the construct. These examples are drawn from the participant transcripts. 

 



13 

 

[Table 2 about here] 

 

From this list it was possible to build a fixed grid of the 26 constructs by 10 incident types, 

which served as the materials for the next stage of the study: construct rating. 

5. Construct Rating 

5.1 Method 

5.1.1 Participants 

The second group of participants comprised 28 railway operational staff attending a 

workshop on new traffic management technology, facilitated by the rail infrastructure 

manager. Participants had an average of 20 years of experience with various responsibilities 

including signalling (10 participants), local operations management (9 participants), incident 

control managers (6 participants), an electrical control room operator (1 participant), a senior 

modelling specialist (1 participant), and a station manager (1 participant). 

5.1.2 Apparatus 

The 26 constructs identified during the previous stage were presented as a paper-based matrix 

with 26 constructs down the side, and 10 incident types across the top. The matrix was 

printed and could be completed using a pen. The matrix also gave an example of how to 

complete the form, as well as ethical and consent information. It should be noted that both 

poles were presented for each construct with one scored as ‘1’ and the other as ‘9’, and 

participants required to score on or between these two poles. The pole presented as ‘1’ was 

generally the negative construct. For clarity, Figure 1 presents an extract from the matrix as it 

was presented to participants. 
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5.1.3 Procedure 

The purpose of the survey was explained to the participants attending the workshop. The 

survey was then distributed and participants were requested to rate each incident type (in 

other words, to write a value in each cell of the matrix) against the constructs with a 

relevance rating from 1 to 9. Participants were not required to rank incidents, that is, they did 

not have to put a unique score for each incident for a given construct, and were allowed to put 

duplicate values. For example, a participant might give both points failure and signal failure a 

rating of 1 for ‘time of day’ indicating that time of day was not relevant to either incident 

type. Completing the survey took around 15-20 minutes and all responses were collected at 

the end. 

5.2 Results 

Table 3 shows participants mean scores (Min=1 and Max=9) for each of the constructs in 

relation to various incident types, as well as total mean and standard deviations for element 

and construct.  Constructs are ranked top (greatest) to bottom in terms of mean score, with 

elements ranked left (greatest) to right. NB These rankings are only illustrative. For 

constructs, in particular, scores do not always follow 1 = ‘least / smallest / least important’ 

etc. and 9 = ‘best / biggest / most important’ convention, and the reader should refer the left 

hand column of Table 3. 

[Table 3 about here] 

Analysis of Variance (ANOVA) was conducted to facilitate the review and comparison of the 

28 grids with each other. This was to confirm that the participants’ collective opinion was not 

contradictory and the values are representative (Edwards et al., 2009). The comparison 

between the constructs in the grids (F (324,26)=12.15) and the correlation between construct 
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angles is (r
2
=0.92) indicates participants have common opinions with regards to the 

constructs associated with the railway incidents.  

One means to understand groupings of constructs is hierarchical cluster analysis. Pairs of 

similar items are grouped based on a metric such as Euclidean distances. These pairs may in 

turn be paired with other items or pairs, forming higher order clusters. A dendogram (see 

figures 2 and 3) represents the stages of pairing. Typically, further pairing is ignored when 

very large distances are being grouped together, as indicated by a large distance across the x 

axis of the dendogram or the agglomeration schedule generated during the cluster process 

(Clatworthy et al., 2005). Therefore, the point at which further pairing is discarded, and the 

interpretation of the meaning of clusters, is somewhat through the interpretation of the 

investigator (Edwards et al., 2009). 

 Hierarchical cluster analysis was used to identify groups of incident types that shared similar 

scores according to the element ratings. This was conducted in SPSS 20.0 using squared 

Euclidean distances and between groups linkage method. The dendogram is shown in Figure 

2. Visual inspection of the agglomeration schedule suggested a three cluster solution. These 

were  

Cluster 1 – Points failure, track circuit failure, signal failure and power failure. 

Cluster 2 – Fatality, OHL dewirement. 

Cluster 3 – Station overrun, freight adhesion, speed restriction, passenger loading.  

[Figure 2 about here] 

Hierarchical cluster analysis was also used to identify groups of the 26 characteristic 

constructs, by how they were similarly scored against incident types, using squared Euclidean 

distances and between groups linkage method. The dendogram is shown in Figure 3. Visual 
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inspection of the agglomeration schedule suggested a five cluster solution was the most 

appropriate. These clusters were 

Cluster 1 – Delay, impact, incident duration, delay estimation, investigation, number of 

people, access, danger 

Cluster 2 – Business reputation, time of day, social media, geographical distribution, 

variability, importance of timetable knowledge, visibility of features, likelihood, 

technological aids 

Cluster 3 – Human behaviour, driver behaviour, weather, seasons 

Cluster 4 – Diagnosis, handling, noticeability, handling location 

Cluster 5 – Effect on service 

[Figure 3 about here] 

6. Discussion 

6.1 Constructs 

The final list of 26 constructs demonstrates a range of factors considered relevant to 

disruption by participants. The interpretation of these constructs has been aided by referring 

to the transcripts from participants at stage 1. Relatively few of the constructs are concerned 

with the external characteristics of the event such as location and time of day or causal factors 

such as human behaviour and driver behaviour. Instead, many factors are concerned with the 

management of the incident and the organisation of incident response. In terms of models of 

disruption, it supports Farrington-Darby et al., (2006) by suggesting a greater overhead on 

decision-making (and potentially a greater need for support) at the incident management and 

replanning stage as opposed to initial response phase. As such, this supports and elaborates 
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on Lenior et al., (2006) by demonstrating the range of factors, beyond just the external, 

observable facts of the disruption, that operational staff use in their assessment of an 

disruptive event.  

Several of the characteristics of the constructs are striking. First, despite being identified by 

only one participant at stage one, business reputation came out as an important consideration 

at the rating stage. This result highlights the importance of more commercial factors, not just 

in terms of strategy, but in terms of the practical decision making during disruption. 

Similarly, social media is included as a construct, and is further evidence to support Pender et 

al., (2014) in the growing role of social media in disruption management. It is worth noting 

that since this study took place (in early 2013), almost all train operating companies in Great 

Britain have moved their social media teams into the rail control centre to maximise the flow 

of information, in both directions, between passenger and disruption management (Golightly 

and Durk, accepted).  

The construct clusters should be treated with some caution. The aim of the study was to 

capture variability, whereas clustering is an attempt to collapse that variability. That said, the 

clusters point to some interesting patterns. First, ‘effect on service’ (whether an incident stops 

or slows the service) is in a cluster of its own (Cluster 5). Rather than being an outlier, this 

suggests the importance of this construct on whether it is possible to maintain some service 

(see below for how ‘effect on service’ is reflected in the incident clustering). Also, constructs 

around danger, access and diagnosis (which all relate to trackwork), are clustered with 

constructs relating to delay and duration (Cluster 1). This correlates with the findings in 

Golightly et al., (2013a) and Cheng and Tsai (2001) where access to track greatly increases 

the complexity and demands of the incident due to the need to ensure trackworkers or 

evacuating passengers are safe from train movements and that electrical supplies have been 
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isolated . Both human and driver behaviour and weather factors also form a cluster (Cluster 

3), as these are all potential causal factors.  

Also, apparently similar constructs have subtly different implications For example, ‘time of 

day’, and ‘knowledge of timetable’, which at a surface level both seem to be the same, reflect 

different aspects of incidents when inspecting the ratings. Freight adhesion is shaped by 

knowledge of the timetable as much as other disruption events, but ‘time of day’ is not rated 

as important, presumably because there are no passengers and therefore of whether it is a 

peak period is less of a consideration. Similarly, the ‘need for investigation’ is not the same 

as the complexity or ‘ease of diagnosis’ as they were rated differently and assigned to 

different clusters. It is likely that ‘need for investigation’ is related to whether troubleshooting 

is required or not whereas ‘diagnosis’ is how easy it is to understand the cause of the 

problem. For design and process change, identifying small but subtle differences is important 

if designers and developers, particularly from outside the railways, are to avoid 

oversimplifying the task of disruption management (Feltovich et al., 2004). 

6.2 Incidents 

Turning to the incidents themselves, it is clear they vary in severity over a number of factors. 

This might be in terms of ‘effect’ (whether they stop or merely slow the service), or whether 

they can be handled by the operational staff in the control centre or require people on site, 

which also increases ‘danger’.  

Clustering suggests three groups – those that stop the service (OHL and fatality), 

infrastructure faults (signal, points, track circuit and power failures) that may have a variable 

effect depending on location and severity, and then a number of disruptions (station overrun, 

speed restriction, freight adhesion and passenger loading) that are minor in their effect, and 

can normally be managed remotely by the signaller without significant multi-party 
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involvement.  These clusters also suggest that other disruption events, not included in this 

analysis, may have similar and therefore predictable profiles. For example, a major train 

failure, that stops the service, may show a similar profile and have similar control 

requirements to a Fatality or OHL dewirement. While only one construct explicitly related to 

the multi-agent nature of incident, there was much variation between incident types. This 

adds further support, from a different perspective, to Golightly et al (2013a) emphasising that 

events like fatality (7.46) or OHL (7.18) require close coordination with parties on track, 

whereas freight adhesion (2.79) or station overrun (2.29) may only require communication 

between the signaller and the driver. 

There are some results that warrant further investigation. ‘Driver behaviour’ scores highly for 

fatality, when it would seem that there would be little scope, particularly in high speed 

situations for the driver to do much to avert an accident. Fatalities also cover level crossings 

and trackworker incidents, and this different scope may change perceptions of this factor. As 

well as requiring further discussion and validation with experts, this point generally illustrates 

the very specific use of terminology and the difficulties of interpretation for domains such as 

the railways. 

6.3 Methodology  

In terms of the quality of the data, there was a high degree (over 80%) of duplication during 

the initial elicitation. This suggests a level of concordance between participants in terms of 

the factors they considered relevant to rail disruption. At the rating stage, clusters of both 

incident types and constructs include items that would intuitively appear to form natural 

groups (e.g. a cluster of all infrastructure failures, a cluster relating to diagnosis and handling) 

that suggests face validity.  
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In terms of lessons learned regarding the methodology, repertory grid has proved a successful 

tool in highlighting not only the variety inherent in disruption, but also how these vary over 

incident types. There have also been some interesting artefacts of the manner it has been 

applied. By using different samples between the capture and the rating phase in the manner of 

Riesmerse (1988), constructs that seemed only marginally relevant at elicitation phase (e.g. 

business reputation), turned out to be important at the construct rating phase. While obvious 

duplications were removed at the elicitation phase, some overlap between terms was 

permitted for the rating phase. This proved to be useful as seemingly similar terms (e.g. 

‘timetable’ and ‘time of day’; ‘investigation’ and ‘diagnosis’) were given different patterns of 

rating depending on the incident type, or were assigned to different clusters. 

6.4 Limitations 

One limitation of the study is that the study is very much focussed on rail control in Great 

Britain. While experience on EU projects has shown there are many generalities between 

different countries (Golightly et al., 2013b), there are specific factors that only apply locally. 

For example, Sweden has a national incident co-ordination centre whereas an incident 

management in GB is typically conducted at the regional level. It would be useful to replicate 

this study elsewhere, and the matrix is available from the authors on request. Also, there is a 

limitation with scales used and therefor data collected. The analysis of participant responses 

in the second phase has broadly assumed that ratings for poles go from smaller (1) to larger 

(9) and therefore, implicitly, from less severe / impactful, to more severe / impactful. While 

this holds for the majority of construct ratings, it is maybe more tenuous for others (mode of 

handling: handled remotely (1), handled onsite (9)). While in this case the intention was to 

stay loyal to the constructs and poles elicited by the seven experts, a future variant of the 

fixed grid matrix may adapt construct poles to make rating scales more consistent.  
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A final limitation is that the study used different roles. All were experienced in disruption 

management, but it is possible that the signaller (with responsibilities that include safe access 

for trackworkers, and changing route setting to accommodate late and delayed trains) may see 

events differently from incident control roles who have a more strategic role in service 

continuity. A future study may choose to study different roles separately and in greater detail. 

7. Conclusions 

The aim of the study presented in this paper was to elicit characteristics relevant to decision 

making within rail incident management. In addition, there was an aim to understand how 

incident types might vary in accordance with these characteristics, and to understand if there 

were any groupings of incidents with shared characteristics. These aims had a practical goal 

of understanding factors to feed into requirements for technology or process change. In terms 

of knowledge, the study aimed to expand on studies such as Farrington-Darby et al. (2006) 

and Golightly et al. (2013a) by bringing to light the constraints and considerations that 

impinge on cognitive activity during disruption management. 

First, this paper has identified 26 characteristics that create variety in rail disruptions. The 

most marked difference is around whether an incident slows or stops the service, and also 

there were unexpected factors that moved beyond purely operational considerations, to cover 

business reputation or the importance of social media. In terms of the incident types 

themselves, there was a clear grouping for events such as fatality and overhead line 

dewirement that caused a complete blockage to the service. Infrastructure faults were viewed 

in a similar manner to each other, with a third grouping of service disruption events that 

slowed but did not necessarily stop the service.  

Any technology or process designer is invited to consider the potential relevance of these 26 

characteristics when developing or reviewing new approaches to disruption management. 



22 

 

Importantly, these might be operational tools, but these 26 characteristics will also ultimately 

influence how the incident is managed and, as a result, how it might be perceived by 

passengers. Therefore, these characteristics  also have relevance to the design of information 

and processes as they are presented to passengers or freight customers. Overall, these 

characteristics reflect concerns around management and prediction of incident impact, rather 

than capturing initial data around the response, and are more marked when the service is 

stopped rather than slowed.Future models of the railway control, such as the abstraction 

hierarchy of Millen et al (2012) need to make explicit this performance shaping constraint. 

There is clear evidence incidents are different, which may be self-evident in the rail sector, 

but needs to be considered by those (software developers for example) approaching the sector 

for the first time. Importantly, extending on the organisational analysis of Golightly et al. 

(2013) these data show that while incidents vary, they can be grouped and offers a profile of 

the factors (constructs) relevant to these incident types.  

The work here therefore should help in reducing the ‘reductive tendency’ of designers of 

complex sociotechnical systems for rail (Feltovich et al., 2004). It is hoped this paper adds 

weight to the argument that future transport control technology needs to reflect and 

accommodate variety, not just in terms of external disruption awareness, but in terms of 

communication and organisation (and therefore adaption) to event characteristics.   

Also, the repertory grid has once again proved an effective and flexible method for eliciting 

valuable domain knowledge, and is an important tool for understanding complex systems and 

for capturing user requirements. While this work has identified a set of factors, a useful next 

step would be to link these factors to decisions, depending on the role of the actor involved. 

This would both validate the work presented here, and make it clearer how decisions are 

informed by disruption factors, which could in turn lead to design and process 
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recommendations. It is not common to make use of the qualitative commentary that 

participants give during construct elicitation, but in our case there are several hours of 

detailed rationale from our experts as to why factors are relevant in different types of 

disruption. To that end, the next step for this work will be to reanalyse the qualitative date to 

capture some initial decision making models that can be further elaborated, probably in new 

interview work, to produce decision making models and requirements for design. 
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Tables  

Table 1 – Incident types used as elements for the repertory grid technique 

Incident type Description 

Fatality Fatality, used in this study, refers to death of any member of 

rail staff, passenger or public (for example through trespass or 

suicide).    

Signalling / signalling 

systems failure  

Refers to failure of signalling equipment used to grant 

movement authority to rail traffic.  

Point failure  Failure of equipment for track points and switches 

Track circuit failure  Failure for equipment for track circuits (equipment that detects 

train within a track section, triggering interlocking). 

OHL (overhead line) 

dewirement  

Refers to damage to overhead catenary wire supplying power to 

traction. As well as requiring repair, the unavailability of 

overhead power limits the type of traction that can enter the 

affected area, and makes it difficult to extract trapped trains 

(Golightly et al., 2013a). 

Station overrun The event in which a train which the driver is attempting to 

bring to a stand at a booked station stop proceeds beyond the 

designated stopping point such that any door intended to be 

available for public use at that station is no longer on the level 

platform.  

Passenger loading  Passenger loading refers to problems associated with passenger 

flow, unexpected crowd (e.g. football match, etc.), or extended 

access / egress times due to poor platform adhesion for 

passengers (e.g. during snow). 

Power failure  Refers to loss of power supply to signalling, stations, depots, 

and to third rail (DC) powered traction. 

Speed restriction  Any problem that leads to imposing speed alteration to trains, 

these problems can be caused by weather, such as high winds, 

or temporary changes to the infrastructure. 

Freight adhesion issues  Delay to a freight service due to a selection of issues such as 

leaf fall, length and weight of freight.  
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Table 2 – Unique constructs, with contrasting poles, counts and an example of a triad where the item in italics is selected as different 

from the other two 

 Construct  Poles Count 

(particip

ants) 

Count 

(total) 

Example  

1 Number of 

people 

involved 

Single person; many 

people 

6 17 Fatality, signal failure and track circuit failure. 

Fatality requires several groups from within the railway and 

external organisations to communicate with each other to manage 

this incident. 

2 Impact Low impact; high 

impact 

6 17 Freight adhesion issues, track circuit failure and signal failure.  

Freight adhesion leads to lower impact to the service. 

3 Distribution Isolated; 

geographically 

dispersed 

5 7 Fatality, signal failure and freight adhesion.  

Freight adhesion is often a result of weather which means the 

effects cannot be localised. 

4 Effect on 

service 

Stops the service; 

slows the service 

5 11 Fatality, speed restriction issues and signal failure.  

Fatality leads to a complete blockage. The others may not. 

5 Importance of 

human 

behaviour 

Human behaviour 

important;  

human behaviour not 

important 

5 10 Station overrun, fatality and track circuit failure. 

Track circuit failure is the different because it is not caused by 

human behaviour. 
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 Construct  Poles Count 

(particip

ants) 

Count 

(total) 

Example  

6 Requires 

investigation 

No investigation is 

required; further 

investigation 

required 

4 4 Fatality, OHL and track circuit failure.  

Track circuit failure requires investigation to understand the 

problem. 

7 Weather 

related 

Weather not 

important; weather 

important 

4 5 Station overrun, freight adhesion issues and signal failure.  

Signal failure is not usually caused by weather. 

8 Length of 

incident 

Short-term; long-

term 

3 5 OHL, track circuit failure and point failure.  

OHL takes a lot longer to handle. 

9 Delays 

attributed 

Short delays; long 

delays 

3 10 Passenger loading, OHL and point failure.  

OHL most likely leads to long delays. 

10 Importance of 

timetable 

knowledge 

Timetable knowledge 

is not necessary; is 

necessary 

3 6 Passenger loading, signal failure and freight adhesion issues.  

Signal failure usually requires good knowledge of timetable in 

order to regulate and re-route other trains around it. 

11 Visibility of 

features 

Not visible; very 

visible 

3 4 Station overrun, point failure and signal failure.  

Station overrun is different as most of the features of the event are 

known without further investigation. 

12 Importance of 

seasons 

Not important; 

important 

3 5 Speed restriction issues, point failure and passenger failure.  

A speed restriction issue tends to be seasonal. 
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 Construct  Poles Count 

(particip

ants) 

Count 

(total) 

Example  

13 Variability of 

incident 

Not variable; highly 

variable 

3 7 Power failure, signal failure and fatality.  

Fatality is not as variable as the other two in terms of time its 

impact or time required to return to service. 

14 Noticeability 

of incident 

Easy to notice; 

difficult to notice 

2 2 Station overrun, signal failure and power failure.  

Station overrun is usually difficult to notice by a signaller or control 

function. The other two have specific alarms. 

15 Estimation of 

delay 

Easy; difficult 2 3 Station overrun, signal failure and point failure.  

Station overrun is different as it is easy to estimate the delay 

associated with it once the cause is known. 

16 Driver 

behaviour  

Driver behaviour not 

important; important 

2 2 Station overrun, freight adhesion and signal failure.  

Signal failure is different as driver behaviour is not important. 

17 Diagnosis Easy to diagnose; 

difficult 

2 5 Signal failure, power failure and freight adhesion issues.  

Freight adhesion issues are different as it is easy to diagnose. 

18 Mode of 

handling 

Reactive; proactive 2 2 Speed restriction issues, OHL and fatality.  

Speed restriction issues can be handled proactively. 

19 Location of 

handling 

Requires access to 

site; can be handled 

remotely 

2 5 Signal failure, station overrun and freight adhesion issues.  

Signal failure as it requires going to the site to manage it. 
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 Construct  Poles Count 

(particip

ants) 

Count 

(total) 

Example  

20 Access to the 

site 

Easy access; difficult 2 4 Station overrun, power failure and signal failure.  

Station overrun is easy to access and handle. 

21 Technological 

aids 

Technical aids not 

available; available 

2 4 Fatality, track circuit failure and point failure.  

Fatality as there are no technological aids available alerting or 

supporting that type of incident.   

22 Danger Not very dangerous; 

very dangerous 

1 1 OHL, point failure and track circuit failure.  

OHL can be potentially dangerous to passengers or staff (eg in 

terms of getting people off trains, access for staff). 

23 Likelihood of 

occurrence  

Not very likely to 

happen; very likely 

to happen 

1 1 Points failure, track circuit failure and freight adhesion issues.  

A freight adhesion issue is not as likely as the other two incidents. 

24 Social media  Social media is not 

important; important 

1 2 Fatality, passenger loading and signal failure.  

Signal failure is different as social media is not a consideration. 

25 Business 

reputation 

Business reputation 

not important; very 

important 

1 1 Signal failure, points failure and fatality.  

Fatality is different as it does not impact on the business reputation. 

26 Time of day  Not important; very 

important 

1 2 Signal failure, a track circuit failure and freight adhesion issues.  

Freight adhesion issue as the time of day is not important. 
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Table 3 – Mean ratings for element against constructs. Rows / constructs are ranked by overall mean ranking (highest at the top). 

Columns / elements are ranked by total mean rankings (highest on the left). 

Construct 

(with poles) Fatality OHL  
Signal 

failure 

Power 

failure 

Points 

failure 

Track 

circuit 

failure 

Speed 

restriction 

issue 

Freight 

adhesion 

issues 

Station 

overrun 

Passenger 

loading 
Mean 

Business 

reputation 

(1 = not 

important; 9 = 

important) 

7.25 7.21 7.32 7.18 7.04 6.25 5.5 4.93 6 6.25 6.49 

Time of day 

(not important; 

important) 

7.18 7.18 6.96 7.07 7 6.86 5.68 1.89 5.89 6.54 6.23 

Variability of 

incident 

(not variable; 

very variable) 

7.07 6.43 6.86 6.43 5.75 5.71 5.21 5.14 4.07 6 5.87 

Importance of 

timetable 

knowledge (not 

important; 

important) 

7.11 6.75 6.96 6.93 6.61 5.54 4.75 4.89 3.64 4.68 5.79 

Likelihood 

(not likely; 

very likely) 

5.96 4.61 5.64 5.07 6.54 6.39 5.96 5.64 5.21 6.79 5.78 

Visibility of 

features(not 

visible; very 

visible) 

6.68 5.25 6.82 6.5 6.32 6.68 4.5 4.5 4.25 3.82 5.53 
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Weather(not 

important; 

important) 

4.86 6.61 5.11 4.71 5.18 5.39 5.04 7.18 6.32 3.43 5.38 

Human 

behaviour(not 

important; 

important) 

8.04 5.07 4.29 4.25 4.14 4.04 4.07 5.29 6.68 7 5.29 

Driver 

behaviour (not 

important; 

important) 

7.04 5.57 4.46 3.21 3.86 4.11 5.29 5.89 7.89 4.71 5.2 

Delay 

(short; long) 
8.29 8.04 6.75 6.39 5.04 4.57 3.79 4.07 2.43 2.5 5.19 

Impact (low 

impact; high 

impact) 

7.96 7.71 6.61 6.46 5.11 4.93 3.71 3.68 2.39 2.68 5.13 

Social media 

(not important; 

important) 

6.64 5.71 5.54 5.29 5.18 4.89 4.25 3.68 4.25 5.36 5.08 

Delay 

estimation 

(easy; difficult) 

6.86 6.93 7.04 6.71 5.21 4.86 3.25 3.96 2.54 2.71 5.01 

Effect on 

service (stops; 

slows) 

1.68 1.64 3.39 3.46 4.71 5.64 7.39 6.82 7.32 7.75 4.98 

Geographical 

distribution 

(localised; 

widespread) 

5.68 5.54 5.57 5.57 4.86 4.5 4.89 4.71 4.07 3.79 4.92 

Incident 

duration (short; 
7.07 7.46 5.86 5.93 4.32 4.11 4.32 4.14 2.5 2.61 4.83 
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long) 

Investigation 

(not required; 

required) 

6.18 7.21 6.54 6.11 4.75 4.82 3.18 3.32 3.57 2.29 4.8 

Technological 

aids (not 

available; 

available) 

3.25 4.18 5.39 5.21 5.5 5.32 5.07 4.5 3.93 4 4.64 

Number of 

people (single 

agent; multi-

agent) 

7.46 7.18 5.32 5.04 4.25 4.18 3.18 2.79 2.29 2.46 4.41 

Seasons (not 

important; 

important) 

3.68 5.39 3.21 3.46 4.46 4.18 3.96 6.18 6.14 3.36 4.4 

Access (easy; 

difficult) 
5.71 5.25 4.68 4.61 4.39 4.75 4.04 4.11 2.46 2.25 4.23 

Noticeability 

(easy; difficult) 
4.14 3.71 3 3.5 2.89 3.54 5.18 5.36 5.5 5.32 4.21 

Danger (not 

dangerous; 

very 

dangerous) 

6.79 6.86 4.07 3.82 3.11 3 2.18 2.64 3.68 3.75 3.99 

Diagnosis 

(easy; difficult) 
3.75 3.54 4 4.68 3.36 3.64 3.96 3.21 2.64 3.64 3.64 

Handling 

(reactive; 

proactive) 

2.46 2.25 3.32 3.04 3.71 3.36 4.36 4.07 3.46 5.5 3.55 

Handling 

location 

(onsite; 

1.93 1.54 2.54 3.54 1.89 1.75 4.43 2.96 5.5 4.93 3.1 
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Remote) 

 5.8 5.57 5.28 5.16 4.81 4.73 4.51 4.45 4.41 4.39   
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Figures 

Figure 1 – Extract from matrix presented to stage 2 participants 

Figure 2 – Dendogram of disruption type clusters 

Figure 3 – Dendogram of construct (disruption characteristic) clusters 

I 

T 

E 

M  

CONSTRUCTS  

INCIDENTS 
F

at
al

it
y
  

O
H

L
 

d
ew

ir
em

en
t 

P
as

se
n
g
er

 

lo
ad

in
g
  

P
o
in

ts
 f

ai
lu

re
 

P
o
w

er
 f

ai
lu

re
  

S
ig

n
al

s/
S

ig
n
al

li

n
g
 s

y
st

em
 

fa
il

u
re

  
S

ta
ti

o
n
 o

v
er

ru
n
  

T
ra

ck
 c

ir
cu

it
 

fa
il

u
re

  

S
p
ee

d
 

re
st

ri
ct

io
n
 

is
su

es
 

F
re

ig
h
t 

ad
h
es

io
n
 i

ss
u
es

 

1 The length of 
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