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In functional magnetic resonance imaging (fMRI), the relationship between positive BOLD responses (PBRs) and
negative BOLD responses (NBRs) to stimulation is potentially informative about the balance of excitatory and in-
hibitory brain responses in sensory cortex. In this study, we performed three separate experiments delivering vi-
sual, motor or somatosensory stimulation unilaterally, to one side of the sensory field, to induce PBR and NBR in
opposite brain hemispheres. We then assessed the relationship between the evoked amplitudes of contralateral
PBR and ipsilateral NBR at the level of both single-trial and average responses. We measure single-trial PBR and
Deactivation NBR peak amplitudes from individual time-courses, and show that they were positively correlated in all experi-
Global signal ments. [n contrast, in the average response across trials the absolute magnitudes of both PBR and NBR increased
RSFA with increasing stimulus intensity, resulting in a negative correlation between mean response amplitudes. Sub-
sequent analysis showed that the amplitude of single-trial PBR was positively correlated with the BOLD response
across all grey-matter voxels and was not specifically related to the ipsilateral sensory cortical response. We dem-
onstrate that the global component of this single-trial response modulation could be fully explained by voxel-
wise vascular reactivity, the BOLD signal standard deviation measured in a separate resting-state scan (resting
state fluctuation amplitude, RSFA). However, bilateral positive correlation between PBR and NBR regions
remained. We further report that modulations in the global brain fMRI signal cannot fully account for this positive
PBR-NBR coupling and conclude that the local sensory network response reflects a combination of superimposed
vascular and neuronal signals. More detailed quantification of physiological and noise contributions to the BOLD
signal is required to fully understand the trial-by-trial PBR and NBR relationship compared with that of average

responses.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

BOLD functional magnetic resonance imaging (fMRI) is widely used
in human neuroimaging to localise the spatial origin of brain activity in
response to experimental tasks or stimuli. The majority of fMRI studies
utilise the increase in BOLD signal that occurs following stimulus onset,
relative to pre-stimulus or “resting” baseline levels, (termed the positive

Definition of abbreviations: P/NBR, Positive/negative BOLD response; P/NCBF, Positive/
negative cerebral blood flow; RSFA, Resting state fluctuation amplitude; TFA, Task fluctu-
ation amplitude; RSGS, Resting state global signal; TGS, Task global signal; RVT,
Respiration per volume time; HRI, Heart rate interval; HC, LC, High or low contrast;
MVC, Maximum voluntary contraction.

* Corresponding author.
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BOLD response, PBR) to infer that increased neuronal activity occurred
in response to the stimulus. This assumption is supported by neuro-
physiology experiments in both humans and primates which have
shown that the fMRI signal is an indirect, vascular correlate of increased
neuronal activity in the form of local field potential and multi-unit activ-
ity (Heeger et al., 2000; Logothetis et al., 2001; Magri et al., 2012;
Mukamel et al., 2005; Viswanathan and Freeman, 2007).

In addition, experimental stimuli often induce a decrease in BOLD
signal below the baseline level, termed the negative BOLD response
(NBR). For example, when stimuli are delivered unilaterally, such as im-
ages presented to one half of the visual field or the movement of one
limb, a PBR is induced in the primary sensory cortex contralateral to
the stimulation and a NBR is observed in the ipsilateral primary sensory
cortex. This lateralisation of PBR and NBR to opposite hemispheres has
been reported in primary visual (V1), motor (M1) and somatosensory
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(S1) cortices (Allison et al., 2000; Bressler et al., 2007; Hlushchuk and
Hari, 2006; Kastrup et al., 2008; Newton et al., 2005; Tootell et al.,
1998). In cross-modal sensory experiments, visual stimulation induces
a NBR in auditory cortex (and vice versa) (Laurienti et al., 2002;
Mayhew et al., 2013b), whilst painful stimulation induces a NBR in visu-
al cortex (Derbyshire et al., 1997; Mayhew et al., 2013a). An NBR is not
restricted to sensory cortex. Its occurrence has also been reported in
posterior cingulate cortex, medial prefrontal cortex and intra-parietal
regions (comprising the default mode network, DMN) in response to a
wide range of cognitive tasks (Gusnard et al., 2001; Northoff et al.,
2004; Raichle et al,, 2001; Spreng, 2012).

Despite the widespread observation of the NBR, its physiological or-
igin and functional significance remain poorly understood and conse-
quently the NBR is not widely utilised for brain mapping. The BOLD
signal arises from a complex neurovascular coupling between cerebral
blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic
rate of oxygen consumption (CMRO,) (Buxton et al., 1998) and conse-
quently there are many potential combinations of relative changes in
these parameters that can give rise to an NBR (Goense et al., 2012;
Pasley et al., 2007; Shmuel et al., 2002).

Investigations into the physiological mechanisms of NBR can be
broadly divided into those postulating a purely vascular origin, such as
from the ‘haemodynamic steal’ of blood by an adjacent activated cortical
region (Harel et al., 2002; Kannurpatti and Biswal, 2004; Olman et al.,
2007; Puckett et al., 2014) and those reporting that NBR originates
from local changes in metabolism, such as concurrent decreases in
both CBF and CMRO, (Devor et al., 2007; Mullinger et al., 2014; Pasley
et al,, 2007; Schafer et al., 2012; Shmuel et al,, 2002) potentially arising
from decreases in local field potential neuronal activity in the NBR re-
gion (Boorman et al.,, 2010; Shmuel et al., 2006). A further unknown is
whether a combination of these mechanisms may apply in some cir-
cumstances. However, in the case of NBR ipsilateral to the stimulus, an
origin of blood steal from the contralateral PBR is unlikely to be the
sole mechanism due to these regions occupying separate vascular terri-
tories (Smith et al.,, 2004; Tatu et al., 1998). In addition, NBR have fur-
ther been reported due to local changes in blood volume in large
cerebral veins (Bianciardi et al., 2011) and cerebrospinal fluid in the
ventricles (Bright et al., 2014) of humans, as well as due to increases
in neuronal activity and metabolism without a compensatory increase
in CBF during hippocampal seizures in rats (Schridde et al.,, 2008).

Given the wide variety of contexts in which NBRs have been ob-
served an important open question is whether comparable or different
mechanisms underlie their generation and whether NBRs represent dif-
ferent physiological processes in different scenarios. Of key interest is
ascertaining the circumstances in which NBR provides a useful neuro-
imaging marker of cortical inhibition, whether this reflects increases
in local inhibitory neuron activity or decreases in excitatory input
(Cauli et al., 2004; Ferbert et al., 1992; Lauritzen et al., 2012) given
that increases in inhibition have been shown to lead to both increases
(Enager et al., 2009; Pelled et al., 2009) and decreases (Devor et al.,
2007) in BOLD signal.

Evidence for an association between NBR and measures of cortical
inhibition comes from reports that individuals with higher baseline con-
centrations of the gamma-aminobutyric acid (GABA) inhibitory neuro-
transmitter in anterior cingulate cortex have been shown to display
the largest magnitude (absolute value) of NBR in the same region
(Northoff et al., 2007). Increased NBR magnitude ipsilateral to median
nerve stimulation has been linked to increases in the perception thresh-
old for electrical stimuli delivered to fingers of the contralateral hand
(Kastrup et al.,, 2008; Schafer et al., 2012), which is thought to form a be-
havioural manifestation of ipsilateral cortical inhibition. Additionally,
single-trial NBR amplitudes have been shown to correlate with the
power of simultaneously recorded 8-13 Hz EEG oscillations in the so-
matosensory cortex (Mullinger et al., 2014), providing further evidence
of a link between NBR and inhibitory neuronal processes (Jensen and
Mazaheri, 2010; Mathewson et al., 2011).

The NBR displays many of the stimulus-response properties that
characterise the PBR. The average magnitude of the NBR increases
with increasing stimulus intensity and duration (Klingner et al., 2010;
Shmuel et al., 2002), suggesting that NBR reflects neuronal inhibition re-
quired to optimise task performance, by reducing sensitivity and alloca-
tion of processing resources to the unattended or irrelevant part of the
sensory field.

In addition to the average response, single-trial responses can be
measured from the peak amplitude of each trial's fMRI timecourse.
Trial-by-trial amplitude variability is commonly treated as “noise” by
conventional general linear modelling analyses, which assume a consis-
tent amplitude response across trials, but has been widely reported to
contain information which is behaviourally relevant to the dynamics
of network processing (Fox et al,, 2007; Scheibe et al., 2010).

Taking into account all the caveats stated above, here we hypothesize
that important functional information may be contained in the relation-
ship between contralateral PBR and ipsilateral NBR amplitudes at the
single-trial level, such as regarding the balance of excitation and inhibi-
tion within a cortical network. Therefore we will investigate how the
single-trial amplitudes of PBR and NBR, evoked concurrently by the
same individual stimulus, relate to each other. The degree of single-trial
PBR and NBR amplitude variability, the frequency with which they dis-
play signal polarity which is opposite to the average response polarity,
and the relationship between PBR and NBR are currently uncharacterised.

Here, we use unilateral visual, motor and somatosensory stimulation
to induce contralateral PBR and ipsilateral NBR in primary visual (V1),
motor (M1) and somatosensory (S1) cortices respectively, to allow an
assessment of the generalisability of findings across these three sensory
modalities. First, we investigate the unknown relationship between nat-
ural single-trial variability in the PBR and NBR amplitude and compare
this to the relationship between the mean PBR and NBR response ampli-
tudes with increasing stimulus intensity. Second, we investigate the un-
clear role that global fMRI signals and resting-state haemodynamic
signal properties play in modulating single-trial fMRI signals and the
PBR-NBR relationship.

Materials and methods

Three fMRI experiments were performed in different subject co-
horts. visual: 14 subjects (4 female, 27.8 4+ 5.4 years); motor: 17
right-handed subjects (7 female, 26 + 4 years); and somatosensory:
18 right-handed subjects (8 female, 27 + 3 years). All data were collect-
ed with approval from the local ethics committee and informed consent
was obtained from all subjects. These data were initially collected for
other purposes, however all data contained the primary experimental
condition (unilateral stimulation of primary sensory cortex) required
to answer the scientific questions which we pose in this work. Table 1
summarises the key parameters for the three fMRI experiments.

Table 1
Summary of experimental parameters for the three fMRI experiments.
Visual Motor Somatosensory

Subjects analysed 14 14 13
Stimulus location Left visual field Right hand Right arm
Stimulus duration (s) 1 5 10
ISI (s) 16.5,19 or 21 5,70r9 20.5-21
Stimulus conditions 100%, 25% contrast  10%, 30% MVC  Motor threshold
Trials per condition 85 60 40
Resting-state scan Yes Yes No
fMRI sequence BOLD EPI BOLD EPI DABS
TR (ms); TE (ms) 1500; 35 2000; 35 2600; 134s1/33go1n
Voxel size (mm) 25x25x%x3 3x3x4 2.65 % 2.65 x5
Slices 20 32 10
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Stimulus paradigms

Visual

Black/white checkerboard stimuli were presented to the left visual
hemi-field at either high (100%, HC) or low (25%, LC) contrast levels in
a pseudo-randomised order. Individual experimental trials consisted
of a one-second duration checkerboard presentation, with phase rever-
sal at 500 ms. Trials were separated by an inter-stimulus interval (ISI) of
either 16.5, 19 or 21 s (Ostwald et al., 2010; Porcaro et al., 2010). Five,
11-min experimental runs were acquired in each subject, each
consisting of 17 trials per contrast, providing 85 trials per contrast in
total. Subjects were instructed to continually fixate on a central cross
that was displayed throughout. Within the same scanning session a
three-minute resting-state scan was also acquired, during which sub-
jects were instructed to lie still, keep their eyes open and think of noth-
ing in particular.

Motor

Subjects performed an isometric contraction of a compliant rubber
bulb, by opposing the thumb with the first two fingers of their right-
hand. An increase in the contraction force applied to the rubber bulb in-
creased the pneumatic pressure inside a rubber tube, which was trans-
lated into an analogue electrical signal by in-house-built electronics and
recorded by a Ni-DAQ (National Instruments) (van Wijk et al., 2009).
Subjects were instructed to perform the isometric contraction for 5-s
at one of two force levels, 10% or 30% of maximum voluntary contrac-
tion (MVC). Real-time visual feedback of contraction force was provided
via a projector screen to inform the subject of task performance. Sub-
jects were required to match the vertical position of a centrally
displayed force indicator to a target force level of either 10% or 30% of
MVC. Individual's MVC was measured prior to the experiment using a
hand dynamometer. Two 12-min experimental runs were used to ac-
quire 60 trials at each force level in a pseudo-random order, with an
ISIof 5,7 or 9 s. A six-minute resting-state scan was also acquired, dur-
ing which subjects were instructed to lie still, keep their eyes open and
think of nothing in particular.

Somatosensory

Median-nerve stimulation (MNS) was applied via two electrodes
placed on the right wrist using square wave pulses of 0.5 ms duration
(Digitimer DS7A). The stimulation current amplitude was set just
above the subject's motor threshold (range 2.6-7 mA, mean 4.6 +
1 mA) to cause a small thumb distension. In a single experimental run
MNS was applied at 2 Hz in 40 trials, each comprising a 10 s stimulation
period followed by a 20.5-21 s duration ISI (Mullinger et al., 2013;
Mullinger et al., 2014).

fMRI data acquisition

All data was acquired on a Philips 3T Achieva MRI scanner using an
eight channel receiver-array head coil. The three experiments were ac-
quired with the following imaging parameters.

Visual

BOLD data comprising 20 axial slices centered on primary visual cor-
tex (2.5 x 2.5 x 3 mm?>, TR = 1500 ms, TE = 35 ms, SENSE factor = 2,
flip angle = 80°).

Motor

BOLD data comprising 32 axial slices (3 x 3 x 4 mm?> voxels, TR =
2000 ms, TE = 35 ms, SENSE factor = 2, flip angle = 80°), providing
whole brain coverage.

Somatosensory
A FAIR DABS sequence (Mullinger et al., 2013; Mullinger et al., 2014)
was used for simultaneous acquisition of background-suppressed

arterial spin labelling (ASL) and BOLD data comprising ten axial slices
centered on primary sensorimotor cortex (2.65 x 2.65 x 5 mm?> voxels,
TR = 2.6 5, TE = 13 ms (ASL), 33 ms (BOLD), SENSE factor = 2; post-
label delay = 1400 ms, background suppression pulses at Tpgsi/
Trcs2 = 340/560 mS).

To facilitate co-registration of functional data, whole-head, T;-
weighted anatomical images with 1 mm isotropic resolution were ac-
quired on each subject. The subject's cardiac and respiratory cycles
were continuously recorded throughout the motor and somatosensory
experiments using the scanner's inbuilt pulse-oximeter and pneumatic
bellows which were attached to the subject's index finger of the left
hand and positioned around their ribcage respectively, but not during
the visual experiment.

fMRI preprocessing

Physiological data were temporally aligned with the BOLD data ac-
quisition. RETROICOR (Glover et al., 2000) was used to reduce physio-
logical noise in the motor BOLD data. The BOLD data from the motor
and visual experiments were then motion corrected using MCFLIRT
(Jenkinson et al., 2002).

Somatosensory DABS data were separated into BOLD and ASL data
sets for subsequent analysis. The BOLD data were then physiologically
corrected using RETROICOR (Glover et al., 2000). The use of background
suppression, which nulls the contribution of the background tissue sig-
nal to the ASL images and removes cardiac and respiratory sources,
meant that this physiological noise correction was not required for the
ASL data (Garcia et al., 2005). All data were then motion corrected
using FLIRT (Jenkinson et al., 2002) and linearly interpolated to an effec-
tive TR of 2.6 s. Tag-control ASL image pairs were then subtracted to cre-
ate cerebral blood flow (CBF) data. The BOLD-weighted image pairs
were averaged to produce mean BOLD-weighted data.

Prior to statistical analysis, BOLD and CBF data from all experiments
were spatially smoothed (5 mm FWHM Gaussian kernel), high-pass
temporally filtered (100 s cutoff) and registered to high-resolution ana-
tomical and MNI standard brain images using FSL 4.1.8 (www.fmrib.ox.
ac.uk/fsl). At this point three subjects were excluded from the motor
and five from the MNS datasets due to excess motion (>3 mm).

fMRI data analysis

The sequential fMRI GLM analyses performed in this study is illus-
trated schematically in Fig. 1 and described in detail in the following
section.

A series of three separate GLM analyses were performed on each
dataset for the respective purposes of: 1) PBR and NBR ROI identifica-
tion, followed by response amplitude measurement and PBR-NBR cor-
relations; 2) investigation of the contribution of trial-by-trial PBR
modulations and global signal modulations to BOLD response variability
across the whole-brain; and 3) investigation of how voxel-wise variabil-
ity in the BOLD response amplitude can be explained by intrinsic BOLD
signal parameters such as temporal fluctuation and global signal
contributions.

GLM analysis 1: PBR and NBR ROI identification

A GLM analysis (Fig. 1, GLM 1) was performed to identify those brain
regions where stimulation induced, on average, a significant increase or
decrease in BOLD signal compared to the passive baseline periods be-
tween stimuli. For each experiment, first-level design matrices were
constructed for each subject using regressors of stimulus timings to
model the main effect of stimulation. Visual: 1) 100% (HC) contrast trials
and 2) 25% (LC) contrast trials; motor: 1) 10% contraction trials and
2) 30% contraction trials; and somatosensory: all MNS trials. All stimu-
lus regressors were convolved with the canonical double-gamma hae-
modynamic response function.
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Fig. 1. Schematic diagram of the three GLM analyses performed in this study is indicated by the grey dashed boxes. This figure illustrates which data are input to each analysis and the
sequential manner in which results from GLM1 are used in GLM2, and results from GLM2 are used in GLM3. The three levels at which statistical analysis is performed are indicated on
the left hand side. At the first level, the individual numbered boxes represent each regressor in the respective design matrix. Arrows indicate the direction of data flow between
analyses. Single-trial cPBR amplitudes (cPBR amp) were defined from GLM1 and used as parametric modulators in GLM2A and along with ‘task global signal’ (TGS) in GLM2B. GLM3
investigated how group level covariates of resting-state global signal (RSGS) GLM3A, resting-state fluctuation amplitude (RSFA) (GLM3B) and task fluctuation amplitude (TFA)

(GLM3C) can explain voxel-wise variability in the model fit.

To control for potential differences in heart-rate and depth of respi-
ration between trials and between experimental conditions unrelated
to the neuronal response to the task, the respiration-per-volume-time
(RVT) (Birn et al., 2008) and the variation in the heart-rate interval
(HRI) (Chang et al.,, 2009; de Munck et al., 2008) were computed from
the physiological data, for all experimental runs of the motor and so-
matosensory data. These data were down-sampled to form continuous
time-courses with one sample point per TR period and convolved
with the respiration-response function (Birn et al., 2008) and cardiac-
response function (Chang et al., 2009) respectively. The RVT and HRI re-
gressors and the six motion parameters characterising head translation
and rotation were incorporated into the first-level design matrix as con-
founds of no interest.

First-level statistical analyses were performed using FILM modelling
(Woolrich et al., 2001) in FEAT 6.00 (www.fsl.ox.ac.uk). Positive and
negative contrasts were computed on all regressors. For the somatosen-
sory data, first-level results were combined across all subjects using
fixed-effects to identify group PBR and NBR regions. BOLD and CBF so-
matosensory datasets were analysed separately. For the visual and
motor datasets, for each subject first-level results were combined across
all experimental runs using a second-level, fixed effects analysis to cal-
culate an average response per condition and per subject. These results
were then combined across all subjects at the third, group-level using a
fixed effects analysis. Separately for the visual and motor experiments,
third-level contrasts combined statistics across both conditions (visual
HC and LC; motor 10% and 30% MVC) to identify group PBR and NBR re-
gions which were common across stimulus intensities as well as
subjects. All BOLD Z-statistic images were threshold using a Z > 2.3
and cluster corrected significance threshold of p < 0.05. The CBF
Z-statistic images were less stringently threshold at Z > 1.6, uncorrected
due to the inherently lower contrast-to-noise ratio of CBF data than
BOLD data.

ROI timecourse extraction and single-trial response measurement

For the motor and somatosensory data, respiratory (RVT) and
cardiac (HRI) trends were removed from each voxel's BOLD timecourse
by scaling the RVT and HRI regressor by their respective GLM regression
coefficient and subtracting them from the data. For each dataset, we de-
fined group-level regions of interest (ROI) from the cortical areas that
exhibited a significant contralateral (c) PBR or ipsilateral (i) NBR to
the stimulus, from which response timecourses were extracted for
each experimental run. ROIs were defined from a 3 x 3 x 3 voxel cube
centered on the peak-statistic BOLD voxel in PBR and NBR regions of
V1, M1, S1 and primary auditory (A1) cortex.

Subsequently for each subject and each ROI, single-trial BOLD re-
sponse timecourses were extracted based upon stimulus timings. To de-
fine the baseline signal level for each experimental run, the average
BOLD response timecourse was calculated for each run and the mean
of the final three time-points (two in the motor experiment due to
shorter ISI) was used as the baseline measure. The visual/motor/
somatosensory data contained 17/30/40 trials per run respectively,
meaning that the baseline correction was based upon 41/60/120 time
points respectively to ensure a robust correction.

Single-trial BOLD response timecourses were converted to percent
signal change relative to this baseline value. For each subject, the time-
to-peak of the PBR and NBR signal change was then found from the
mean response timecourses. Single-trial PBR and NBR amplitudes were
measured as the peak signal change within the time window of: mean
time-to-peak £ (2*TR). These measures were used to assess the linear
correlation of single-trial PBR-NBR amplitudes for each subject as fol-
lows: visual: cV1-iV1, cV1-iA1 for both HC and LC visual trials; motor:
c¢M1-iM1 for both 10% and 30% MVC trials; and somatosensory: ¢S1-
iS1. An equivalent analysis was also performed on the somatosensory
CBF data, using the BOLD ROIs to also extract CBF responses, allowing
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direct comparison between CBF and BOLD responses from the same spa-
tial location. For each subject, single-trial positive (PCBF) and negative
(NCBF) CBF response amplitudes were measured from the ¢S1 and iS1
ROIs respectively and their linear correlation computed.

For each experimental run the standard deviation of the BOLD signal
time series was calculated on a voxel-wise basis, a measure we term
‘task fluctuation amplitude’ (TFA), analogous to the ‘resting state fluctu-
ation amplitude’ (RSFA, (Kannurpatti and Biswal, 2008; Kannurpatti
et al., 2012)). TFA was averaged across runs to obtain a TFA value per
voxel, per subject. The voxel-wise matrices of TFA were then
concatenated across subjects and used as a covariate in subsequent
group-level GLM analysis. Here for each voxel, the vector of TFA values
forms a regressor containing between-subjects variability in the effect
size. This regressor therefore models how the response at each voxel
varies between individuals depending on the TFA, effectively removing
the component of the group response (in a voxel wise manner) that cor-
relates with TFA. Such group-level voxel-wise covariates have been pre-
viously used to correct for differences in vascular reactivity (Murphy
et al.,, 2010) and also for structural confound modelling across subjects
(Oakes et al., 2007; Spisak et al., 2014).

Additionally, for each experimental run the BOLD time series were
averaged across all brain voxels giving a single ‘task global signal’
timecourse (TGS) for use in a subsequent GLM.

Analysis of resting-state data acquired during visual and
motor experiments

Resting-state BOLD data were preprocessed equivalently to the task
data (physiological noise correction (for motor experiment only), mo-
tion correction, temporal filtering (high pass >0.01 Hz) and 5 mm spa-
tial smoothing) and physiological trends of RVT and HRI regressors
were removed by linear regression. Subsequently, the standard devia-
tion of the resting-state BOLD signal time series in each voxel (RSFA,
(Kannurpatti et al., 2012)) was calculated. RSFA is thought to provide
a measure of a voxel's vascular reactivity as it has been shown to posi-
tively correlate with the amplitude of the voxel's BOLD response to
both motor and breath-hold tasks (Kannurpatti et al., 2012). Additional-
ly, the BOLD time series were averaged across all brain voxels to give a
single ‘resting-state global signal’ timecourse (RSGS). The linear correla-
tion between the RSGS and each voxel's resting-state BOLD timecourse
was calculated using the voxel-wise Pearson correlation coefficients as a
measure of the similarity between each voxel's BOLD signal and the
RSGS, which can be thought of as approximating the degree to which
each voxel contributes to the resting global signal. Voxel-wise brain vol-
ume matrices of this correlation with RSGS and RSFA were separately
concatenated across subjects and used as a covariate in subsequent
group-level GLM analyses.

GLM analysis 2: Investigating trial-by-trial response modulation across the
whole brain

GLM analyses were performed to identify those brain regions where
the trial-by-trial variability in the BOLD response to the stimulus was
correlated with the contralateral PBR amplitude (Fig. 1, GLM2). Sepa-
rately for the visual, motor and somatosensory data-sets, the single-
trial measurements of cPBR amplitude were mean subtracted and
used to form regressors to model the parametric modulation of the
BOLD response to the stimulus. This regressor had an amplitude that
was either positive or negative for each trial depending on whether
each single-trial BOLD response was larger or smaller, respectively,
than the mean response. Two separate GLM analyses were then per-
formed (Fig. 1), incorporating the following additional regressors into
the design matrices used in the initial analyses: GLM2A single-trial
cPBR modulations; GLM2B single-trial cPBR modulations and the TGS
timecourse (which was not convolved with any HRF).

The purpose of including these two GLMs was to dissociate between
the contribution of sensory network PBR modulations and the contribu-
tion of global signal modulations to BOLD response variability in prima-
ry sensory cortex. We aim to discover whether including the TGS
regressor in the model accounts for all of the response modulation in
sensory cortex, as well as throughout the rest of the brain. The effect
of interest is the total variance explained by each model, not the specific
loading on its constituent factors. Therefore in GLM2B the single-trial
cPBR modulations and the TGS regressors were not orthogonalised. By
adopting this approach, the GLM can either allow the TGS to explain
all the cPBR variability or separate the response variability into sensory
network and global components. Group-level, fixed effects statistical
maps were calculated using the same methods stated above.

For the somatosensory data, an additional GLM analysis was per-
formed to investigate correlations between trial-by-trial PBR fluctua-
tions and the CBF response, to test whether the CBF response was
modulated in a comparable manner to the BOLD response. This GLM
therefore analysed the CBF data using the same first-level design matrix
that was used to model the somatosensory BOLD data.

GLM analysis 3: Group-level analyses to investigate how task response
modulations are explained by vascular reactivity and global signal
fluctuations

Finally, we investigated the extent to which single-trial variability in
the amplitude of the BOLD response to stimulation can be explained at
the voxel-wise level by intrinsic, predominantly vascular parameters
of global signal or signal fluctuation amplitude (Fig. 1, GLM3). For
each dataset, additional third-level, fixed-effects analyses were per-
formed on the subject's second-level contrast of the single-trial PBR
modulation regressor (result of GLM 2). In separate analyses we incor-
porated (where available): 1) RSGS, 2) RSFA, or 3) TFA as a voxel-wise
4-dimensional (4th dimension = subject) covariate-of-no-interest.
These covariates were included to investigate how voxel-wise variabil-
ity in the GLM fit to the cPBR modulations was explained by fMRI signal
properties derived from the task data and also from an independent
resting-state dataset. Using the TFA GLM (Fig. 1, GLM 3C) enabled us
to estimate the effect of intrinsic voxel signal properties on response
modulation in the somatosensory dataset where no resting-state data
was available, and to compare results between the TFA GLM and the
RSFA GLM (Fig. 1, GLM 3B) in the visual and motor experiments.

Results
Group average fMRI responses

Significant cPBR and iNBR were observed in the relevant primary
sensory cortex in each experiment. The main effect fMRI responses to
visual, motor and somatosensory stimulation in V1, M1 and S1 are illus-
trated in Fig. 2A, B and C. For the somatosensory data, the group con-
junction ROIs show that significant contralateral PCBF and ipsilateral
NCBF responses were observed in primary somatosensory cortex and
that these were highly comparable to the regions exhibiting PBR and
NBR (Fig. 2C). In addition, MNS also induced significant fMRI responses
in M1 but fMRI timecourses were extracted from ROIs centered on S1,
where the peak response voxel was located. During somatosensory
stimulation, additional NBRs were observed in small regions of contra-
lateral S1, adjacent to the PBR. Additionally, visual stimulation evoked
a NBR bilaterally in A1 (Fig. 2A) as well as medial prefrontal cortex
and posterior cingulate cortex (Mayhew et al.,, 2013b). Here we focus
our investigation on the relationship between contralateral PBR and ip-
silateral NBR response regions as a marker of the balance of functional
activity between directly stimulated and unstimulated sensory network
regions, as there is a reasonable body of evidence to suggest that the ip-
silateral NBR doesn't arise from purely vascular origins and may reflect
cortical inhibition. We include the A1 NBR to provide a comparison to a



S.D. Mayhew et al. / Neurolmage 133 (2016) 62-74 67

cPBR mean amplitude (%)
0. 1

5
N

HC

o

o ©

10%

iNBR mean amplitude (%)
<)
\b]

e 10 cPBR and cPCBF Il = -0.4 30%
S 6 iNBR and iNCBF HIN
BOLD Z-stat

Fig. 2. Regions of significant group average positive (red/yellow) and negative (blue) BOLD response to consistent amplitude sensory stimulation for A) visual (high contrast [HC] & low
contrast [LC]); B) motor (10% and 30%) experiments. Statistical maps show the mean response combined across both stimulus. C)Spatial conjunction of significant CBF and BOLD responses
to somatosensory MNS for contralateral positive (red) and ipsilateral negative (blue) responses. D). Group average PBR and NBR magnitudes for visual (green) and motor (purple)
experiments increase with increasing stimulus intensity. A negative correlation was observed between mean PBR and mean NBR amplitude. Error bars represent the standard error in

the mean across subjects.

region outside of the directly stimulated sensory network, but to con-
strain our analysis to a reasonable number of regions, we omit the
NBRs from the contralateral S1 and midline regions that displayed the
lowest signal-to-noise ratio. Fig. 2D shows that in both V1 and M1 the
average magnitude (absolute value) of both ¢PBR and iNBR increased
with increasing stimulus intensity for the motor and visual experi-
ments. This negative correlation, such that more positive mean PBR oc-
curred concurrently with a more negative mean NBR, is in agreement
with previous studies (Klingner et al., 2010; Shmuel et al., 2002), sug-
gesting that the magnitude of ipsilateral inhibition increases with the
magnitude of increasing contralateral excitation.

Modelling variations in the depth of subject's breathing and heart-
rate in motor and somatosensory data showed that the BOLD signal
was significantly correlated with these physiological fluctuations in
widespread areas of grey matter, including primary sensory cortex.
Fig. 3 shows that the RVT regressor explained BOLD variance bilaterally
in parietal, visual and motor cortices, in agreement with previous work
(Birn et al., 2008). The HRI regressor explained BOLD variance in the

A) Motor
i) RVT

BOLD Z-stat

dorsal surface of the brain, bilateral parietal areas, the precuneus region
adjacent to the sagittal sinus and in the junction between the rostral vi-
sual cortex and the cerebellum as previously reported (Chang et al.,
2009).

Relationship between single-trial PBR-NBR amplitudes

We observed substantial trial-by-trial variability in both PBR and
NBR amplitudes in each experiment. The mean ranges of response am-
plitudes pooled across conditions and subjects were: visual: cV1 PBR
—0.5%-2.67%, iV1 NBR — 1.58%-0.89%; motor: cM1 PBR —0.6%-1.81%,
iM1 NBR — 1.52%-0.91%; and somatosensory: cS1 PBR —0.27%-1.83%,
iS1 NBR — 1.13%-0.49%. The BOLD response in ipsilateral primary senso-
ry cortex was negative on average, but not consistently negative on a
single-trial basis. On average across all subjects, a bilateral PBR was ob-
served in 24 + 5% of visual, 32 & 5% of motor and 16 4 6% of somato-
sensory trials. These bilateral PBR occurred in the trials that exhibited

B) Somatosensory

pl 5

Fig. 3. Group-level correlations between BOLD signal and RVT (i) and HRI (ii) for the motor (A) and the somatosensory (B) experiments. All maps are shown cluster corrected at a threshold
of p < 0.05 on the MNI standard brain. Note that the somatosensory DABS data was not acquired over the whole head, but from an imaging slab centred on the somatosensory cortex.
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the largest contralateral PBR amplitudes, as outlined in greater detail in
subsequent analyses.

We observed a significant (p < 0.05) positive, linear correlation be-
tween single-trial cPBR and iNBR amplitudes in the majority of individ-
ual subjects for each of the data sets. Specifically, this correlation was
seen in the visual HC data for 12 out of 14 subjects; visual LC = 11/14
subjects; motor 10% MVC = 11/13 subjects; motor 30% MVC = 11/13
subjects; and somatosensory = 10/11 subjects. We also observed that
contralateral visual PBR was significantly (p < 0.05) correlated with au-
ditory NBR at the single subject level (in the visual HC data for 11/14
subjects; and in the visual LC data for 10/14). Fig. 4 displays a boxplot
for each condition and each experiment that shows the distribution
and median value of the correlations between single-trial cPBR and
iNBR amplitudes for the individual subject's data. No instance of a signif-
icant negative correlation was observed in any subject. Therefore at the
single-trial level, we observed that larger magnitude (more positive)
cPBR occurred concurrently with smaller magnitude (less negative)
iNBR. Fig. 5 displays example data taken from the subject with the me-
dian correlation strength in each experiment. In each case a significant
positive linear relationship between cPBR and iNBR was observed. For
the visual and motor data (Fig. 5A, B, C) the low (LC, 10% MVC) and
high (HC, 30% MVC) intensity stimulus conditions are plotted in blue
and red respectively. We observe that the negative correlation between
the average cPBR and iNBR amplitudes across stimulus intensities is pre-
served at the individual subject level, as illustrated by the black lines
connecting the mean values in Fig. 5A, B and C.

Relationship between single-trial cPCBF-iNCBF and
cPBR-cPCBF amplitudes

In the somatosensory data, the relationship between contralateral
and ipsilateral CBF responses was comparable to that observed in
the BOLD data. A significant positive correlation (p < 0.05) between
single-trial cPCBF and iNCBF amplitudes was found in four subjects
(Rrange = —0.12-0.82, median = 0.18). No significant (p > 0.05) neg-
ative cPCBF-iNCBF correlations were observed. A significant positive
correlation between single-trial PBR and PCBF amplitudes was also
found in seven subjects (R range = —0.04-0.83, median = 0.26). No
significant negative correlations between cPBR and cPCBF were ob-
served. Additionally we observed that the correlation between a
subject's single trial cPBR and iNBR amplitudes was itself significantly
linearly correlated (p < 0.001) with the strength of the relationship be-
tween that subject's cPBR and cPCBF response amplitudes (Fig. 6). The
strength of the cPBR-iNBR relationship was not significantly correlated
with the mean or standard deviation of a subject's cPBR or cPCBF ampli-
tude suggesting this effect does not arise from differences in the data
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Fig. 4. Box-plots showing the distribution of single-trial cPBR-iNBR correlations across all
individual subjects, for each stimulus condition and each experiment. The colour of each
box-plot denotes the particular spatial comparison being made. Visual: cV1-iV1 (red),
cV1-iA1 (purple); motor: cM1-iM1 (blue); and somatosensory cS1-iS1 (green). The
horizontal black line shows the subject with median R value (plot in Fig. 5); the
whiskers show the data range across the subjects.
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Fig. 5. Single-trial correlation between cPBR and iNBR amplitude in subjects with the
median R value (from Fig. 4) for: A) visual, cV1-iV1; B) visual, cV1-iA1; motor, cM1-
iM1; and C) somatosensory, cS1-iS1 data. Blue and red colours (A-C) represent single-
trial data points for low and high stimulus intensities respectively. The black lines drawn
between the centres of the linear fit lines in A-C indicate the negative direction of the
correlation between mean response amplitudes and the low and high stimulus intensities.

signal-to-noise ratio between subjects. This implies that the degree of
inter-hemispheric correlation between PBR and NBR is strongly related
to the local relationship between the BOLD and the perfusion signals in
contralateral S1. This result aids the interpretation of global signal ef-
fects discussed below.

Spatial pattern of single-trial response modulations across the whole brain

GLM2A (Fig. 1) showed that single-trial contralateral PBR amplitude
was significantly positively correlated with the BOLD response to the
stimulus across widespread brain regions in all three experiments
(Fig. 7). These results indicate that the positive correlation with cPBR
amplitude (Figs. 4 & 5) was not spatially specific to the iNBR region,
but occurred globally in the grey matter. However, the statistical maps
show that in each experiment the most significant single-trial modula-
tions occurred bilaterally in the directly stimulated primary sensory cor-
tex, V1, M1 and S1.

This finding is further illustrated in Fig. 8 which displays the results
from the GLM including regressors formed from both single-trial cPBR
amplitude and TGS (GLM 2B). Here, significant correlations with
single-trial cPBR modulations were observed only in bilateral sensory
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Fig. 6. Positive relationship between inter-hemispheric BOLD coupling and contralateral
PBR-PCBF coupling in the somatosensory experiment. A significant positive linear fit
between the single-trial ¢cPBR-iNBR correlation and the single-trial ¢cPBR-cPCBF
correlation across the group is seen.
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Fig. 7. Group-level, significant correlations between the voxel-wise BOLD signal and single-trial variability in contralateral PBR amplitude measured from cV1 (A, visual), cM1 (B, motor),
¢S1 (C, somatosensory BOLD) and ¢S1 (D, somatosensory CBF). All maps are cluster corrected at a threshold of p < 0.05.

cortex (Fig. 8A), as the global signal regressor accounted for response
modulations over the rest of the brain (Fig. 8B). The remaining correla-
tion between ¢PBR amplitude and the BOLD signal in bilateral primary
sensory cortex suggests that the respiration, heart-rate and global
brain signals, cannot account for all of the response variability in the ip-
silateral sensory cortex. The differences between the maps shown in
Fig. 8A and B illustrate the distinction between sensory network specific
signal fluctuations and global fluctuations over the rest of the brain.

We further observed that variability in the CBF response to somato-
sensory stimulation correlated with the single-trial amplitude of the
cPBR over widespread cortical grey matter regions (Fig. 7D). These cor-
relations occurred with lower statistical significance than in the BOLD
data, as was also observed for the single-trial correlations, consistent
with the lower contrast-to-noise ratio of CBF data (Aguirre et al.,
2002; Detre and Wang, 2002).

Effect of group-level covariates upon single-trial cPBR response modulation

In the visual and motor experiments, where resting-state data was
available, we found that including group-level voxel-wise covariates of
RSGS or RSFA (Fig. 1, GLM 3A & B) reduced both the statistical signifi-
cance and the spatial extent of single-trial correlations with the cPBR
amplitude. This reduction is evident by comparing the whole brain cor-
relations shown in Fig. 7 with the reduced area of correlation shown in
Fig. 9. Including RSGS (Fig. 9A) reduced the significance of the correla-
tion with cPBR (note the lower Z-stats in Fig. 9 compared with Fig. 7),
but response modulations across widespread brain regions were still
observed. In comparison, after voxel-wise removal of RSFA (Fig. 9B),
the significant single-trial response correlation was reduced to a
number of focal cortical areas, with the most significant modulations

A) Visual

Global signal correlation

Motor

remaining in bilateral primary sensory cortex. In the visual data, signif-
icant modulations remained in inferior lateral visual areas and anterior
auditory cortex. In the motor data, modulations remained in anterior
cingulate cortex and precuneus. Highly comparable results were ob-
served when using TFA (GLM 3C) as a voxel-wise covariate (Fig. 9C)
with significant correlations with cPBR amplitude remaining in bilateral
primary sensory cortex in all three experiments. Due to the strong sim-
ilarity of the TFA results in all three experiments, we suggest that the
RSGS and RSFA results obtained for the visual and motor experiments
could also be extended to the somatosensory experiment.

Discussion

Improving understanding of the origin and functional significance of
BOLD signal fluctuations during both task execution and rest is of vital
importance to neuroimaging research. Here, we addressed this issue
using unilateral stimulation in three sensory modalities. We demon-
strate that the average amplitudes of contralateral PBR (cPBR) and ipsi-
lateral NBR (iNBR) were negatively correlated as previously reported
and thought to result from increased ipsilateral inhibition occurring
concurrently with increased contralateral excitation (Klingner et al.,
2010; Shmuel et al., 2002). However we do not observe the same rela-
tionship between single-trials where the natural fluctuations in cPBR-
iNBR amplitudes were positively correlated. Further investigation re-
vealed that the single-trial variability in the cPBR was positively corre-
lated with the amplitude of the BOLD response to the stimulus across
the grey matter in the whole brain, not just in iNBR regions. Voxel-
wise contribution of the global brain signal (TGS) accounted for the
global grey matter component of single-trial response variability, how-
ever positive correlations between bilateral primary sensory cortex

MNS

BOLD Z-stat 10 I 30

Fig. 8. Group-level, significant correlations between voxel-wise BOLD signal and cPBR amplitude (A, upper row); the task global brain signal (TGS) timecourse (B, lower row), in the visual
(left), motor (centre) and somatosensory (right) experiments. These correlations were computed in a single GLM to enable direct comparison of the two effects.
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Fig. 9. Group-level, significant correlations between voxel-wise BOLD signal and single-trial cPBR amplitude in the visual (left), motor (centre) and somatosensory(right) experiments

after accounting for group-level voxelwise covariates of RSGS (A), RSFA (B) or TFA (C).

remained. The voxel-wise temporal standard deviation of the BOLD sig-
nal, whether measured at rest (RSFA) or during the task (TFA), was
found to account for a large proportion of the global response modula-
tion, suggesting that much of the single-trial variability arises from in-
trinsic vascular effects. However, the bilateral modulation between
primary sensory cortices remained when these additional confounds
were modelled. Therefore we find that the positive correlation of
single-trial BOLD responses between cPBR and iNBR regions of primary
sensory cortex could not be completely accounted for by heart-rate or
respiratory variability, global signal modulations, RSFA or TFA. Other po-
tential sources of this relationship could perhaps be attributed to com-
mon neuronal responses to stimulation between the sensory cortices,
as discussed below.

Potential sources of response variability

Here, we present results from three experiments each using a differ-
ent subject cohort, stimulus modality, stimulus paradigm and fMRI ac-
quisition. These factors all contribute to the between-subject and
between-experiment variability in our measurements. However, we
consider that these differences strengthen the findings of this work, as
they demonstrate the generality of our results. We focussed on robust
fMRI responses in primary sensory cortex and found that the number

of subjects exhibiting the positive, linear relationship between single-
trial cPBR and iNBR amplitudes, and the strength of this relationship,
was highly comparable across different stimulus conditions and modal-
ities (Figs. 4, 5 & 7). This somewhat surprising finding, given the docu-
mented negative correlation of mean ¢cPBR-iNBR amplitudes with
stimulus intensity (Fig. 2D and (Klingner et al., 2010; Shmuel et al.,
2002)), led us to investigate the contribution of local and global intrinsic
vascular signals to BOLD response variability measured from the bilater-
al sensory network across all experiments. We now discuss the possible
sources of variability which may explain the observed results.

Physiological and “noise” signals

The resting-state BOLD signal, measured from any given voxel in the
brain, possesses a degree of positive correlation with every other brain
voxel (Aguirre et al., 1998; Desjardins et al., 2001). For example, right
M1 will exhibit strong positive correlation with all other regions of the
motor network and weaker positive correlation with all other brain re-
gions. This arises because of shared BOLD signal variance between all
brain voxels, which is not restricted to those sharing functional or ana-
tomical connections, a phenomenon called the ‘global brain signal’
(Aguirre et al,, 1998; Desjardins et al., 2001; Murphy et al.,, 2009). This
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signal is usually estimated by averaging BOLD signal across all voxels in
the brain.

It has been shown that physiological variability in heart-rate, depth
and rate of respiration, and the level of expired carbon dioxide induce
changes in CBF that modulate the BOLD signal independent from chang-
es induced by neuronal activity. These factors, along with head motion
and equipment noise, are all components of the conglomerate “noise”
which contributes to the variance in BOLD signal fluctuations and the
global brain signal (Birn, 2012; Birn et al., 2006; Chang and Glover,
2009b; Power et al., 2012; Van Dijk et al., 2012). Therefore the global
signal can be simply conceptualised as a summation of local-network
and long-range vascular and neuronal signals, plus noise. In the current
study, we observe that global CBF fluctuations display comparable be-
haviour to BOLD signals by correlating with the contralateral response
to stimulation (Fig. 7). We also observe that the strength of the cPBR-
iNBR correlation is related to the coupling between cPCBF and cPBR re-
sponses (Fig. 6). Under the assumption that global signal modulations
contribute substantially to the positive correlation between cPBR and
iNBR, this relationship further suggests that modulations in contralater-
al CBF responses also bear a relationship to the global signal, i.e. modu-
lations in contralateral CBF correlate with iNBR.

The global brain signal is conventionally regressed out of resting-
state data in order to remove common variance between brain regions
and improve the spatial specificity of functional connectivity measure-
ments (Fox et al., 2009). However recent work has cast doubt on the
validity of this procedure of blindly removing an unknown mixture
of BOLD signal components which are of uncertain origin (Gotts et al.,
2013; Murphy et al., 2009; Saad et al., 2012). The exact contribution
of the physiological, vascular and neuronal components to the BOLD
signal is dependent upon both within- and between-subject factors,
e.g. voxel proximity to major blood vessels, individual physiology and
the experimental paradigm. Therefore evidence combined across differ-
ent experiments may help to disentangle the various contributions.

Our paradigms employed different stimulus durations (visual 1 s,
motor 5 s, somatosensory 10 s), intensities (visual contrast, motor con-
traction force), mean ISIs (visual 18 s, motor 7 s, somatosensory 20 s)
and task-demands (passive for visual and somatosensory, active
response for motor) (Table 1). As different TR were used in each
experiment the sampling of physiological noise and therefore its
removal by RETROICOR would also vary across datasets. The consistency
of our findings, despite this between-experiment variability, suggests
the single-trial global modulations are not dependent upon experimen-
tal conditions, but represent a general response characteristic. Addition-
al analysis showed that cPBR and iNBR amplitudes were independent of
the trial position within the experimental session as well as the pre- and
post-stimulus BOLD signal amplitude in each experiment (data not
shown). Whilst it could be suggested that the significance and spatial
extent of the correlation between the BOLD response and single-trial
cPBR amplitudes increased with task demand (lowest and least
widespread Z-statistics for brief, passive visual stimulation compared
with strongest and most widespread Z-statistics in the motor experi-
ment, Fig. 7), we propose that the most important factor was the
duration of the ISI which determined the sampling of the global signal.
The single-trial cPBR amplitudes reflect a combination of both local
and more widespread neuronal, and vascular signals, plus noise.
We therefore hypothesize that the strength of the correlation between
the cPBR and the BOLD response across the whole brain arises due to
the cPBR amplitudes effectively sub-sampling the modulation of the
global-brain signal from the stimulated region, at the frequency of the
stimulation. Therefore for datasets with the shortest ISI, more samples
of the global signal (relative to the total number of sample points) are
modelled resulting in better fits of the cPBR amplitude with the global
BOLD signal over the whole brain. This is reflected by our observation
that the statistical significance of the response modulation increases
with decreasing ISI such that the stronger effect is observed in the
motor (peak Z-stat = 23.4; ISI = 7-9 s) than the visual (peak Z-

stat = 13.9; ISI = 16.5-21 s) or somatosensory (peak Z-stat = 16.8;
ISI = 20 s) experiments. The contribution of the global signal to the
local BOLD response variability and the correlation between ¢PBR and
iNBR can be judged by comparing Fig. 8A with Fig. 7. This shows a
large reduction in the extent and strength (Z-statistic) of the correlation
within each sensory network (Fig. 8A) when the global signal is
modelled. However, we still found that the single-trial cPBR-iNBR re-
sponses were more strongly correlated with each other than with the
global signal, as demonstrated by the remaining bilateral sensory net-
work correlation when the global signal was included in GLM2
(Fig. 8A). Taken together these results suggest that a number of signal
modulations, of different neurophysiological origins acting over differ-
ent spatial scales (global, whole network or local), are linearly
superimposed within the stimulated primary sensory cortex, contribut-
ing to the responses observed.

Intrinsic vascular reactivity

We also found that the global, voxel-wise variability in the strength
of the BOLD signal correlation with the cPBR can be strongly predicted
by RSFA, a measure of vascular reactivity derived from an independent
resting-state experiment. The RSFA of voxels in the motor cortex has
been previously shown to predict the amplitude of the BOLD response
in those voxels to a finger tapping task and a hypercapnic breathhold
(Kannurpatti and Biswal, 2008; Kannurpatti et al., 2012). Here, we ex-
tend this work outside of primary sensory cortex by demonstrating
that the amplitude of the BOLD response to stimulation in any brain
voxel is strongly predicted by its RSFA. We also show that the BOLD sig-
nal standard deviation calculated from the task data (TFA) provides a
highly comparable calibration of the voxel-wise BOLD response
(Fig. 9). In both cases, after accounting for RSFA, global BOLD signal cor-
relations with cPBR are minimal, but bilateral correlations with the am-
plitude of the iNBR regions remain.

In comparison, the level of similarity between a voxel's resting-state
BOLD signal and the resting-state global brain signal (RSGS) did not pre-
dict the voxel-wise BOLD response to stimulation (Fig. 9A). It is of fur-
ther interest to note that, for the data shown in this work, removal of
the global brain signal from the task time series data does not transform
the single-trial cPBR-iNBR correlation from positive into negative. The
recomputed cPBR-iNBR single trial correlations after voxel-wise remov-
al of the global brain signal timecourse using linear regression (Macey
et al,, 2004) are displayed in Fig. S1. Global signal removal has the gen-
eral effect of decreasing correlation values, in agreement with previous
functional connectivity work (Murphy et al., 2009), and introducing
some negative correlations. However, as is clear from Fig. S1, the median
value remains positive, except between V1 and A1l. The observation of a
negative correlation only arising between areas which belong to
different brain networks (as opposed to cPBR vs iNBR within the
same network) raises the possibility that in this case global signal re-
moval has accounted for confounding effects in the BOLD data and re-
veals the functional coupling between two regions. However, inverse
correlations after global signal removal have to be interpreted with cau-
tion as the preprocessing has been reported not only to introduce a neg-
ative bias but also to bias correlations differently in different areas
depending on the true, but unknown, underlying relationship structure
(Gotts et al.,, 2013; Murphy et al., 2009; Saad et al., 2012). A better un-
derstanding of the global brain signal's constituents would enable full
separation of specific network-related BOLD signal fluctuations from
the conglomerate noise, allowing negative single-trial PBR-NBR cou-
pling to emerge.

Taken together, these results demonstrate that global signal modu-
lations do not account for all of the positive single-trial cPBR-iNBR rela-
tionship. TGS would have been expected to account for voxel-wise
variability in the strength of the BOLD signal correlation with the cPBR
in the event that this response variability was driven only by modula-
tions of the global brain signal that were independent of task state
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(i.e. resting or stimulation). We do not observe such behaviour which
suggests that not all of the positive cPBR-iNBR single-trial correlation
can be attributed to non-sensory specific, global vascular effects. As
we currently lack an accurate, informed method of separating the global
signal from local effects and neuronal from vascular “noise” effects, it is
not possible to discern the exact underlying single-trial PBR-NBR rela-
tionship. Recent work using a dual-echo BOLD recording offers a prom-
ising way of addressing the issues of removing global signal confounds
by measuring this “noise” at short echo times (Bright and Murphy,
2013; Kundu et al., 2012). Further insight into neurovascular coupling
and separation between different haemodynamic signals, such as
capillary signals from venous draining effects could be provided by ac-
quisition of fMRI data at high spatial-resolution (Iranpour et al., 2015)
and analysis omitting spatial smoothing (Mikl et al., 2008; Scouten
et al., 2006).

Neuronal contributions

We have shown that fluctuations in the global BOLD signal contrib-
ute to positive single trial cPBR-iNBR correlations, but the mean cPBR-
iNBR amplitudes are negatively correlated. We suggest that when com-
paring average BOLD responses between brain regions the effect of the
global signal, which is not time-locked to the stimulus presentation, is
averaged out leaving only correlations driven by the stimulus. The neg-
ative correlation of mean cPBR-iNBR is driven by increasing stimulus in-
tensity (Fig. 2D). It therefore reflects local activity and is thought to
result from increased ipsilateral inhibition occurring concurrently with
increased contralateral excitation (Klingner et al., 2010; Shmuel et al.,
2002). The variability in response amplitude between trials arises
from neuronal, as well as vascular sources. For example variability
may be related to differences in subject’s arousal, attention and sponta-
neous brain network activity which contribute to variations in bottom-
up afferent input and top-down modulation of stimulus processing
(Debener et al., 2006; Mayhew et al., 2012, 2013a; Scheibe et al.,
2010). Whilst we have shown that non-neuronal physiological signals,
largely indexed by the global signal modulations, form a large contribu-
tion to the positive single trial cPBR-iNBR correlations (Figs. 4,5 & 7),
these vascular effects cannot fully explain the response variability and
the cPBR-iNBR relationship observed (Figs. 8 & 9). The question of
which neurophysiological factors explain the remaining BOLD signal
variance is an important topic of ongoing research. Therefore the find-
ings of this study have consequences for understanding the spatial spec-
ificity of BOLD signal fluctuations, the interpretation of differences and
similarities in BOLD responses between networks and of the composi-
tion of the BOLD signal.

Spontaneous neuronal fluctuations

In addition to the global fluctuations in fMRI signal which have a
non-neuronal vascular or noise-related origin, spontaneous fluctuations
in neuronal activity are widely observed. During the passive state of
resting in the scanner, BOLD signals exhibit spontaneous fluctuations
which are highly correlated between brain regions that share a common
functional specialisation (Biswal et al., 1995; Lowe et al., 1998). These
fluctuations correspond to the activity of resting state networks and
electrophysiological studies in primates suggest that a neuronal compo-
nent underlies this BOLD signal variance that is exploited for functional
connectivity measurements (Leopold and Logothetis, 2003; Miller et al.,
2009; Vincent et al., 2007), complementing magnetoencephalography
studies in humans (Brookes et al., 2011; de Pasquale et al., 2010). Fur-
ther work has shown that coherence in neuronal activity is not restrict-
ed to functionally specialised networks, but occurs over widespread
brain areas (Scholvinck et al., 2010). This, combined with reported rela-
tionships between the global signal and EEG vigilance measures (Wong
etal., 2013), provides evidence that a component of the global BOLD sig-
nal is driven by neuronal activity.

In the light of these previous findings, it is not possible for the pres-
ent study to distinguish between haemodynamic and neuronal BOLD
signal components which underlie the positive correlation between
single-trial cPBR and iNBR amplitude. However, by accounting for
head-motion and implementing RETROICOR, RVT and HRI correction
we have taken considerable steps, in line with current best practice in
the literature, to discount the possibility that physiological noise con-
founds can explain the response modulations observed. Previous work
has shown how physiological correction improves the estimation of
both task fMRI activation and resting-state functional connectivity
(Chang and Glover, 20093, 2009b; Khalili-Mahani et al., 2013). Cardiac
and respiratory signals were not recorded in the visual experiment,
but the observation of similar results between the visual experiment
and the motor/somatosensory experiments, for which physiological
correction was performed, suggests that these factors do not dominate
the effects we observe. The observation of similar modulations
between BOLD and CBF signals suggests a haemodynamic, rather than
artefactual, origin, but whether those CBF changes are induced by un-
derlying fluctuations in neuronal activity or reflect purely vascular
mechanisms cannot be conclusively determined. Given that we have
accounted for several vascular factors and yet correlations, although
weaker, still persist in sensory areas (Figs. 8, 9 & S1), the presence of
neuronal mechanisms must be considered.

It has been suggested that coherent fluctuations in neuronal
activity are not specific to the resting state and persist during task per-
formance, therefore forming an intrinsic feature of brain activity (Smith
et al., 2009). Several reports have shown that task responses are
superimposed upon this so-called “background” activity (Arieli et al.,
1996; Fox et al., 2007). Previous work by Fox et al., found that the
trial-by-trial variability in the amplitude of the BOLD signal evoked in
left M1 by a right hand button press could be accounted for by variabil-
ity in the BOLD signal from the right M1 (Fox et al., 2007; Fox et al.,
2006). Furthermore these authors link this bilateral BOLD signal vari-
ability to behavioural variability in the force of the button press. This
finding is cited as evidence for superposition of task-evoked and spon-
taneous activity within the motor network. Interestingly, despite
employing a unilateral motor task, Fox et al. do not report an ipsilateral
NBR. Instead they state that ipsilateral M1 showed signs of small ampli-
tude PBR on average. Their method of calibrating the cPBR M1 response,
by subtraction of a scaled version of the ipsilateral M1 BOLD signal,
yields a similar effect to that demonstrated in the present study. We
report that the largest (smallest) amplitude contralateral BOLD re-
sponses are observed concurrent with the largest (smallest) amplitude
ipsilateral BOLD responses respectively. The Fox et al. subtraction shifts
all contralateral response trials towards the mean amplitude. However,
Fox et al. only investigated the response modulation within the motor
network and did not consider either global or physiological contribu-
tions. Here we demonstrate that the trial-by-trial amplitude variation
in the cPBR is correlated with the BOLD signal fluctuation across
widespread brain regions, and furthermore even after accounting for
global and physiological signal contributions, a positive relationship re-
mains between the responses of contralateral and ipsilateral sensory
network regions which exhibit opposing average BOLD responses
(cPBR vs iNBR), providing complementary results to those presented
by Fox et al.

In conclusion, contralateral PBR and ipsilateral NBR regions that ex-
hibit negative correlation between their mean response amplitude
show positive correlations between their trial-by-trial amplitudes. We
observe that this positive relationship largely reflects a global modula-
tion of response amplitude and complements recent findings of wide-
spread activity during basic visual stimulation (Gonzalez-Castillo et al.,
2012), thus providing new insight into the spatial extent and temporally
dynamic complexity of brain responses during simple tasks. Whilst we
have shown that the global BOLD response amplitude variability can
be explained by physiological (e.g. RVT and HRI) and vascular effects
(e.g. RSFA, TFA), substantial unexplained trial-by-trial variance remains
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in the stimulated sensory cortical areas which preserves the positive
cPBR-iNBR correlation. This is a surprising result, given the known neg-
ative correlation between mean cPBR and iNBR amplitudes, and further
investigation is required to distinguish the neurophysiological sources
of inter-trial response variability. Promising approaches to this include
use of multi-echo MRI data to fully separate spatially homogenous
sources of BOLD signal noise from network specific activity (Bright
and Murphy, 2013; Kundu et al.,, 2012) and characterisation of haemo-
dynamic and neuronal markers of changes in brain state (Saka et al.,
2010).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.02.077.
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