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ABSTRACT:  Benzoquinazolinone 1 is a positive allosteric modulator (PAM) of the M1 muscarinic 

acetylcholine receptor (mAChR), which is significantly more potent than the prototypical PAM, 1-

(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline- 3-carboxylic acid  (BQCA).  In this study, we 

explored the structural determinants that underlie the activity of 1 as a PAM of the M1 mAChR.  

We paid particular attention to the importance of the tricyclic scaffold of compound 1, for the 

activity of the molecule.  Complete deletion of the peripheral fused benzene ring caused a 

significant decrease in affinity and binding cooperativity with acetylcholine (ACh).  This loss of 

affinity was rescued with the addition of either one or two methyl groups in the 7- and/or 8-position 

of the quinazolin-4(3H)-one core.  These results demonstrate that the tricyclic benzo[h]quinazolin-

4(3H)-one core could be replaced with a quinazolin-4(3H)-one core and maintain functional 

affinity.  As such, the quinazolin-4(3H)-one core represents a novel scaffold to further explore M1 

mAChR PAMs with improved physicochemical properties. 

 

KEYWORDS: M1 muscarinic acetylcholine receptor, positive allosteric modulator 
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�  INTRODUCTION 

Alzheimer’s disease is a progressive and irreversible neurodegenerative disorder affecting 

around 25 million people worldwide.
1
  The disorder is primarily observed in the ageing population, 

and characteristic symptoms of the disease include memory loss, confusion and dementia.
2, 3

  

Currently, pharmacological interventions for Alzheimer’s disease remain limited, and provide only 

symptomatic relief to patients.
4, 5

  

The reduction of cholinergic neurons in the basal nuclear complex is associated with the 

cognitive deficits observed in patients with Alzheimer’s disease.
6, 7

  A link between mAChR 

function and disease pathology has been suggested, with the M1 mAChR subtype particularly 

highlighted for a role in cognition.
7, 8

 

Acetylcholinesterase inhibitors are currently used to treat the cognitive deficits associated with 

Alzheimer’s disease, but this approach is limited by the moderate improvement in the cognitive 

function of patients, as well as debilitating side effects including nausea, diarrhea, hypotension and 

vomiting.
9
  However, because acetylcholine esterase inhibitors act to inhibit acetylcholine 

breakdown they exert a non-selective effect at all muscarinic receptor subtypes. It is likely that such 

side-effects are due activation of M2 and M3 mAChRs expressed in the periphery.
7
  

Accordingly, there has been considerable focus upon the design of ligands that selectively 

activate the M1 mAChR.  However, the design of selective orthosteric agonists for the M1 mAChR 

has proven difficult, due to the highly conserved orthosteric pocket of all the mAChRs (M1-M5).
10

  

However, efforts to target the less-conserved, and topographically distinct allosteric site of the 

receptor have proven more fruitful.
11-14

  Ligands that target such allosteric sites may act to 

potentiate the binding and signaling activity of an orthosteric receptor agonist (positive allosteric 

modulators, PAM) and/or activate the receptor themselves (allosteric agonists).  Allosteric ligands 

of the M1 mAChR have been recognized as a potentially promising novel drug class for the 

treatment of Alzheimer’s disease.
14
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Figure 1. Top: chemical structure of lead compounds 1-(4-methoxybenzyl)-4-oxo-1,4-

dihydroquinoline- 3-carboxylic acid (BQCA) and 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-

methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)benzo[h]quinazolin-4(3H)-one (1).  Bottom: overview 

of the structures and design strategy behind the novel analogues derived from compound 1.  The 

numbering of the atoms in the quinazolinone ring bearing substituents is shown in blue. 

 

BQCA was reported as the first highly selective PAM for the M1 mAChR.
15

  Structure-activity 

relationship (SAR) studies around BQCA have revealed structurally related compounds with higher 

affinity and potency.
16-18

  Furthermore, our group has reported an enriched SAR study that used 

modeling of pharmacological data, to relate structural modification to BQCA analogues, with 

variations in binding affinity (pKB), binding (α) and functional (αβ) cooperativity and intrinsic 

efficacy (τB).
19

  3-((1S,2S)-2-Hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)benzo[h]quinazolin-4(3H)-one (1), is a significantly more potent M1 mAChR PAM with 

a structural ancestry originating from BQCA and related compounds (Figure 1).
17, 20

  We recently 

used a combination of site-directed mutagenesis, modelling of pharmacological data and molecular 

dynamics simulations to propose a binding mode for 1 at the M1 mAChR, similar to that predicted 
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for BQCA.  In particular, residues Y85
2.64

 and Y82
2.61

 in transmembrane (TM) bundle 2, Y179 in 

extracellular loop (ECL) 2 and W400
7.35

 in TM 7 were shown to be important for the binding and 

function of both BQCA and compound 1.
21

  This approach also revealed that the higher potency of 

1 was predominantly driven by an increase in affinity, rather than cooperativity with ACh, for the 

M1 mAChR allosteric site.  The current study aimed to explore the structural determinants that 

underlie the activity of 1 as a PAM of the M1 mAChR and, in particular, those that are responsible 

for its superior potency.  Furthermore, we aimed to move away from the tricyclic scaffold of 

compound 1 and determine the importance of this moiety for the activity of the molecule (Figure 1), 

using approaches such as core trimming (compounds 2-9).  An enriched SAR profile was compiled 

to explore the important features of these novel compounds to maintain high affinity, cooperativity 

and intrinsic efficacy. 
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�  RESULTS AND DISCUSSION 

Chemistry.  The synthesis of lead compound 1, though previously reported in patent literature,
20

 

has only recently been fully optimized and characterized in our hands.
21

  Seeking to understand the 

basis for the PAM activity of compound 1, we initially decided to pharmacologically characterize 

key synthetic intermediates.  Compound 10 was synthesized as previously described, with 

subsequent Negishi coupling carried out according to established methodology,
20, 21

 affording 

intermediate 11 in good yield.  After the final Suzuki coupling of 11 with commercially available 1-

methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, we were able to isolate and 

characterize both the desired Suzuki product 1, and corresponding dehalogenated product 12 

(Scheme 1).
21

 

 

Scheme 1. Synthesis of compound 1.
a
 

 

a
Reagents and conditions: (a) i. cat. Pd(P(

t
Bu)3)2, degassed anhydrous THF, 0 °C; ii. 0.5 M (2-

chloro-5-pyridyl)methylzinc chloride/THF, 0 °C to rt, 79%; (b) 1-methyl-4-(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-1H-pyrazole, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF 1:3 degassed, 

100 °C, 64% (59% 1 : 5% 12). 

 

Aside from pharmacological characterization of compounds 10, 12 and 1, which represent a 

stepwise build-up of the (pyridin-3-yl)methyl pendant group, we also sought to investigate the 

nature of the polyaromatic core.  Given the precedence for polyaromatic heterocycles potentially 

imparting toxic DNA-chelation behavior to a scaffold,
22

 investigation of related heteroaromatics 

seemed a prudent avenue of investigation.  Initially we envisaged generating comparable analogues 

of 1, incorporating gradual deletion of the benzo[h]quinazolin-4(3H)-one core towards a 
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 6

quinazolin-4(3H)-one core.  The deletion of the fused benzene ring was also anticipated to make 

these analogues more “drug-like”, through reductions in lipophilicity (assessed through calculated 

log P), topological polar surface area (tPSA) and molecular weight.
23

  With this strategy in mind, 

we synthesized analogues with either complete deletion of the peripheral fused benzene ring (2), or 

the presence of one or two methyl groups in the 7/8 positions of the quinazolin-4(3H)-one core, to 

give 4, 5 and 6.  Evaluation of these compounds was anticipated to address whether the peripheral 

fused benzene ring of literature compound 1, could be replaced by the steric presence of either one 

or two methyl groups. 

Our recent work determining the structural nature of the interaction of compound 1 with the 

allosteric binding site at the M1 mAChR, highlighted the importance of Y179 in ECL2, making 

aromatic edge-face interactions with both the benzylic pendant group and benzo[h]quinazolin-

4(3H)-one core.
21

  In addition, the proximity of the phenol moiety of Y179 could facilitate 

additional polar interactions with an appropriately positioned heteroatom incorporated into the 

ligand.  With this in mind, we also synthesized 8, the pyrido[2,3-d]pyrimidin-4(3H)-one analogue 

of 2. 

Synthesis of these analogues was carried out in a similar manner to that of lead compound 1.  In 

the case of 2, commercially available 2-amino-5-bromobenzoic acid (21) was employed, while the 

remaining substituted 2-amino-5-bromobenzoic acid intermediates (22-24), required synthesis from 

unbrominated starting materials. 

2-Amino-3,4-dimethylbenzoic acid (14) underwent initial Fischer esterification to give the 

corresponding methyl ester 15, followed by selective bromination of the 5-position to give 

intermediate 16 as the hydrobromide salt, in excellent yield.  Subsequent basic hydrolysis afforded 

the desired 2-amino-5-bromo-3,4-dimethylbenzoic acid (24).  In the case of 2-amino-3-

methylbenzoic acid (13), we were able to directly brominate in acetic acid at room temperature, to 

give 22, without the need for esterification of the carboxylic acid moiety (Scheme 2).  Finally, in 

the case of 2-amino-4-methylbenzoic acid (23), our attempts at direct bromination in the same 
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 7

manner as for 22, gave a mixture of mono- and dibrominated products, in addition to unreacted 

starting material, which proved difficult to separate.  However, selective bromination in the 5-

postion was achieved through esterification of the carboxylic acid moiety, and acetylation of the 

aniline group.  The acetanilide derivative 19 facilitated selective mono-bromination of the 5-

position, allowing the isolation of 23 following the saponification of the ester in the modest yield 

over 19% over these two steps. 

Subsequent synthetic steps proceeded in accordance with our reported synthesis of lead 

compound 1.
21

  Briefly, the 2-amino-5-bromobenzoic acid (21-24) intermediates firstly underwent 

O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU)-

mediated coupling with (1S,2S)-2-aminocyclohexanol hydrochloride in the presence of DIPEA, in 

DMF at room temperature, furnishing the corresponding amides (25-28) in good to excellent yield.  

Cyclisation of these 2-amino arylcarboxamide derivatives was achieved through heating in N,N-

dimethylformamide-dimethylacetal (DMF-DMA), formamide or triethylorthoformate, affording 29-

32.  The more forcing conditions (150 °C or 180 °C in formamide), were found to prevent 

formation of stable 2-(dimethylamino)-2,3-dihydroquinazolin-4(1H)-one-type intermediates, which 

occurred in the presence of DMF-DMA.  In some cases, these intermediates failed to undergo 

elimination of N,N-dimethylamine to furnish the desired product, necessitating the use of more 

forcing conditions. 

Installation of the (pyridin-3-yl)methyl pendant group was achieved as described for lead 

compound 1, through a sequence of Negishi and Suzuki reactions, to give the desired compounds 2 

and 4-6, bearing the (6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl group.  During Suzuki 

coupling of final compounds 2 and 6, appreciable amounts of the dehalogenation side-product, 3 

and 7 were also isolated, and deemed of interest for pharmacological evaluation. 
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 8

Scheme 2. Synthesis of analogues 2-7.
a
 

 

a
Reagents and conditions: (a) Br2, AcOH, DCM, rt, 95%; (b) cat. conc. H2SO4(aq), EtOH, reflux, 

75%; (c) acetyl chloride, TEA, DCM, 0 °C to rt, 100%; (d) Br2, AcOH, rt, 23% (brsm); (e) 5 M 

NaOH(aq), EtOH, 90 °C, 81%; (f) cat. H2SO4(aq), MeOH, reflux, 83%; (g) 1,4-dioxane, CCl4 1:1, 

0 °C; ii. Br2, 1,4-dioxane/CCl4 1:1, dropwise, 0 °C, 93%; (h) LiOH·H2O, THF, water, rt, 94%; (i) 

HCTU, (1S,2S)-2-aminocyclohexanol hydrochloride, DIPEA, DMF, rt, 77-95%; (j) DMF-DMA, 

85 °C or 115 °C, 63-95%; (k) formamide, 150 °C or 180 °C, 44-69%; (l) i. triethylorthoformate, 

100-150 °C, 65%; (m) i. cat. Pd(P(
t
Bu)3)2, dry THF, 0 °C; ii. 0.5 M (2-chloro-5-pyridylmethyl)zinc 

chloride/THF, 0 °C to rt or 55 °C, 14-90%; (n) 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl)-1H-pyrazole, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF 1:3 degassed, 100 °C, Suzuki product 

15-96%, dehalogenation product 0-14%. 

 

As part of the strategy to develop fused heteroaromatic analogues of lead compound 1, the 

investigation of alternative cores was also of interest.  The pyrido[2,3-d]pyrimidinone analog of 2 
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 9

(compound 8) was prepared using an analogous approach starting from 2-amino-5-bromonicotinic 

acid (37) (Scheme 3). 

 

Scheme 3. Synthesis of compound 8 containing a pyrido[2,3-d]pyrimidinone core.
a
 

 

 
 

a
Reagents and conditions: (a) HCTU, (1S,2S)-2-aminocyclohexanol hydrochloride, DIPEA, DMF, 

rt, 94%; (b) formamide, 150 °C or 180 °C, 69%; (c) i. cat. Pd(P(
t
Bu)3)2, dry THF, 0 °C; ii. 0.5 M (2-

chloro-5-pyridylmethyl)zinc chloride/THF, 0 °C to rt or 55 °C, 90%; (d) 1-methyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole, cat. PdCl2(PPh3)2, 1 M Na2CO3(aq)/THF 1:3 

degassed, 100 °C, 24%. 

 

Having synthesized the pyrido[2,3-d]pyrimidin-4(3H)-one analogue 8, we turned our attention to 

5-6 fused heterocyclic scaffolds.  The thieno[2,3-d]pyrimidin-4(3H)-one core was of interest, since 

spatially isosteric replacements for the quinazolin-4(3H)-one core have been reported in a number 

of medicinal chemistry lead optimization campaigns, possessing “drug-like” properties and 

biological activity.
24-26

  

The thieno[2,3-d]pyrimidin-4(3H)-one core was accessible through synthesis of the appropriately 

substituted 2-aminothiophene-3-carboxamide, which in turn was assembled in a one-pot Gewald 

synthesis based on literature precedent.
5
  Components for the Gewald reaction were readily 

synthesized from commercially available reagents (Scheme 4).  Cyanoacetamide 48, was obtained 

N

NH2

N
H

O

Br

OH

N

N

O

Br

N

OH

N

N

O

N

OH

N

Cl

N

N

O

N

OH

N

N

N

N

NH2

OH

O

Br

8

37 38 39

40

(a) (b)

(c)

(d)

Page 9 of 47

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 10

through HCTU-mediated coupling of cyanoacetic acid and (1S,2S)-2-aminocyclohexanol 

hydrochloride in the presence of DIPEA and DMF at room temperature.  A one-pot Wittig-Suzuki 

reaction was employed to construct ester 44, from phenylboronic acid (41), 4-bromobenzaldehyde 

(42) and (ethoxycarbonylmethylene)triphenylphosphorane (43), according to previously described 

methodology.
6
  Though intermediate 44 was isolated as both the E- and Z-isomers, these were 

combined before hydrogenation of the double bond, to give saturated ester 45. Reduction of 45 in 

the presence of DIBAL-H at -78 °C, afforded the desired aldehyde 46 in excellent yield. 

 

Scheme 4. Synthesis of analogue 9 containing a thienopyrimidinone core.
a
 

 

a
Reagents and conditions: (a) i. cat. PPh3, cat. PdCl2(PPh3)2, degassed DME/2 M Na2CO3(aq), 70 

°C; ii. 100 °C; iii. 85 °C, 84% (E/Z 4:1); (b) H2, wet 10% Pd/C, EtOAc, rt, 99%; (c) i. anhydrous 

toluene, -78 °C; ii. 1 M DIBAL-H in toluene, dropwise, -78 °C; iii. MeOH quench, -78 °C; 88%; 

(d) (1S,2S)-2-aminocyclohexanol hydrochloride, HCTU, DIPEA, DMF, rt, 71%; (e) sulfur, TEA, 

EtOH, 60 °C, 57%; (f) formamide, 180 °C, 56%. 
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 11

The combination of 46, 48 and sulfur in the presence of TEA and ethanol at 60 °C (one-pot 

Gewald conditions), gave the substituted 2-aminothiophene-3-carboxamide 49 in moderate yield.  

Finally cyclisation of 49 was achieved by heating in formamide at 180 °C, affording the desired 

thieno[2,3-d]pyrimidin-4(3H)-one derivative 9.  We elected to synthesize 9 bearing the 

biphenylmethyl pendant group, for initial ease of access and to establish synthetic methodology.  

Furthermore, this moiety has been shown to impart good affinity and cooperativity on the BQCA 

scaffold (an early precursor of lead compound 1 and related structures).
7
 

 

����  PHARMACOLOGY 

We recently published an SAR study of the M1 mAChR PAM, BQCA.
19

  By incorporating 

modeling into our pharmacological analysis, we were able to relate modifications of the structural 

features of BQCA, to changes in parameters that describe allosteric ligand action.  These comprise 

the affinity of the modulator for the free receptor (KB), its modulatory effects on the binding and 

efficacy of acetylcholine (α and β, respectively), and its intrinsic efficacy (direct allosteric agonism) 

in the system (τB).  In particular, alternative substitution of the quinolone ring in the 5- and 8-

positions modulated intrinsic efficacy; isosteric replacement of the carboxylic acid moiety or amide 

derivatives of the acid function was important in determining cooperativity, and replacement of the 

N-alkyl group modulated ligand affinity.
19

  More recently, we focused on the binding mode of 3-

((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)benzo[h]quinazolin-4(3H)-one (1), a significantly more potent M1 mAChR PAM with a 

structural ancestry originating from BQCA.
21

  To understand the structural determinants that 

underlie the superior PAM activity of 1, we applied the same approach as described above for 

BQCA for all ligands described in this study.  Competition binding studies between ACh and the 

radiolabelled antagonist [
3
H]NMS at the M1 mAChR expressed in FlpIN CHO cells were performed 

in the absence and presence of increasing concentrations of each test compound.  Data were 

analysed with an allosteric ternary complex,
27

 to determine the KB of the test compound for the 
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 12

allosteric site on the unoccupied M1 mAChR, and its binding cooperativity (α) with ACh.  To assess 

the ability of our test compounds to modulate ACh function, we used myo-inositol-1-phosphate 

(IP1) accumulation as a measure of M1 mAChR activation.  Concentration curves of ACh were 

generated in the presence of increasing concentrations of test compound, and an operational model 

of allostery was applied to the data with the KB fixed to that determined in the binding studies, thus 

allowing an overall estimate of both functional cooperativity with ACh (αβ) and the intrinsic 

efficacy of the allosteric ligand.  Values of α or β > 1 describe a positive modulatory effect upon 

ACh, whereas values between 0 and 1 describe a negative modulatory effect.  It should be noted 

that because the logarithms of affinity and cooperativity values are normally distributed, whereas 

the corresponding absolute (antilogarithms) are not,
28

 all statistical comparisons were performed on 

the logarithmic values (Table 1). 

As described before, 1 displays a significant 13-fold higher affinity (KB = 1.3 µM) for the M1 

mAChR as compared to BQCA.  In addition, in comparison to BQCA, 1 displays a 12-fold increase 

in binding cooperativity (α = 692) and a 5-fold increase in functional cooperativity (αβ = 370) with 

ACh (Figure 2, Table 1).  Finally, 1 displays superior intrinsic efficacy compared to BQCA with a 

15-fold increase in τB (τB = 3).  Complete deletion of the peripheral fused benzene ring, as in 2, 

caused a 40-fold decrease in affinity (KB = 52) and a 8-fold decrease in binding cooperativity with 

ACh (α = 91).  However, no change in intrinsic efficacy was observed (τB = 4).  Further deletion of 

the 4-(1-methylpyrazole-4-yl) substitution of the (pyridin-3-yl)methyl pendant group to give 3, 

caused no change in affinity relative to 2, but caused a significant 9-fold loss of binding 

cooperativity, a significant 11-fold loss of functional cooperativity, and a complete loss of observed 

intrinsic efficacy.  The addition of a methyl group at the 8- or 7-positions of the quinazolin-4(3H)-

one core (compounds 4 and 5, respectively) caused a significant 5- to 7-fold increase in affinity 

compared to 2, but with no significant change in cooperativity with ACh.  While methyl 

substitution at the 8-position (4) resulted in similar intrinsic activity relative to 2, the addition of 

methyl at the 7-position (5) caused a significant 4-fold decrease in intrinsic efficacy (Figure 2).  The 
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 13

addition of a methyl group at both the 7- and 8-positions in compound 6 caused a 7-fold increase in 

affinity, and no significant change in cooperativity with ACh or intrinsic efficacy relative to 2.  

Indeed this analogue displayed a 2-fold higher intrinsic efficacy than 1.  Together these data reveal 

that the benzo[h]quinazolin-4(3H)-one core is an important determinant of the affinity of 1.  

Deletion of the fused benzene ring of this core (2) was associated with a significant loss of affinity 

that was partly rescued with the addition of methyl groups in the 7 and/or 8 position of a 

quinazolin-4(3H)-one core (5 and 6).  Indeed, compound 5 displayed no significant difference in 

affinity compared to 1 (p > 0.05, one-way ANOVA with Tukey’s post-test).  In our recent SAR 

study,
19

 we observed that the replacement of the N-alkyl group of the quinolone core of BQCA 

modulated ligand affinity.  In particular, changing the N-(4-methoxy)benzyl group to N-(4-

phenyl)benzyl tended to improve affinity for the receptor without improving cooperative binding 

with ACh.  In contrast, the absence of a 4-(1-methylpyrazole-4-yl) substituent from the (pyridin-3-

yl)methyl pendant group of 2 (with a quinazolin-4(3H)-one core) had no effect upon affinity but 

instead caused a decrease in intrinsic activity (compare compounds 2 and 3).  However, when two 

methyl groups were present on the quinazolin-4(3H)-one core, the absence of the 4-(1-

methylpyrazole-4-yl) moiety caused no change in affinity, cooperativity or intrinsic activity (6 

compared to 7, Table 1). 

To further explore the role of the (pyridin-3-yl)methyl pendant group in the determination of the 

activity of 1, we characterized the synthetic intermediates 10 and 11 and synthetic byproduct 12.  

Replacement of the (6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl group with a bromo-

substituent (10) caused an 8-fold loss of affinity, a 170-fold and 70-fold loss in binding and 

functional cooperativity with ACh, respectively.  In addition, a complete loss of intrinsic efficacy 

was observed.  Compound 12, which possessed an unsubstituted (pyridin-3-yl)methyl group, 

displayed an affinity for the M1 mAChR that was not significantly different from 1 and had similar 

binding and functional cooperativity with ACh (α = 223, αβ = 436).  Furthermore, 12 displayed 5-

fold higher intrinsic efficacy than 1 (τB = 14).  In contrast, the (6-chloropyridin-3-yl)methyl 
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 14

derivative 11 displayed 66-fold lower affinity than 1, 140-fold and 30-fold lower binding and 

functional cooperativity with ACh and 8-fold lower intrinsic efficacy.  Together these data illustrate 

the importance of the benzylic pendant group for the activity of 1.  In contrast to our findings with 

BQCA, we found that this moiety was not only important for affinity, but also for the cooperativity 

with ACh and intrinsic efficacy displayed by 1.  However, removal of the 4-(1-methylpyrazole-4-

yl) substitution of the (pyridin-3-yl)methyl pendant group of 1 was tolerated both in terms of 

affinity, cooperativity with ACh and intrinsic efficacy. 

The pyrido[2,3-d]pyrimidin-4(3H)-one analogue (8: α = 69, αβ = 66) displayed attenuated 

binding and functional cooperativity with ACh relative to compound 2 (2: α = 91, αβ = 195).  

Finally, the thieno[2,3-d]pyrimidin-4(3H)-one 9 showed negligible binding cooperativity with ACh. 

  

Page 14 of 47

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 15

�  CONCLUSIONS 

We have recently reported that 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-

yl)pyridin-3yl)methyl)benzo[h]quinazolin-4(3H)-one (1), while structurally related to BQCA, is a 

significantly more potent PAM of the M1 mAChR, driven both by an increased affinity for the M1 

mAChR and an increased level of positive cooperativity with ACh.
21

  In addition, 1 displays higher 

intrinsic efficacy than BQCA. Furthermore, we recently proposed a binding mode of 1 within the 

M1 mAChR that is similar to that predicted for BQCA.
21

  In this study, we wanted to explore the 

structural determinants that underlie the activity of 1 as a PAM of the M1 mAChR.  We have 

previously demonstrated that changing the N-alkyl group of the quinolone core of BQCA 

modulated ligand affinity but not cooperativity with ACh.
19

  In this study we demonstrate that the 

(pyrid-3-yl)methyl pendant group of 1 is not only important for affinity, but has an additional role 

in determining cooperativity with ACh.  In addition we found that removal of the 1-methyl-1H-

pyrazol-4-yl moiety of 1 was well tolerated in terms of both affinity and cooperativity with ACh 

and generated a PAM (7) with superior intrinsic efficacy.  We paid particular attention to the 

importance of the tricyclic scaffold of compound 1 for the activity of the molecule.  Complete 

deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding 

cooperativity with ACh, but no change in intrinsic activity.  However, this loss of affinity was 

partially rescued with the addition of methyl groups in the 7- and/or 8-position of the quinazolin-

4(3H)-one core (compounds 4, 5 and 6).  Indeed, compound 5 with the addition of a methyl group 

in the 8-position displayed no significant difference in affinity for the M1 mAChR compared to 1, 

but lower intrinsic activity (Figure 2).  The addition of methyl groups at the 7- and 8-positions (6) 

maintained this affinity and rescued intrinsic efficacy.  These results demonstrate that the tricyclic 

benzo[h]quinazolin-4(3H)-one core could be replaced with a quinazolin-4(3H)-one core.  This may 

be important, given the precedence of polyaromatic heterocycles as DNA chelators.  In addition, the 
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quinazolin-4(3H)-one core represents a novel scaffold to explore further M1 mAChR PAMs with 

improved physicochemical properties.  

 

Figure 2. (a-d) Pharmacological characterization of 1 and 5 in binding and function at the M1 

mAChR. (a-b) Radioligand binding experiments were performed using FlpIn-CHO cells expressing 

the M1 mAChR, 0.1 nM of the radiolabeled antagonist [
3
H]NMS, increasing concentrations of ACh, 

with or without increasing concentrations of either 1 (a) or 5 (b). (c-d) IP1 accumulation 

experiments were performed using FlpIn-CHO cells expressing the M1 mAChR and increasing 

concentrations of ACh with or without increasing concentrations of either compound 1 (c) or 5 (d). 

100% represents the maximal stimulation of ACh in the absence of test compound.  
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Table 1.  Binding and functional parameters of 4-phenylpyridin-2-one analogues
 
2-12 at the M1 mAChR. 

 

    Radioligand binding ([
3
H]NMS) IP1 accumulation 

 R1 R2 R3 pKB (KB, µM) Log α´
a
 Log α (α)

 b
 Log αβ (αβ)

 c
 Log τB (τB)

 d
 

BQCA    4.78 ± 0.06 (17)* -3 1.77 ± 0.13 (58)* 1.84 ± 0.13 (69)* -0.60 ± 0.10 (0.2) 

1 

 

– – 5.88 ± 0.02 (1.3) -3 2.84 ± 0.13 (692) 2.57 ± 0.15 (370) 0.44 ± 0.07 (3)  

2 
 

H H 4.28 ± 0.13 (52)* -3 1.96 ± 0.17 (91)* 2.29 ± 0.07 (195) 0.60 ± 0.02 (4) 

3 H H H 4.21 ± 0.06 (61)* -3 1.01 ± 0.26 (10)* 1.24 ± 0.07 (17)* -3 

4 
 

Me H 4.98 ± 0.11 (10)* -3 2.32 ± 0.09 (209) 2.42 ± 0.10 (263) 0.44 ± 0.04 (2.8) 

5 

 

H Me 5.15 ± 0.18 (7.1) -3 2.58 ± 0.16 (380) 2.66 ± 0.05 (457) 0.05 ± 0.03 (1.1)* 

6 

 

Me Me 5.14 ± 0.13 (7.2)* -3 2.41 ± 0.21 (257) 2.69 ± 0.11 (490) 0.81 ± 0.05 (6.5)* 

7 H Me Me 4.76 ± 0.14 (17)* -3 2.34 ± 0.17 (219) 2.86 ± 0.09 (776) 1.06 ± 0.02 (11)* 

8 
 

– – 4.10 ± 0.07 (79)* -3 1.84 ± 0.16 (69)* 1.82 ± 0.04 (66)* -3 

9 Ph – – 4.66 ± 0.20 (22) -0.32 ± 0.12 -0.04 ± 0.09 (0.91) n/a n/a 

10 – – – 4.99 ± 0.22 (10)* 0.08 ± 0.05 0.60 ± 0.08 (4)* 0.67 ± 0.09 (5)* -3 

11 Cl – – 4.06 ± 0.08 (87)* -0.55 ± 0.18 0.67 ± 0.08 (5)* 1.12 ± 0.11 (13)* -0.36 ± 0.11 (0.4)* 

12 H – – 5.29 ± 0.09 (5) -3 2.35 ± 0.18 (223) 2.64 ± 0.13 (436) 1.14 ± 0.02 (14)* 

N
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a 
Binding

 
cooperativity with [

3
H]NMS;  for instances where a complete inhibition of [

3
H]NMS binding by the allosteric modulator was observed 

(consistent with a high level of negative cooperativity), logα´ was fixed to -3; 
b
binding cooperativity with ACh; 

c
functional cooperativity with 

ACh; 
d
intrinsic efficacy of the modulator; for instances where no intrinsic efficacy was observed, Log τB was fixed to -3. * = significant 

difference (p < 0.05) relative to same parameter determined for 1, one-way ANOVA with Tukeys’s post-test. Values represent the mean ± SEM 

from at least three experiments performed in duplicate. 
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�  METHODS 

Synthesis of Compounds. Chemicals and solvents were purchased from standard suppliers and 

used without further purification.  Davisil
®

 silica gel (40-63 µm), for flash column chromatography 

(FCC) was supplied by Grace Davison Discovery Sciences (Victoria, Australia) and deuterated 

solvents were purchased from Cambridge Isotope Laboratories, Inc. (USA, distributed by 

Novachem PTY. Ltd, Victoria, Australia). 

Unless otherwise stated, reactions were carried out at ambient temperature. Reactions were 

monitored by thin layer chromatography on commercially available precoated aluminium-backed 

plates (Merck Kieselgel 60 F254).  Visualisation was by examination under UV light (254 and 366 

nm).  General staining was carried out with KMnO4 or phosphomolybdic acid.  A solution of 

Ninhydrin (in ethanol) was used to visualize primary and secondary amines. All organic extracts 

collected after aqueous work-up procedures were dried over anhydrous MgSO4 or Na2SO4 before 

gravity filtering and evaporation to dryness.  Organic solvents were evaporated in vacuo at ≤ 40°C 

(water bath temperature).  Purification using preparative layer chromatography (PLC) was carried 

out on Analtech preparative TLC plates (200 mm x 200 mm x 2 mm). 

1
H NMR and 

13
C NMR spectra were recorded on a Bruker Avance Nanobay III 400MHz 

Ultrashield Plus spectrometer at 400.13 MHz and 100.62 MHz respectively.  Chemical shifts (δ) are 

recorded in parts per million (ppm) with reference to the chemical shift of the deuterated solvent.  

Coupling constants (J) and carbon-fluorine coupling constants (JCF) are recorded in Hz and the 

significant multiplicities described by singlet (s), doublet (d), triplet (t), quadruplet (q), broad (br), 

multiplet (m), doublet of doublets (dd), doublet of triplets (dt).  Spectra were assigned using 

appropriate COSY, distortionless enhanced polarisation transfer (DEPT), HSQC and HMBC 

sequences. Specific optical rotation was determined using a Jasco P-2000 polarimeter. 

LCMS were run to verify reaction outcome and purity using following system: Agilent 6120 Series 

Single Quad coupled to an Agilent 1260 Series HPLC. The following buffers were used; buffer A: 

0.1% formic acid in H2O; buffer B: 0.1% formic acid in MeCN.  The following gradient was used 
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with a Poroshell 120 EC-C18 50 x 3.0 mm 2.7 micron column, and a flow rate of 0.5 mL/min and 

total run time of 5 min; 0–1 min 95% buffer A and 5% buffer B, from 1-2.5 min up to 0% buffer A 

and 100% buffer B, held at this composition until 3.8 min, 3.8–4 min 95% buffer A and 5% buffer 

B, held until 5 min at this composition.  Mass spectra were acquired in positive and negative ion 

mode with a scan range of 100–1000 m/z.  UV detection was carried out at 214 and 254 nm. All 

retention times (tR) are quoted in minutes.  High resolution mass spectra (HRMS) were obtained 

from a Waters LCT Premier XE (TOF) mass spectrometer fitted with an ESI ion source, coupled to 

a 2795 Alliance Separations Module. 

Preparative HPLC was performed using an Agilent 1260 infinity coupled with a binary preparative 

pump and Agilent 1260 FC-PS fraction collector, using Agilent OpenLAB CDS software (Rev 

C.01.04), and an Altima 5µM C8 22 x 250 mm column.  The following buffers were used; buffer A: 

H2O; buffer B: MeCN, with sample being run at a gradient of 5% buffer B to 100% buffer B over 

20 min, at a flow rate of 20 mL/min All screening compounds were of > 95% purity unless stated 

otherwise. 

General Procedure A: HCTU-mediated amide bond formation. Carboxylic acid (1 eq), HCTU (1.1 

eq) and amine or amine salt (1.1 eq) were dispersed or dissolved in DMF (~2 mL/mmol) at RT.  To 

this was added DIPEA (2.5 eq, for amine salts, an additional 1.0 eq per salt form was also added), 

and the mixture allowed to stir at RT overnight.  LCMS analysis was used to confirm reaction 

completion.  The mixture was diluted with water/sat. NaHCO3(aq) (1:1, ~20 mL/mmol) and stirred 

for 30 min at RT.  Where a solid precipitate formed, this was collected by filtration (vacuum) and 

washed with water.  Where no solid could be isolated in this manner, the aqueous slurry was 

extracted with EtOAc (3 times) and the combined organic layers washed with brine, then 

concentrated under reduced pressure.  Where necessary, further purification was carried out by 

FCC. 
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General Procedure B: Negishi coupling of aryl bromides with (2-chloro-5-pyridylmethyl)zinc 

chloride. Aryl bromide (1.0 eq) was dissolved in dry THF (2 mL/mmol), under an atmosphere of 

nitrogen, and degassed for 5 min under a stream of nitrogen.  Pd(P(
t
Bu)3)2 (0.03 eq) was added and 

then vessel was evacuated and refilled with nitrogen, before cooling to 0 °C over an ice bath.  A 

solution of 2-chloro-5-pyridylmethyl)zinc chloride (0.5 M in THF, 1.25 eq) was added in a 

dropwise fashion, and stirring continued over the ice bath for a further 5 min, before allowing the 

mixture to warm to RT.  Reactions were monitored by LCMS analysis and generally left to stir 

overnight.  To quench, the mixture was cooled to 0 °C over an ice bath and a small amount of water 

added with care.  The quenched mixture was diluted with water, then washed three times with equal 

volumes of EtOAc.  The combined organic layers were washed with brine, before drying over 

MgSO4, and concentrating under reduced pressure.  The crude product was further purified by FCC 

(eluent EtOAc/PE 50:50 to 100:0). 

General Procedure C: Suzuki coupling of substituted 2-chloropyridines with 1-methyl-4-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole. Substituted 2-chloropyridine (1.0 eq) and 1-

methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (1.5 eq) were dispersed in 1 M 

Na2CO3(aq)/THF (1:3, ~10 mL/mmol) in a 10 mL microwave tube.  The mixture was sonicated for 5 

min, then degassed under a stream of nitrogen.  PdCl2(PPh3)2 (0.1 eq) was added, and the tube 

sealed, before heating (hotplate) at 100 °C for 2 h.  The mixture was cooled to RT, then diluted with 

water (20 mL), before extracting with EtOAc (3 x 20 mL).  The combined organic extracts were 

washed with brine (20 mL), then concentrated under reduce pressure.  The crude product was 

purified by normal phase silica chromatography as specified under each monologue. 

3-((1S,2S)-2-Hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin-

4(3H)-one (2) and 3-((1S,2S)-2-Hydroxycyclohexyl)-6-(pyridin-3-ylmethyl)quinazolin-4(3H)-one 

(3). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (33) 

(70 mg, 0.19 mmol) underwent Suzuki coupling according to General Procedure C.  The crude 

Page 21 of 47

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 22

product was purified by PLC (MeOH/EtOAc 6:94, plate run three times).  The higher running band 

was found to be dehalogenated starting material: 3-((1S,2S)-2-Hydroxycyclohexyl)-6-(pyridin-3-

ylmethyl)quinazolin-4(3H)-one (3), isolated as 9 mg (14%) of a white solid.  
1
H NMR (CDCl3) δ 

8.62–8.41 (m, 2H), 8.09 (s, 1H), 8.04 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 7.9 Hz, 1H), 7.59 (d, J = 8.3 

Hz, 1H), 7.49 (dd, J = 8.4/2.0 Hz, 1H), 7.45–7.32 (m, 1H), 4.74–4.40 (m, 1H), 4.13 (s, 2H), 4.08–

3.85 (m, 1H), 2.30–2.17 (m, 1H), 2.03–1.77 (m, 4H), 1.58–1.35 (m, 3H); 
13

C NMR (CDCl3) δ 

161.8, 147.2, 146.4, 145.2, 144.9, 139.4, 138.2, 137.6, 135.1, 128.1, 126.7, 124.7, 122.2, 70.4, 38.8, 

35.7, 31.0, 25.4, 24.5; m/z MS (TOF ES
+
) 336.2 [MH]

+
;
 
 HRMS - C20H22N3O2 [MH]

+ 
calcd 

336.1712; found 336.1716; LC-MS tR: 2.76 min; [�] ���  = + 5.10° (0.11, DMSO). 

The lower running band was found to be 3-((1S,2S)-2-hydroxycyclohexyl)-6-((6-(1-methyl-1H-

pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin-4(3H)-one (2, isolated as 42 mg (53%) of a glassy 

solid.  
1
H NMR (CDCl3) δ 8.39 (d, J = 1.7 Hz, 1H), 8.08 (s, 1H), 8.05 (s, 1H), 8.00 (d, J = 1.6 Hz, 

1H), 7.88 (s, 1H), 7.53 (d, J = 8.3 Hz, 1H), 7.51–7.42 (m, 2H), 7.39 (d, J = 8.2 Hz, 1H), 4.51 (s, 

1H), 4.06–3.85 (m, 6H), 2.29–2.15 (m, 1H), 2.01–1.73 (m, 4H), 1.58–1.33 (m, 3H); 
13

C NMR 

(CDCl3) δ 161.8, 149.5, 148.1, 146.2, 144.6, 139.0, 138.6, 137.7, 135.1, 133.6, 129.6, 127.8, 126.5, 

122.1, 120.0, 113.6, 71.6, 39.4, 38.5, 35.6, 31.0, 25.4, 24.6; m/z MS (TOF ES
+
) 416.3 [MH]

+
; 

HRMS - C24H26N5O2 [M-Na]
+
 calcd 438.1906; found 438.1872; LC-MS tR: 2.85 min; [�] ���  = - 

1.04° (0.26, DMSO). 

3-((1S,2S)-2-Hydroxycyclohexyl)-8-methyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)quinazolin-4(3H)-one (4). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-

hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (34) (200 mg, 0.52 mmol) underwent Suzuki 

coupling according to General Procedure C.  The crude product was purified by FCC (eluent 

MeOH/DCM 0:100 to 10:90) to give 214 mg (96%) of pale yellow glassy solid.  
1
H NMR (DMSO-

d6) δ 8.46 (d, J = 1.6 Hz, 1H), 8.38 (s, 1H), 8.22 (s, 1H), 7.93 (d, J = 0.6 Hz, 1H), 7.84 (d, J = 1.6 

Hz, 1H), 7.61 (dd, J = 8.1/2.3 Hz, 1H), 7.58 (dd, J = 1.9/0.7 Hz, 1H), 7.55 (dd, J = 8.1/0.7 Hz, 1H), 
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4.90 (d, J = 5.4 Hz, 1H), 4.39 (s, 1H), 4.05 (s, 2H), 3.93 (s, 1H), 3.86 (s, 3H), 2.50 (s, 3H), 2.14–

1.50 (m, 5H), 1.50–1.21 (m, 3H); 
13

C NMR (DMSO-d6) δ 160.6, 149.8, 149.4, 144.9, 144.4, 139.1, 

137.0, 136.9, 135.4, 135.2, 133.5, 129.6, 123.2, 122.7, 121.6, 119.1, 69.0, 38.7, 37.4, 35.2, 30.3, 

25.0, 24.0, 17.0; m/z MS (TOF ES
+
) 430.3 [MH]

+
; HRMS - C25H28N5O2 [MH]

+
 calcd 430.2243; 

found 430.2248; LC-MS tR: 3.29 min; [�] ���  = + 6.93° (0.29, DMSO). 

3-((1S,2S)-2-Hydroxycyclohexyl)-7-methyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)quinazolin-4(3H)-one (5). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-

hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (35) (328 mg, 0.97 mmol) underwent Suzuki 

coupling according to General Procedure C.  The crude product was purified by FCC (eluent 

EtOAc/PE 50:50 to 100:0) to give 334 mg (90%) of an off-white solid.  1H NMR (DMSO-d6) δ 8.38 

(d, J = 1.6 Hz, 1H), 8.34 (s, 1H), 8.23 (s, 1H), 7.94 (d, J = 0.7 Hz, 1H), 7.84 (s, 1H), 7.56 (dd, J = 

8.1/0.6 Hz, 1H), 7.53–7.42 (m, 2H), 4.90 (d, J = 5.4 Hz, 1H), 4.37 (s, 1H), 4.11 (s, 2H), 3.94 (s, 

1H), 3.87 (s, 3H), 2.39 (s, 3H), 2.11–1.49 (m, 5H), 1.46–1.13 (m, 3H); 
13

C NMR (DMSO-d6) δ 

160.2, 149.8, 149.6, 146.2, 146.0, 143.7, 138.3, 137.0, 136.9, 132.3, 129.3, 127.8, 126.2, 122.6, 

119.1, 119.0, 69.0, 38.7, 35.2, 35.0, 29.9, 25.1, 24.0, 19.7; m/z MS (TOF ES
+
) 430.3 [MH]

+
; HRMS 

- C25H28N5O2 [MH]
+
 calcd 430.2243; found 430.2244; LC-MS tR: 3.24 min; [�] ���  = + 6.11° (0.67, 

DMSO). 

3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-

yl)methyl)quinazolin-4(3H)-one (6) and 3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-(pyridin-

3-ylmethyl)quinazolin-4(3H)-one (7). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-

hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (36) (61 mg, 0.15 mmol) underwent Suzuki 

coupling according to General Procedure C.  The crude product was purified by PLC 

(MeOH/EtOAc 5:95, plate run three times).  The higher running band was found to be 

dehalogenated starting material: 3-((1S,2S)-2-Hydroxycyclohexyl)-7,8-dimethyl-6-(pyridin-3-

ylmethyl)quinazolin-4(3H)-one (7), isolated as 5 mg (9%) of an off-white solid.  1H NMR (CDCl3) δ 
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8.45 (s, 2H), 8.10 (s, 1H), 7.90 (s, 1H), 7.46 (d, J = 7.9 Hz, 1H), 7.33–7.19 (m, 1H), 4.53 (s, 1H), 

4.13 (s, J = 7.5 Hz, 2H), 3.97 (s, 1H), 3.82–2.86 (m, 1H), 2.52 (s, 3H), 2.33–2.13 (m, 4H), 2.03–

1.69 (m, 4H), 1.61–1.33 (m, 3H); 
13

C NMR (CDCl3) δ 162.3, 148.3, 146.1, 145.1, 143.3, 142.1, 

137.7, 136.6, 134.9, 129.0, 125.3, 124.2, 119.7, 72.0, 37.7, 35.7, 31.0, 25.5, 24.6, 17.0, 13.7; m/z 

MS (TOF ES
+
) 364.2 [MH]

+
; HRMS - C22H26N3O2 [MH]

+
 calcd 364.2025; found 364.2031; LC-

MS tR: 2.90 min; [�] ���  = + 13.87° (0.18, DMSO). 

The lower running band was found to be 3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethyl-6-((6-(1-

methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)quinazolin-4(3H)-one (6), isolated as 10 mg (15%) of 

white solid.  
1
H NMR (CDCl3) δ 8.20 (s, 1H), 8.08–7.93 (m, 2H), 7.83 (s, 1H), 7.81 (s, 1H), 7.48–

7.32 (m, 2H), 4.35 (s, 1H), 4.05 (s, 2H), 4.01–3.73 (m, 4H), 2.43 (s, 3H), 2.17 (s, 3H), 2.07 (d, J = 

10.1 Hz, 1H), 1.97–1.58 (m, 4H), 1.48–1.21 (m, 3H); 
13

C NMR (CDCl3) δ 162.1, 151.6, 146.8, 

144.9, 143.5, 142.2, 139.5, 137.6, 136.6, 134.6, 133.9, 129.9, 124.9, 120.6, 119.5, 112.1, 70.6, 38.9, 

37.1, 35.1, 31.0, 25.2, 24.3, 16.7, 13.4; m/z MS (TOF ES
+
) 444.3 [MH]

+
; HRMS - C26H30N5O2 

[MH]
+
 calcd 444.2400; found 444.2411; LC-MS tR: 3.01 min; [�] ���  = + 6.44° (0.16, DMSO). 

3-((1S,2S)-2-Hydroxycyclohexyl)-6-((6-(1-methyl-1H-pyrazol-4-yl)pyridin-3-yl)methyl)pyrido[2,3-

d]pyrimidin-4(3H)-one (8). 6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-

hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (40) (33 mg, 0.09 mmol) underwent Suzuki 

coupling according to General Procedure C.  The crude product was purified by PLC 

(MeOH/EtOAc 7:93, plate run six times) to give 9 mg (24%) of white solid.  1H NMR (CD3OD) δ 

8.88 (d, J = 2.4 Hz, 1H), 8.52 (s, 1H), 8.49–8.40 (m, 2H), 8.12 (s, 1H), 7.99 (d, J = 0.5 Hz, 1H), 

7.70 (dd, J = 8.2/2.3 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 4.44 (s, 1H), 4.23 (s, 2H), 4.18–3.98 (m, 

1H), 3.94 (s, 3H), 2.29–1.69 (m, 5H), 1.56–1.37 (m, 3H); 
13

C NMR (CD3OD) δ 163.1, 157.4, 157.2, 

151.6, 150.4, 150.3, 139.3, 138.5, 137.3, 137.1, 134.6, 130.9, 123.9, 121.5, 118.0, 71.1, 39.1, 36.2, 

36.0, 30.8, 26.4, 25.4; m/z MS (TOF ES
+
) 417.3 [MH]

+
; HRMS- C23H25N6O2 [MH]

+ 
calcd 

417.2039; found 417.2025; LC-MS tR: 3.16 min; [�] ���  = - 4.86° (0.20, DMSO). 
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6-([1,1'-Biphenyl]-4-ylmethyl)-3-((1S,2S)-2-hydroxycyclohexyl)thieno[2,3-d]pyrimidin-4(3H)-one 

(9). 5-([1,1'-Biphenyl]-4-ylmethyl)-2-amino-N-((1S,2S)-2-hydroxycyclohexyl)thiophene-3-

carboxamide (49) (91 mg, 0.22 mmol) was dispersed in formamide (20 mL), before heating at 

180 °C for 4 h. LCMS analysis indicated conversion was complete.  TLC analysis (EtOAc/PE 1:1, 

plate run twice) indicated the starting material and product both had an Rf ~ 0.4, with only the 

starting material staining positive with ninhydrin.  The mixture was cooled, then poured onto 

ice/water, and the resulting precipitate collected by filtration (vacuum), and further washed with 

water.  The crude product was purified by FCC (eluent EtOAc/PE 0:100 to 60:40, wet load in 

DCM), to give 52 mg (56%) of an off-white solid.  1H NMR (DMSO-d6) δ 8.39 (s, 1H), 7.75–7.56 

(m, 4H), 7.50–7.42 (m, 2H), 7.42–7.31 (m, 3H), 7.21 (s, 1H), 4.92 (s, 1H), 4.41 (s, 1H), 4.25 (s, 

2H), 3.91 (s, 1H), 2.15–1.50 (m, 4H), 1.48–1.11 (m, 4H); 
13

C NMR (DMSO-d6) δ 162.0, 156.8, 

145.9, 142.1, 139.8, 138.9, 138.6, 129.2, 128.9, 127.4, 127.0, 126.6, 123.7, 119.6, 69.1, 35.3, 35.2, 

30.6, 25.1, 23.9; m/z MS (TOF ES
+
) 417.3 [MH]

+
; HRMS - C25H25N2O2S [MH]

+
 calcd 417.1637; 

found 417.1613; LC-MS tR: 3.98 min; [�] ���  = + 17.77° (0.35, DMSO). 

Methyl 2-amino-3,4-dimethylbenzoate (15).
12
 2-Amino-3,4-dimethylbenzoic acid (14) (4.92 g, 29.8 

mmol) and conc.  H2SO4 (3 mL) were dissolved in MeOH (50 mL) and boiled under reflux for 48 h.  

LCMS analysis indicated approximately half of the starting material had been converted.  

Additional H2SO4 (1 mL) was added, and heating continued.  After a total of 6 days, the mixture 

was cooled to RT, and concentrated under reduced pressure.  The residue was neutralised with sat. 

NaHCO3(aq), and the resulting precipitate collected by filtration (vacuum), and washed with water.  

After drying, 4.452 g (83%) of an off-white solid was obtained.  
1
H NMR (CDCl3) δ 7.69 (d, J = 

8.2 Hz, 1H), 6.58 (d, J = 8.2 Hz, 1H), 6.18 (s, 2H), 3.86 (s, 3H), 2.30 (s, 3H), 2.13 (s, 3H); 
13

C 

NMR (CDCl3) δ 169.2, 147.8, 142.8, 128.4, 122.0, 119.4, 109.5, 51.7, 21.3, 13.0; m/z MS (TOF 

ES
+
) 180.2 [MH]

+
; LC-MS tR: 3.48 min. 
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Methyl 2-amino-5-bromo-3,4-dimethylbenzoate hydrobromide (16). Methyl 2-amino-3,4-

dimethylbenzoate (15) (3.40 g, 19.0 mmol) was dissolved in 1,4-dioxane/CCl4 (1:1, 100 mL), and 

cooled to 0 °C over an ice bath, after wrapping the flask in aluminium foil to exclude light.  To the 

cooled mixture, was added a solution of bromine (3.03 g, 18.97 mmol, 1.0 eq) in 1,4-dioxane/CCl4 

(1:1, 20 mL) in a dropwise fashion.  The mixture was stirred for 2 h at 0 °C, before addition of 

Et2O, and collection of the resulting precipitate by filtration (vacuum).  After washing with further 

Et2O and drying, 5.96 g (93%) of an off-white solid was obtained.  
1
H NMR (DMSO-d6) δ 7.79 (s, 

1H), 4.40 (s, 3H), 3.79 (s, 3H), 2.33 (s, 3H), 2.10 (s, 3H); 
13

C NMR (DMSO-d6) δ 167.2, 148.7, 

140.7, 130.7, 123.8, 109.7, 108.3, 51.7, 20.5, 14.4; m/z MS (TOF ES
+
) 258.0 [MH]

+
; LC-MS tR: 

3.71 min. 

Ethyl 2-amino-4-methylbenzoate (18).
10
 2-Amino-4-methylbenzoic acid (17) (2.10 g, 13.9 mmol) 

was dissolved in EtOH (50 mL) with conc. H2SO4 (1 mL), before boiling under reflux for 2 h.  

LCMS analysis indicated little progression, so further conc. H2SO4 (1 mL) was added, and heating 

continued for 65 h.  The mixture was cooled, then concentrated under reduced pressure.  The 

resulting residue was neutralised with sat. NaHCO3(aq), then extracted with DCM (3 x 30 mL).  The 

combined organic layers were concentrated to give a brown oil, which was further purified by FCC 

(eluent EtOA/PE 0:100 to 10:90), to give 1.87 g (75%) of pale yellow oil.  
1
H NMR (CDCl3) δ 7.85 

(d, J = 8.1 Hz, 1H), 6.96 (s, 1H), 6.77 (d, J = 8.1 Hz, 1H), 4.36 (q, J = 7.2 Hz, 2H), 2.34 (s, 3H), 

1.39 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 168.2, 147.7, 145.2, 131.3, 119.8, 118.5, 

110.5, 60.6, 21.8, 14.5; 
1
H NMR;  m/z MS (TOF ES

+
) C10H14NO2 180.1 [MH]

+
; LC-MS tR: 3.82 

min. 

Ethyl 2-acetamido-4-methybenzoate (19).
10,11

 Ethyl 2-amino-4-methylbenzoate (18) (1.87 g, 10.4 

mmol) and TEA (1.74 mL, 12.5 mmol, 1.2 eq) were dissolved in DCM (50 mL) and cooled to 0 °C 

under an atmosphere of nitrogen.  Acetyl chloride (0.81 mL, 11.5 mmol, 1.1 eq) was added and then 

the mixture was allowed to warm to RT, before stirring overnight.  LCMS analysis indicated 
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incomplete conversion after this time, so further TEA (1.74 mL, 12.5 mmol, 1.2 eq) and acetyl 

chloride (0.81 mL, 11.5 mmol, 1.1 eq) were added and stirring continued for a further 4 h.  The 

mixture was washed with water (50 mL), then sat. NaHCO3(aq) (50 mL), then concentrated under 

reduced pressure, to give 2.56 g of yellow solid (quantitative).  
1
H NMR (CDCl3) δ 11.10 (s, 1H), 

8.53 (s, 1H), 7.92 (d, J = 8.2 Hz, 1H), 6.88 (ddd, J = 8.2/1.7/0.6 Hz, 1H), 4.35 (q, J = 7.1 Hz, 2H), 

2.39 (s, 3H), 2.22 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H); 
13

C NMR (CDCl3) δ 169.2, 168.5, 145.9, 141.7, 

130.8, 123.5, 120.7, 112.6, 61.3, 25.7, 22.3, 14.4; m/z MS (TOF ES
+
) 176.2 [M-OEt]

+
; LC-MS tR: 

3.79 min. 

Ethyl 2-acetamido-5-bromo-4-methylbenzoate (20). Ethyl 2-acetamido-4-methybenzoate (19) (2.55 

g, 11.5 mmol) was dissolved in acetic acid (8 mL) at RT, with stirring.  A solution of bromine (1.84 

g, 11.5 mmol, 1.0 eq) in acetic acid (2 mL) was added in a dropwise fashion.  After 48 h of stirring, 

LCMS indicated partial progression, therefore another portion of bromine (0.30 mL, 921 mg, 5.76 

mmol, 0.5 eq) was added.  After a further 72 h of stirring, further progression was evident, with the 

appearance of a minor peak indicating formation of the dibromo product.  The mixture was stirred 

with 5% Na2S2O3(aq) (20 mL) for 30 min, then sat. NaHCO3 (150 mL) added.  This was extracted 

with DCM (3 x 50 mL), and the combined organic extracts washed further with sat. NaHCO3(aq) (50 

mL), before concentration under reduced pressure.  Purification of the crude material was attempted 

by FCC (eluent DCM), however, both starting material and product were found to co-elute.  FCC 

was reattempted (eluent DCM/PE 50:50 to 70:30, then 100:0) to give 687 mg of yellow solid (23%, 

brsm) and a further 995 mg of mixture containing starting material and desired product.  
1
H NMR 

(CDCl3) δ 10.99 (s, 1H), 8.65 (s, 1H), 8.16 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 2.22 (s, 

3H), 1.42 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 169.2, 167.4, 145.4, 140.7, 134.1, 

122.3, 117.6, 114.5, 61.8, 25.7, 23.8, 14.3; m/z MS (TOF ES
+
) 300.2 [MH]

+
; LC-MS tR: 4.11 min. 

2-Amino-5-bromo-3-methylbenzoic acid hydrobromide (22).
29

 2-Amino-3-methylbenzoic acid (13) 

(2.08 g, 13.8 mmol) was dissolved in acetic acid (8 mL) and stirred at RT.  A solution of bromine 
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(2.20 g, 13.8 mmol, 1.0 eq) in acetic acid (2 mL) was added in a dropwise fashion, followed by 

washings of DCM (5 mL).  The mixture was stirred at RT for 1 h, then diluted with Et2O.  The 

resulting precipitate was collected by filtration (vacuum) and washed with Et2O.  After drying, 4.07 

g (95%) of a pale beige solid was obtained as the hydrobromide salt.  
1
H NMR (DMSO-d6) δ 9.19 

(s, 3H), 7.68 (dd, J = 2.5/0.4 Hz, 1H), 7.33 (dd, J = 2.5/0.8 Hz, 1H), 2.10 (s, 3H); 
13

C NMR 

(DMSO-d6) δ 168.9, 148.8, 136.4, 130.6, 126.4, 111.0, 104.8, 17.3; m/z MS (TOF ES
+
) 230.0 

[MH]
+
; LC-MS tR: 3.62 min. 

2-Amino-5-bromo-4-methylbenzoic acid (23).
30
 Ethyl 2-acetamido-5-bromo-4-methylbenzoate (20) 

(672 mg, 2.24 mmol) was dissolved in 5 M NaOH(aq) (20 mL) and EtOH (30 mL).  The resulting 

mixture was heated at 90 °C under a reflux condenser for 20 h.  LCMS analysis at this indicated 

hydrolysis was complete.  The mixture was cooled to RT, then concentrated under reduced pressure 

to remove EtOH.  The aqueous slurry was acidified with 2 M HCl(aq), to pH 2 resulting in formation 

of a precipitate.  This was collected by filtration (vacuum), then washed with water and dried, to 

give 415 mg (81%) of a beige solid.  
1
H NMR (DMSO-d6) δ 7.77 (s, 1H), 11.41–6.62 (m, 2H), 6.72 

(d, J = 0.6 Hz, 1H), 2.22 (s, 3H); 
13

C NMR (DMSO-d6) δ 168.3, 150.7, 142.8, 133.7, 118.3, 109.4, 

107.8, 22.7; m/z MS (TOF ES
+
) 230.1 [MH]

+
; LC-MS tR: 3.56 min. 

2-Amino-5-bromo-3,4-dimethylbenzoic acid (24).
13
 Methyl 2-amino-5-bromo-3,4-dimethylbenzoate 

hydrobromide (16) (5.93 g, 17.5 mmol) was dispersed in THF/water (1:1, 100 mL), and the flask 

atmosphere purged with nitrogen.  To this, was added LiOH·H2O (3.67 g, 87.4 mmol, 5.0 eq), and 

the mixture stirred at RT for 24 h.  LCMS analysis after this time indicated complete hydrolysis had 

occurred.  The mixture was concentrated under reduced pressure to remove THF and MeOH, and 

then acidified with excess 2 M HCl(aq).  The resultant precipitate was collected by filtration 

(vacuum), and washed with water, before allowing to dry on the filter bed overnight.  This was then 

taken up in EtOAc (300 mL) and washed with brine (80 mL), before drying over MgSO4. 

Concentration of dried organic layer under reduced pressure, gave 4.00 g (94%) of a pale brown 
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solid.  
1
H NMR (DMSO-d6) δ 7.78 (br s, 2H), 7.78 (s, 1H), 2.32 (s, 3H), 2.09 (s, 3H); 

13
C NMR 

(DMSO-d6) δ 168.9, 149.0, 140.3, 131.2, 123.5, 109.3, 109.1, 20.4, 14.3; m/z MS (TOF ES
+
)  244.1 

[MH]
+
; LC-MS tR: 3.33 min. 

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)benzamide (25). 2-Amino-5-bromobenzoic acid 

(21) (1.08 g, 5.00 mmol) and (1S,2S)-2-aminocyclohexanol hydrochloride (834 mg, 1.1 eq) were 

coupled according to General Procedure A, to give 1.21 g (77%) of precipitate as a yellow solid, 

requiring no further purification.  1H NMR (DMSO-d6) δ 8.02 (d, J = 8.1 Hz, 1H), 7.70 (d, J = 2.4 

Hz, 1H), 7.24 (dd, J = 8.8/2.4 Hz, 1H), 6.64 (d, J = 8.8 Hz, 1H), 6.47 (s, 2H), 4.65 (d, J = 5.2 Hz, 

1H), 3.63–3.49 (m, 1H), 3.46–3.36 (m, 1H), 2.02–1.72 (m, 2H), 1.71–1.43 (m, 2H), 1.19 (d, J = 6.6 

Hz, 4H); 
13

C NMR (DMSO-d6) δ 167.3, 148.6, 133.8, 130.5, 118.2, 117.2, 105.0, 71.0, 54.9, 34.6, 

31.3, 24.6, 24.2; m/z MS (TOF ES
+
) 313.1 [MH]

+
; LC-MS tR: 3.17 min. 

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3-methylbenzamide (26). 2-Amino-5-bromo-3-

methylbenzoic acid hydrobromide (22) (2.00 g, 6.43 mmol) and (1S,2S)-2-aminocyclohexanol 

hydrochloride (1.07 g, 1.1 eq) were coupled according to General Procedure A, to give 2.00 g 

(95%) of precipitate as a pale yellow solid, requiring no further purification.  
1
H NMR (DMSO-d6) 

δ 8.03 (d, J = 8.1 Hz, 1H), 7.58 (d, J = 2.3 Hz, 1H), 7.22 (d, J = 1.7 Hz, 1H), 6.24 (s, 2H), 4.64 (d, J 

= 5.2 Hz, 1H), 3.68–3.47 (m, 1H), 3.46–3.34 (m, 1H), 2.07 (s, 3H), 1.98–1.71 (m, 2H), 1.72–1.51 

(m, 2H), 1.34–1.06 (m, 4H); 
13

C NMR (DMSO-d6) δ 167.7, 146.6, 134.1, 128.2, 125.7, 117.2, 

105.1, 70.9, 54.9, 34.6, 31.3, 24.5, 24.2, 17.3; m/z MS (TOF ES
+
) 327.1 [MH]

+
; LC-MS tR: 3.62 

min. 

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-4-methylbenzamide (27). 2-Amino-5-bromo-4-

methylbenzoic acid (23) (386 mg, 1.68 mmol) and (1S,2S)-2-aminocyclohexanol hydrochloride 

(281 mg, 1.1 eq) were coupled according to General Procedure A, to give 508 mg (92%) of 

precipitate as a beige solid, requiring no further purification.  1H NMR (DMSO-d6) δ 7.95 (d, J = 8.0 

Hz, 1H), 7.74 (s, 1H), 6.64 (d, J = 0.5 Hz, 1H), 6.43 (s, 2H), 4.62 (d, J = 5.2 Hz, 1H), 3.68–3.45 (m, 
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1H), 3.45–3.34 (m, 1H), 2.20 (s, 3H), 1.97–1.71 (m, 2H), 1.70–1.49 (m, 2H), 1.36–1.06 (m, 4H); 

13
C NMR (DMSO-d6) δ 167.2, 148.9, 140.0, 131.2, 118.1, 115.0, 108.0, 70.9, 54.83, 34.6, 31.3, 

24.5, 24.2, 22.4; m/z MS (TOF ES
+
) 327.1 [MH]

+
; LC-MS tR: 3.57 min. 

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3,4-dimethylbenzamide (28). 2-Amino-5-

bromo-3,4-dimethylbenzoic acid (24) (1.00 g, 4.10 mmol) and (1S,2S)-2-aminocyclohexanol 

hydrochloride (684 mg, 1.1 eq) were coupled according to General Procedure A, to give 1.32 g 

(94%) of precipitate as an off-white solid, requiring no further purification.  
1
H NMR (DMSO-d6) δ 

7.99 (d, J = 8.0 Hz, 1H), 7.66 (s, 1H), 6.27 (s, 2H), 4.62 (d, J = 5.2 Hz, 1H), 3.66–3.49 (m, 1H), 

3.46–3.34 (m, 1H), 2.31 (s, 3H), 2.06 (s, 3H), 1.97–1.73 (m, 2H), 1.73–1.50 (m, 2H), 1.34–1.08 (m, 

4H); 
13

C NMR (DMSO-d6) δ 167.8, 146.7, 137.5, 128.7, 123.1, 115.4, 109.7, 70.9, 54.9, 34.6, 31.3, 

24.5, 24.2, 20.1, 14.3; m/z MS (TOF ES
+
) 341.1 [MH]

+
; LC-MS tR: 3.31 min. 

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (29). 2-Amino-5-bromo-N-

((1S,2S)-2-hydroxycyclohexyl)benzamide (25) (1.18 g, 3.8 mmol) was dispersed in DMF-DMA (12 

mL) and heated, with stirring at 85 °C for 3 h. LCMS analysis indicated that the dimethylamine 

addition product was the major component of the reaction mixture, with elimination to the desired 

product progressing slowly.  Further DMF-DMA (5 mL) was added, and the reaction temperature 

was increased to 115 °C, with heating continued for 72 h (progress monitored by LCMS).  The 

mixture was cooled to RT and carefully quenched with water (very exothermic), and the resulting 

precipitate collected by filtration (vacuum) before washing with water.  After drying under air, the 

crude precipitate was recrystallized from EtOH to 767 mg (63%) of a yellow solid.  1
H NMR 

(CDCl3) δ 8.69 (s, 1H), 8.38 (d, J = 2.2 Hz, 1H), 7.83 (dd, J = 8.7/2.3 Hz, 1H), 7.70 (d, J = 8.7 Hz, 

1H), 4.81–4.43 (m, 1H), 4.14–3.91 (m, 1H), 2.30–2.16 (m, 1H), 2.11–1.97 (m, 1H), 1.96–1.65 (m, 

3H), 1.63–1.32 (m, 3H); 
13

C NMR (CDCl3) δ 160.6, 148.9, 144.7, 137.8, 129.7, 128.7, 123.4, 

121.3, 61.5, 35.7, 31.1, 25.4, 24.5; m/z MS (TOF ES
+
) 323.1 [MH]

+
; LC-MS tR: 3.21 min. 
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6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (30). 2-Amino-5-bromo-

N-((1S,2S)-2-hydroxycyclohexyl)-3-methylbenzamide (26) (1.50 g, 4.58 mmol) was dispersed in 

triethylorthoformate (30 mL) under an atmosphere of nitrogen.  The mixture was heated under a 

reflux condenser, under nitrogen at 100 °C for 19 h. LCMS analysis indicated partial conversion 

had occurred, so the temperature was increased to 150 °C for 96 h and monitored by LCMS.  The 

mixture was cooled to RT before quenching with a small amount of water (with care).  On addition 

of water, a biphasic mixture was formed, so EtOAc was added, and the water layer decanted.  The 

organic layer was then dried over MgSO4, before concentration under reduced pressure to dryness.  

The crude residue was purified by FCC (eluent EtOAc/PE 0:100 to 100:0), to give 996 mg (65%) of 

a pale yellow solid.  
1
H NMR (DMSO-d6) δ 8.48 (s, 1H), 8.06 (dd, J = 2.4/0.5 Hz, 1H), 7.87 (dd, J 

= 2.3/0.9 Hz, 1H), 4.95 (d, J = 5.3 Hz, 1H), 4.38 (s, 1H), 3.94 (s, 1H), 2.53 (s, 3H), 2.14–1.56 (m, 

5H), 1.47–1.20 (m, 3H); 
13

C NMR (DMSO-d6) δ 159.6, 148.3, 145.0, 138.4, 136.8, 125.9, 121.8, 

118.8, 67.9, 35.1, 29.7, 25.0, 23.9, 16.7; m/z MS (TOF ES
+
) 337.1 [MH]

+
; LC-MS tR: 3.77 min. 

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (31). 2-Amino-5-bromo-

N-((1S,2S)-2-hydroxycyclohexyl)-4-methylbenzamide (27) (481 mg, 1.46 mmol) was dispersed in 

formamide (4 mL) in  a 10 mL microwave vial, before sealing and heating at 120 °C with stirring.  

LCMS analysis after this time indicated no reaction progression, so the temperature was increased 

to 150 °C, and stirring continued for 4 h. LCMS analysis indicated the reaction was complete, so 

the mixture was cooled to RT overnight, before diluting with water (30 mL), then extracting with 

EtOAc (3 x 30 mL).  The combined organic layers were washed with water (30 mL) and brine (30 

mL), before concentration under reduce pressure.  The crude residue was recrystallised from EtOH, 

to give 339 mg (69%) of pale brown solid.  Concentration of the mother liquor gave 141 mg of 

impure product.  1H NMR (CDCl3) δ 8.50 (s, 1H), 8.32 (s, 1H), 7.60–7.51 (m, 1H), 4.61 (s, 1H), 

4.04 (s, 1H), 2.50 (s, 3H), 2.33–2.17 (m, 1H), 2.10–1.68 (m, 4H), 1.67–1.30 (m, 3H); 
13

C NMR 

(CDCl3) δ 160.4, 145.6, 145.5, 145.1, 130.3, 128.3, 123.8, 121.1, 72.1, 35.7, 31.0, 25.4, 24.5, 23.8; 

m/z MS (TOF ES
+
) 337.1 [MH]

+
; LC-MS tR: 3.64 min. 
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6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (32). 2-Amino-5-

bromo-N-((1S,2S)-2-hydroxycyclohexyl)-3,4-dimethylbenzamide (28) (1.28 g, 3.75 mmol) was 

dispersed in DMF-DMA (12 mL) under an atmosphere of nitrogen, and heated at 85 °C for 6 h, 

before LCMS analysis indicated conversion was complete.  The mixture was cooled to RT, and 

carefully quenched with water.  The resulting precipitate was collected by filtration (vacuum), 

washed with further water and dried, to give 1.25 g (95%) of an off-white solid.  1H NMR (DMSO-

d6) δ 8.46 (s, 1H), 8.14 (s, 1H), 4.93 (d, J = 5.4 Hz, 1H), 4.36 (s, 1H), 3.94 (s, 1H), 2.59 (s, 3H), 

2.49 (s, 3H), 2.17–1.54 (m, 5H), 1.52–1.06 (m, 3H); 
13

C NMR (DMSO-d6) δ 159.6, 147.9, 144.7, 

141.5, 136.0, 126.3, 122.9, 120.8, 68.7, 35.1, 26.8, 25.0, 23.9, 20.4, 14.1; m/z MS (TOF ES
+
) 351.1 

[MH]
+
; LC-MS tR: 3.51 min. 

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (33). 6-

Bromo-3-((1S,2S)-2-hydroxycyclohexyl)quinazolin-4(3H)-one (29) (170 mg, 0.53 mmol) 

underwent Negishi coupling according to General Procedure B, to give 129 mg (66%) of a pale 

yellow solid.  
1
H NMR (DMSO-d6) δ 8.40 (d, J = 2.1 Hz, 1H), 8.37 (s, 1H), 8.01 (d, J = 1.8 Hz, 

1H), 7.74 (dd, J = 8.2/2.5 Hz, 1H), 7.70 (dd, J = 8.4/2.1 Hz, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.44 (dd, 

J = 8.2/0.5 Hz, 1H), 4.91 (d, J = 5.3 Hz, 1H), 4.39 (s, 1H), 4.15 (s, 2H), 3.94 (s, 1H), 2.12–1.57 (m, 

5H), 1.48–1.20 (m, 3H); 
13

C NMR (DMSO-d6) δ 160.3, 149.9, 148.8, 148.3, 146.0, 140.1, 139.0, 

136.1, 134.9, 127.4, 125.7, 124.2, 121.7, 68.9, 36.6, 35.2, 27.6, 25.0, 23.9; m/z MS (TOF ES
+
) 

370.2 [MH]
+
; LC-MS tR: 3.18 min; [�] ���  = + 7.78° (0.43, DMSO). 

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one 

(34). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-8-methylquinazolin-4(3H)-one (30) (462 mg, 1.37 

mmol) underwent Negishi coupling according to General Procedure B, to give 390 mg (74%) of 

pale yellow solid.  1H NMR (DMSO-d6) δ 8.40 (d, J = 2.2 Hz, 1H), 8.39 (s, 1H), 7.85 (d, J = 1.4 Hz, 

1H), 7.73 (dd, J = 8.2/2.5 Hz, 1H), 7.58 (s, 1H), 7.44 (d, J = 8.2 Hz, 1H), 4.91 (d, J = 5.4 Hz, 1H), 

4.38 (s, 1H), 4.10 (s, 2H), 3.93 (s, 1H), 2.50 (s, 3H), 2.21–1.53 (m, 5H), 1.51–1.12 (m, 3H); 
13

C 
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NMR (DMSO-d6) δ 160.5, 149.9, 148.2, 144.9, 144.5, 140.1, 138.4, 136.2, 135.6, 135.2, 124.2, 

123.4, 121.6, 68.6, 36.6, 35.2, 30.5, 25.0, 24.0, 17.0; m/z MS (TOF ES
+
) 384.2 [MH]

+
; LC-MS tR: 

3.63 min. 

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one 

(35). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7-methylquinazolin-4(3H)-one (31) (328 mg, 0.97 

mmol) underwent Negishi coupling according to General Procedure B, to give 334 mg (90%) of an 

off-white solid.  
1
H NMR (DMSO-d6) δ 8.35 (s, 1H), 8.31 (d, J = 2.1 Hz, 1H), 7.84 (s, 1H), 7.59 

(dd, J = 8.2/2.5 Hz, 1H), 7.50 (s, 1H), 7.48–7.38 (m, 1H), 4.90 (d, J = 5.4 Hz, 1H), 4.37 (s, 1H), 

4.15 (s, 2H), 3.93 (s, 1H), 2.35 (s, 3H), 2.07–1.48 (m, 5H), 1.47–1.14 (m, 3H); 
13

C NMR (DMSO-

d6) δ 160.2, 150.0, 148.2, 146.4, 146.3, 143.6, 140.0, 137.6, 135.1, 128.0, 126.4, 124.2, 119.7, 68.9, 

35.2, 34.4, 30.4, 25.1, 24.0, 19.7; m/z MS (TOF ES
+
) 384.2 [MH]

+
; LC-MS tR: 3.55 min. 

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-

one (36). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dimethylquinazolin-4(3H)-one (32) (250 

mg, 0.71 mmol) underwent Negishi coupling according to General Procedure B.  After stirring for 

24 h, LCMS analysis indicated only partial conversion had occurred.  Further Pd(P(
t
Bu)3)2 (11 mg, 

0.02 mmol, 0.03 eq) were added and stirring continued for a further 24 h.  After this time the 

mixture was heated to 55 °C for an additional 24 h.  After this time, the reaction had not progressed 

any further, so the mixture was cooled over an ice bath and quenched with a small amount of water, 

before dilution with water (20 mL).  The aqueous slurry was extracted with EtOAc (3 x 20 mL), 

and the combined organic layers washed with brine (20 mL) before concentration under reduced 

pressure.  The crude product was purified by FCC (eluent EtOAc/PE 60:40 to 100:0), to give 164 

mg of the starting material (36) and 73 mg (75% brsm) of the desired product as an off-white glassy 

solid.  
1
H NMR (CDCl3) δ 8.19 (d, J = 2.1 Hz, 1H), 8.11 (s, 1H), 7.81 (s, 1H), 7.27 (dd, J = 8.6/2.8 

Hz, 1H), 7.17 (d, J = 8.2 Hz, 1H), 4.49 (s, 1H), 4.16–3.85 (m, 3H), 3.10 (s, 1H), 2.47 (s, 3H), 2.21 

(d, J = 15.6 Hz, 4H), 2.00–1.70 (m, 4H), 1.61–1.29 (m, 3H); 
13

C NMR (CDCl3) δ 162.1, 149.7, 
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149.5, 144.5, 143.6, 142.1, 139.0, 136.8, 134.6, 134.3, 125.1, 124.2, 119.5, 71.6, 37.0, 35.5, 31.0, 

25.4, 24.5, 16.9, 13.7;  m/z MS (TOF ES
+
)  398.2 [MH]

+
; LC-MS tR: 3.41 min. 

2-Amino-5-bromo-N-((1S,2S)-2-hydroxycyclohexyl)nicotinamide (38). 2-Amino-5-bromopyridine-

3-carboxylic acid (37) (1.09 g, 5.00 mmol) and (1S,2S)-2-aminocyclohexanol hydrochloride (834 

mg, 1.1 eq) were coupled according to General Procedure A, to give 1.47 g (94%) of precipitate as 

an off-white solid, requiring no further purification.  1H NMR (DMSO-d6) δ 8.22 (d, J = 8.2 Hz, 

1H), 8.14 (d, J = 2.4 Hz, 1H), 8.12 (d, J = 2.4 Hz, 1H), 7.17 (s, 2H), 4.70 (d, J = 5.0 Hz, 1H), 3.71–

3.46 (m, 1H), 3.48–3.21 (m, 1H), 2.01–1.72 (m, 2H), 1.72–1.46 (m, 2H), 1.41–0.99 (m, 4H); 
13

C 

NMR (DMSO-d6) δ 166.0, 157.5, 150.9, 138.4, 111.8, 104.0, 71.0, 55.1, 34.4, 31.2, 24.5, 24.2; m/z 

MS (TOF ES
+
) 314.1 [MH]

+
; LC-MS tR: 3.32 min. 

6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (39). 2-Amino-5-

bromo-N-((1S,2S)-2-hydroxycyclohexyl)nicotinamide (38) (515 mg, 1.64 mmol) was suspended in 

formamide (4.5 mL) in a 10 mL microwave vial, before sealing the tube.  The mixture was heated 

to 180 °C for 1.5 h, then allowed to stir at RT overnight, before a further period of heating at 180 °C 

for 2 h.  The mixture was cooled to RT, then quenched with water.  The resulting precipitate was 

collected by filtration (vacuum) to give 168 mg of brown solid.  The aqueous filtrate was extracted 

with EtOAc (3 x 30 mL), and the combined organic extracts washed with brine (30 mL).  TLC 

analysis (EtOAc) indicated that product was still trapped in the aqueous layer.  The aqueous layer 

was saturated with NaCl, before re-extraction with EtOAc (2 x 30 mL) then MeOH/EtOAc (1:9, 30 

mL).  The combined organic layers were washed with brine (30 mL), then dried over Na2SO4 

before concentrating under reduced pressure, to give an additional 366 mg of yellow solid.  The 

crude solids were combined, and purified by FCC (eluent MeOH/DCM 0:100 to 6:94), to give 233 

mg (44%) of pale yellow solid.  
1
H NMR (DMSO-d6) δ 9.05 (d, J = 2.6 Hz, 1H), 8.68 (s, 1H), 8.65 

(d, J = 2.6 Hz, 1H), 5.01 (d, J = 5.0 Hz, 1H), 4.35 (s, 1H), 3.96 (s, 1H), 2.12–1.50 (m, 5H), 1.49–
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1.10 (m, 3H); 
13

C NMR (DMSO-d6) δ 160.2, 156.4, 156.0, 149.3, 137.5, 118.1, 117.3, 68.3, 34.9, 

30.1, 25.0, 23.9; m/z MS (TOF ES
+
) 324.1 [MH]

+
; LC-MS tR: 3.35 min. 

6-((6-Chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-

one (40). 6-Bromo-3-((1S,2S)-2-hydroxycyclohexyl)pyrido[2,3-d]pyrimidin-4(3H)-one (39) 

underwent Negishi coupling according to General Procedure B.  After quenching, the reaction 

mixture was concentrated under reduced pressure (prior LCMS analysis indicated extractive 

workup was not suitable, due to solubility of the product in the aqueous layer).  The crude product 

was purified by FCC (eluent MeOH/DCM 0:100 to 6:94, slow gradient over 20 column volumes) to 

give 33 mg (14%) of an off-white glassy solid.  An additional 107 mg (37%) of yellow glassy solid 

was also isolated form the column, eluting before the desired product, and found to be 6-bromo-7-

((6-chloropyridin-3-yl)methyl)-3-((1S,2S)-2-hydroxycyclohexyl)-7,8-dihydropyrido[2,3-

d]pyrimidin-4(3H)-one.  This was the major product of the reaction, resulting from nucleophilic 

attack by the zincate 7-position of the pyrido[2,3-d]pyrimidin-4(3H)-one ring system.  
1
H NMR 

(CD3OD) δ 8.90 (s, 1H), 8.58 (s, 1H), 8.49 (d, J = 2.4 Hz, 1H), 8.36 (d, J = 2.2 Hz, 1H), 7.74 (dd, J 

= 8.3/2.5 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 4.46 (s, 1H), 4.25 (s, 2H), 4.08 (s, 1H), 3.35 (s, 3H), 

2.27–1.66 (m, 5H), 1.63–1.31 (m, 3H); 
13

C NMR (CD3OD) δ 162.7, 157.2, 156.7, 151.0, 150.8, 

150.8, 141.5, 137.9, 137.0, 136.3, 125.8, 118.5, 70.6, 36.2, 35.4, 30.9, 26.4, 25.3; m/z MS (TOF 

ES
+
) 371.2 [MH]

+
; LC-MS tR: 3.36 min. 

Ethyl 3-([1,1'-biphenyl]-4-yl)acrylate (44).
6
 Phenylboronic acid (41) (2.47 g, 20.3 mmol, 1.25 eq), 

4-bromobenzaldehyde (42) (3.00 g, 16.2 mmol), (ethoxycarbonylmethylene)triphenylphosphorane 

(43) (8.47 g, 24.3 mmol, 1.5 eq), PdCl2(PPh3)2 (398 mg 0.57 mmol, 0.035 eq) and PPh3 (298 mg, 

1.13 mmol, 0.07 eq) were dispersed in degassed DME (64 mL) and degassed 2 M Na2CO3(aq) (32 

mL).  The mixture was heated at 70 °C for 22.5 h, then at 100 °C for 3 h, followed by 85 °C 

overnight.  LCMS analysis over this time indicated the Wittig reaction progressed at a faster rate 

than the Suzuki coupling.  The mixture was cooled, then dilute with water (200 mL), before 
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extracting with Et2O (3 x 100 mL).  The combined organic layers were washed with brine (100 

mL), before concentration under reduced pressure.  The residue was diluted with Et2O/PE to effect 

precipitation of triphenylphosphine oxide, the majority of which was removed by filtration 

(vacuum).  The resulting filtrated was reconcentrated under reduced pressure, and purified by FCC 

(eluent Et2O/PE 0:100, followed by 8:92, then 10:90) to give ethyl (Z)-3-([1,1'-biphenyl]-4-

yl)acrylate as 677 mg (17%) of a clear colourless oil and ethyl (E)-3-([1,1'-biphenyl]-4-yl)acrylate 

as 2.78 g (68%) of a white solid.  Total yield 3.46 g (84%, E/Z 4:1). 

E-isomer:
14

 
1
H NMR (CDCl3) δ 7.73 (d, J = 16.0 Hz, 1H), 7.67–7.56 (m, 6H), 7.52–7.42 (m, 2H), 

7.42–7.34 (m, 1H), 6.48 (d, J = 16.0 Hz, 1H), 4.28 (q, J = 7.1 Hz, 2H), 1.36 (t, J = 7.1 Hz, 3H); 
13

C 

NMR (CDCl3) δ 167.2, 144.3, 143.1, 140.3, 133.6, 129.0, 128.7, 128.0, 127.7, 127.2, 118.3, 60.7, 

14.5; m/z MS (TOF ES
+
) 253.2 [MH]

+
; LC-MS tR: 3.83 min. 

Z-isomer:
15

 
1
H NMR (CDCl3) δ 7.71 (d, J = 8.3 Hz, 2H), 7.65–7.55 (m, 4H), 7.49–7.40 (m, 2H), 

7.40–7.31 (m, 1H), 6.97 (d, J = 12.7 Hz, 1H), 5.97 (d, J = 12.7 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C NMR (CDCl3) δ 166.4, 142.9, 141.9, 140.7, 133.9, 130.6, 129.0, 127.7, 

127.2, 126.8, 119.8, 60.5, 14.3; m/z MS (TOF ES
+
) 253.1 [MH]

+
; LC-MS tR: 3.83 min. 

Ethyl 3-([1,1'-biphenyl]-4-yl)propanoate (45). 
14,16

 Ethyl 3-([1,1'-biphenyl]-4-yl)acrylate (44) (3.39 

g, 13.4 mmol, E/Z isomers recombined) was dissolved in EtOAC (150 mL).  Pd/C (10%, 300 mg, 

0.1 wt eq) as a slurry in water (0.5 mL) was added and the mixture degassed by sonication.  The 

vessel was evacuated and filled with hydrogen three times, then stirred under an atmosphere of 

hydrogen (balloon) for 4 h at RT.  LCMS analysis indicated complete consumption of starting 

material.  The reaction mixture was filtered through a bed of Celite
TM

, with washings of EtOAc, 

before concentrating the filtrate under reduced pressure, to give 3.40 g (99%) of clear colourless oil.  

1
H NMR (CDCl3) δ 7.60–7.55 (m, 2H), 7.52 (d, J = 8.1 Hz, 2H), 7.43 (dd, J = 7.5 Hz, 2H), 7.37–

7.30 (m, 1H), 7.28 (d, J = 8.0 Hz, 2H), 4.15 (q, J = 7.1 Hz, 2H), 3.00 (t, J = 7.8 Hz, 2H), 2.75–2.54 
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(m, 2H), 1.25 (t, J = 7.1 Hz, 3H); 
13

C NMR (CDCl3) δ 173.1, 141.1, 139.8, 139.4, 128.9, 127.4, 

127.3, 127.2, 60.6, 36.0, 30.8, 14.4; m/z MS (TOF ES
+
) 255.2 [MH]

+
; LC-MS tR: 3.78 min. 

3-([1,1'-Biphenyl]-4-yl)propanal (46).
16
 Ethyl 3-([1,1'-biphenyl]-4-yl)propanoate (45) (2.18 g, 8.57 

mmol) was dissolved in dry toluene (35 mL) under an atmosphere of nitrogen.  The solution was 

degassed under a stream of nitrogen, before cooling to -78 °C in a dry ice/acetone bath.  A solution 

of 1 M DIBALH in toluene (17 mL, 17 mmol, 2.0 eq) was added in dropwise, and the mixture 

stirred at -78 °C for 1.25 h.  TLC analysis (DCM) indicated disappearance of the starting material, 

so the mixture was quenched with care, with dropwise addition of MeOH, whilst maintaining the 

temperature at -78 °C.  Once quenched, the mixture was allowed to warm to RT, and stirred for 15 

min, before addition of sat. Rochelle’s solution (50 mL) and stirring for 30 min.  The resulting 

mixture was then extracted with Et2O (3 x 50 mL), and the combined organic layers washed with 

brine (50 mL).  On concentration under reduced pressure, 2.01 g of milky white oil was obtained 

with an odour reminiscent of cinnamaldehyde.  The crude product was purified by FCC (eluent 

EtOAc/PE 0:100 to 30:70), to give 1.58 g (88%) of a white solid.  
1
H NMR (CDCl3) δ 9.86 (t, J = 

1.3 Hz, 1H), 7.61–7.55 (m, 2H), 7.55–7.50 (m, 2H), 7.47–7.40 (m, 2H), 7.38–7.31 (m, 1H), 7.28 (d, 

J = 8.4 Hz, 2H), 3.01 (t, J = 7.5 Hz, 2H), 2.89–2.78 (m, 2H); 
13

C NMR (CDCl3) δ 201.7, 141.0, 

139.6, 139.5, 128.9, 128.9, 127.5, 127.3, 127.2, 45.4, 27.9; m/z MS (TOF ES
+
) no mass peaks 

observed; LC-MS tR: 3.95 min. 

2-Cyano-N-((1S,2S)-2-hydroxycyclohexyl)acetamide (48). Cyanoacetic acid (47) (419 mg, 4.92 

mmol) and (1S,2S)-2-aminocyclohexanol hydrochloride (821 mg, 5.41 mmol) were coupled 

according to General Procedure A.  After stirring in water/sat. NaHCO3(aq), no precipitate was 

evident, and the organic extracts of this aqueous slurry contained mainly 1,1,3,3-tetramethylurea 

by-product.  The aqueous layer was concentrated to dryness under reduced pressure, and the 

resulting residue taken up in MeCN, and stirred at RT for 30 min.  The inorganic solid mass was 

removed by filtration (vacuum) and the resulting filtrate concentrated under reduced pressure to 
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give 1.60 g of yellow solid.  This was recrystallised from EtOAc to give 400 mg of a yellow 

crystalline solid.  The mother liquor was reconcentrated and purified by FCC (eluent EtOAc/PE 

50:50 to 100:0) to give a further 237 mg of an off-white solid.  Total yield 637 mg (71%).  
1
H NMR 

(DMSO-d6) δ 8.07 (d, J = 7.9 Hz, 1H), 3.57 (d, J = 0.7 Hz, 2H), 3.45–3.28 (m, 1H), 3.26–3.13 (m, 

1H), 1.93–1.70 (m, 2H), 1.69–1.46 (m, 2H), 1.35–0.94 (m, 4H); 
13

C NMR (DMSO-d6) δ 161.6, 

116.4, 71.0, 54.9, 33.9, 30.8, 25.5, 24.1, 23.7; m/z MS (TOF ES
-
) 181.1 [M-H]

-
; LC-MS tR: 2.40 

min. 

5-([1,1'-Biphenyl]-4-ylmethyl)-2-amino-N-((1S,2S)-2-hydroxycyclohexyl)thiophene-3-carboxamide 

(49). 3-([1,1'-Biphenyl]-4-yl)propanal (46) (334 mg, 1.59 mmol), 2-cyano-N-((1S,2S)-2-

hydroxycyclohexyl)acetamide (48) (289 mg, 1.59 mmol, 1.0 eq), sulphur (51 mg, 1.59 mmol, 1.0 

eq) and TEA (0.22 mL, 1.59 mmol, 1.0 eq) were dispersed in EtOH (1.6 mL) in a 10 mL 

microwave vial.  The mixture was sonicated at RT for 5 min, before flushing the atmosphere with 

nitrogen and sealing the vial.  The mixture was heated at 60 °C for 6 h, at which time LCMS 

analysis indicated the reaction was complete. The mixture was cooled to RT, before pouring onto 

ice/water.  The resulting brown solid was collected by filtration (vacuum) and washed with water, 

then air-dried.  The crude product was purified by FCC (eluent EtOAc/PE 10:90 to 100:0) to give 

367 mg (57%) of red solid.  
1
H NMR (DMSO-d6) δ 7.80–7.56 (m, 4H), 7.53–7.40 (m, 2H), 7.40–

7.28 (m, 3H), 7.24 (d, J = 7.9 Hz, 1H), 7.05 (s, 2H), 6.97 (s, 1H), 4.54 (s, 1H), 3.92 (s, 2H), 3.67–

3.43 (m, 1H), 3.33 (s, 1H), 1.96–1.71 (m, 2H), 1.70–1.48 (m, 2H), 1.45–0.97 (m, 4H); 
13

C NMR 

(DMSO-d6) δ 165.4, 160.2, 134.0, 139.9, 138.2, 128.9, 128.9, 127.3, 126.8, 126.6, 122.4, 122.0, 

106.9, 71.4, 54.3, 34.9, 34.6, 31.6, 24.6, 24.2; m/z MS (TOF ES
+
) 407.2 [MH]

+
; HRMS - 

C24H27N2O2S [MH]
+
 calcd 407.1793; found 407.1797; LC-MS tR: 3.92 min; [�] ���  = + 20.58° (0.14, 

DMSO). 

Intact cell radioligand binding assays.  Flp-In
TM

 Chinese hamster ovary (CHO) cells 

expressing the human muscarinic acetylcholine M1 (hM1 mAChR) were grown in Dulbecco’s 
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modified Eagle’s medium (DMEM) (Invitrogen, Carlsbad, CA) supplemented with foetal bovine 

serum (FBS) (ThermoTrace (Melbourne, Australia) and 0.2 mg/mL hygromycin-B (Roche, 

Mannheim, Germany).  The cells were plated at 10
4
 cells per well in 96-well Isoplates (Perkin 

Elmer).  Prior to assay the growth medium was removed and the attached cells were used to 

perform radioligand binding studies in the presence of 0.2 nM [
3
H]NMS and varying concentrations 

of acetylcholine (Sigma, St. Loius, MI) and PAMs in a total volume of 200 µL of binding buffer (10 

mM HEPES, 145 mM NaCl, 1 mM MgSO4·7H2O, 10 mM glucose, 5 mM KCl, 2 mM CaCl2, 1.5 

mM NaHCO3, pH 7.4).  The binding reaction mixtures were incubated for 1 h at 37°C, in a 

humidified incubator and terminated by rapid removal of radioligand followed by two 100 µL 

washes with ice-cold 0.9% NaCl buffer.  Radioactivity was determined by addition of 100 µL 

Microscint scintillation liquid (PerkinElmer Life Sciences) to each well and counting in a 

MicroBeta plate reader (PerkinElmer Life Sciences).  

IP-One accumulation assays. The IP-One assay kit (Cisbio, France) was used for the direct 

quantitative measurement of myo-Inositol 1 phosphate (IP1) in FlpIn CHO cells stably expressing 

the hM1 mAChR.  The cells were detached and resuspended in IP1 stimulation buffer (10 mM 

Hepes, 1 mM CaCl2, 0.5 mM MgCl2, 4.2 mM KCl, 146 mM NaCl, 5.5 mM glucose, 50 mM LiCl, 

pH 7.4).  The stimulations were performed in 384-well Proxy-plates (PerkinElmer) in a total 

volume of 14 µL, in the absence or presence of increasing concentrations of ACh and the PAMs, at 

cell density of 10
6
 million cells/ml for 1 h at 37 °C, 5% CO2.  The reactions were terminated by 

addition of 6 µL lysis buffer containing HTRF reagents (the anti-IP1 Tb cryptate conjugate and the 

IP1-D2 conjugate), followed by incubation for 1 h at RT.  The emission signals were measured at 

590 and 665 nm after excitation at 340 nm using an Envision multi-label plate reader (PerkinElmer) 

and the signal was expressed as the HTRF ratio: F= ((fluorescence665 nm/fluorescence590 nm) ×10
4
).  

Data Analysis. All data were analyzed using Prism 6.01 (GraphPad Software, San Diego, CA).  

Binding-interaction studies with allosteric ligands were fitted to the following allosteric ternary 

complex model (equation 1):
31
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� = 	max[
]
[
]�	� ����
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�[�][�]
���� �

       (1) 

Where Y is percentage (vehicle control) binding, Bmax is the total number of receptors, [A], [B] 

and [I] are the concentrations of radioligand, allosteric modulator and the orthosteric ligand, 

respectively, KA and KB and KI are the equilibrium dissociation constants of the radioligand, 

allosteric modulator orthosteric ligand, respectively. α´ and α are the binding cooperativities 

between the allosteric ligand and [
3
H]NMS and the allosteric modulator and the agonist 

acetylcholine, respectively.  Saturation binding experiments were used to determine the value of 

pKA for [
3
H]NMS (pKA  = 9.70 ± 0.01, KA =0.2 nM).Values of α (or α´) > 1 denote positive 

cooperativity; values < 1 (but > 0) denote negative cooperativity, and value = 1 denotes neutral 

cooperativity.  For the majority of compounds, a complete inhibition of [
3
H]NMS binding by the 

allosteric modulator was observed, consistent with a very high level of negative cooperativity.  In 

these cases to allow fitting of the data, logα’ was fixed to -3 to reflect this high negative 

cooperativity.  The dissociation constant of ACh (KI) was not fixed in these analyses but rather 

determined for each separate experiment. No difference was observed in the value of KI between 

experiments.  

Concentration-response curves for the interaction between the allosteric ligand and the 

orthosteric ligand in the IP-One accumulation assays were globally fitted to the following 

operational model of allosterism and agonism (equation 2):
32

 

� = ��(��[
](��� ![	])���[	]��)#
([
]��������[	]��� [
][	])#�	(��[
](��� ![	])���[	]��)#     (2) 

Where Em is the maximum possible cellular response, [A] and [B] are the concentrations of 

orthosteric and allosteric ligands, respectively, KA and KB are the equilibrium dissociation constant 

of the orthosteric and allosteric ligands, respectively, τA and τB are operational measures of 

orthosteric and allosteric ligand efficacy, respectively, α is the binding cooperativity parameter 

between the orthosteric and allosteric ligand, β denotes the magnitude of the allosteric effect of the 

modulator on the efficacy of the orthosteric agonist and n denotes the transducer slope that 

Page 40 of 47

ACS Paragon Plus Environment

ACS Chemical Neuroscience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 41

describes the underlying stimulus-response coupling of the ligand-occupied receptor to the signal 

pathway.  This parameter was constrained to be shared between all curves within a fitted dataset for 

each interaction study, and in all instances was not significantly different from unity.  In many 

instances, the individual model parameters of equation 2 could not be directly estimated via the 

nonlinear regression algorithm by analysis of the functional data alone due to parameter 

redundancy.  To facilitate model convergence, therefore, we fixed the equilibrium dissociation 

constant of each ligand to that determined from the whole cell binding assays.  For compounds 

where no agonism was observed, logτB was fixed to -3. 

All affinity, potency, and cooperativity values were estimated as logarithms and statistical 

comparisons between values were by one-way analysis of variance using a Tukey’s multiple 

comparison post test to determine significant differences between mutant receptors and the WT M1 

mAChR. A value of p < 0.05 was considered statistically significant. 
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