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Abstract 
Our aim in this paper is to offer a new justification for preferring theories 
that are more quantitatively parsimonious than their rivals.  We discuss 
cases where it seems clear that those involved opted for more quantitatively 
parsimonious theories.  We extend previous work on quantitative 
parsimony by offering an independent probabilistic justification for 
preferring the more quantitatively parsimonious theories in particular 
episodes of theory choice. Our strategy allows us to avoid worries that other 
considerations, such as pragmatic factors of computational tractability, etc., 
could be the driving ones in the historical cases under consideration.   
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1. Introduction 
 
A series of recent papers have defended the notion that in addition to considerations of 
qualitative parsimony (minimizing the types of entities postulated) there are episodes of 
theory choice where a principle of quantitative parsimony (minimizing the number of 
entities postulated) is plausible.1 Our aim in this paper is to offer a new justification for 
preferring theories that are more quantitatively parsimonious than their rivals.  In doing 
so we will discuss cases where it seems clear that those involved opted for more 
quantitatively parsimonious theories.   
 
However, our justification for quantitative parsimony is not an inductive one from these 
cases.  Instead, we extend previous work on quantitative parsimony by offering an 
independent probabilistic justification for preferring the more quantitatively 

                                                
*Authors are listed in alphabetical order and are equal contributors. 
1 See Nolan ([1997]), Baker ([2003]), Huemer ([2009]), Tallant ([2013]) and Baron & Tallant ([ms]). 
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parsimonious theories in particular episodes of theory choice. This strategy allows us to 
avoid worries that other considerations, such as pragmatic factors of computational 
tractability, etc., could be the driving ones in the historical cases under consideration.  
Since our justification is independent of the specific cases we can show that an epistemic 
justification for a preference for the quantitatively more parsimonious alternative can be 
given in these cases (whether or not we take that to historically have been the main factor 
in theory development).   
 
Nolan ([1997]) presents the most frequently discussed example, which concerns the 
postulation of a spin-½	  particle in order to account for the (perceived) missing spin (and 
features of energy and momentum) in beta decay, and it is here we will begin.  This case 

comes with many historical complications so we will focus on Baker’s ([2003], pp. 246-7) 
overview of the central issue that simplifies the case to deal only with explaining the 
missing spin.  While this does leave out other considerations, we think that this is not a 
problem for our view since, to repeat, the justification for preferring quantitatively 
parsimonious theories in particular episodes of theory choice is not one that relies on the 
specifics of these cases.  Moreover, since it is a frequently discussed case, it is useful to 

make use of it in order to show how our account differs from, for example, Baker’s. 
Here is the case.  
 

If we focus for the moment on explaining the missing spin, then the following 
series of alternative neutrino hypotheses can be straightforwardly constructed: 
 
H1 1 neutrino with a spin of ½	  is emitted in each case of Beta decay  
H2  2 neutrinos, each with a spin of ¼	  are emitted in each case of Beta decay 
H3 3 neutrinos, each with a spin of 1/6 are emitted in each case of Beta 
decay 
 
and, more generally, for any positive integer n, 
 
Hn  n neutrinos, each with spin of 1/2n are emitted in each case of Beta 
decay 
 
Each of these hypotheses adequately explains the observation of a missing ½-spin 
following Beta decay. Yet the obvious default hypothesis, both intuitively and from 
the point of view of actual scientific practice, is that exactly 1 neutrino is emitted in 
each case. 

 
This case seems to be one where considerations of quantitative parsimony could be in 
play.  However, there are complications that lead us to think that the analysis of the case 
requires review. We will return to the case later in the paper. 
 
Nolan also proposes a second example of quantitative parsimony, much less discussed, 

that revolves around Avogadro’s law.  To set up the case, we (following Nolan) must 
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make explicit three assumptions made by Avogadro. The first assumption is that gases 
are made up of tiny particles, and that it is the joining or separating of the particles that 
constitutes the process of chemical reactions (see Nolan [1997] p. 335). The second 
assumption, ‘[…]	  was the Gay-Laussac law of combining volumes, which stated that 
volumes of gases at equivalent temperatures and pressures combined in fixed ratios, and 
furthermore that these ratios were in low whole numbers (so that e.g. one volume of 
oxygen combined with two of hydrogen to produce water, one of nitrogen combines 
with three of hydrogen to produce ammonia, and so on)’	  (Nolan, [1997], p. 336). The 
third and final assumption made by Avogadro was that a given volume of gas, at a given 
temperature and pressure, would contain the same number of gas-molecules (Nolan, 
[1997], p. 336).  Since the ratio of volumes of hydrogen to oxygen in the production of 

water is 2:1 Avogadro concludes that ‘[…] water results from the union of each molecule 

of oxygen with two molecules of hydrogen’ (Avogadro (English translation), [1923], p. 
30).2  
We can then present the problem case: 
 

Avogadro thought it reasonable to suppose that, for example, since two volumes 
of hydrogen combine with one volume of oxygen to produce water, there is 
twice as much hydrogen as oxygen in water. Furthermore, if one volume of 
oxygen was reacted with two of hydrogen, the natural thing to expect would be 
that one volume of water be produced (since there are twice as many hydrogen as 
oxygen in water, there would be as many water molecules as there were oxygen, 
and half as many as there were hydrogen). However, the experimental result was 
different: combining two volumes of hydrogen and one of oxygen produced two 
volumes of steam. Similarly with ammonia. Since three volumes of hydrogen 
were needed to react with all the nitrogen in one volume of nitrogen, we would 
think that ammonia was made of one molecule of nitrogen and three of 
hydrogen. But the reaction of three volumes of hydrogen and one of nitrogen 
produced two volumes of ammonia, not one as one would expect (for one would 
expect that there be only as many ammonia molecules as nitrogen molecules). 
(Nolan, [1997], p. 336) 

 
In order to explain the experimental result, Avogadro drew a distinction between atoms 
and molecules.3 The explanation then offered by Avogadro was that each molecule of 
oxygen and hydrogen gas is made up of two atoms of oxygen and hydrogen, respectively; 
that each molecule of steam is made up of two hydrogen atoms and one oxygen atom.4 
 

                                                
2 In Avogadro’s usage ‘molecules’ can be either atoms or molecules (in the modern usage of the terms).  In 
the original French it reads ‘[…] l’eau résulte de l’union de chaque molécule d’oxigène avec deux molécules 
d’hydrogène’ (Avogadro, [1811], p. 60).  
3 The terms ‘atom’ and ‘molecule’ are anachronistic but correspond roughly to the distinction drawn between 
molecule élémentaire and molécule intégrante (and constituante) (see for example Avogadro, [1811], p. 60). We adopt the 
modern vernacular in what follows for ease of presentation to the contemporary reader.   
4 Similarly for the ammonia case. 
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As Nolan notes, this hypothesis was not the only one open to Avogadro. It would be 
perfectly consistent to adopt a view whereby the numbers of atoms involved are multiples 
of the minimum number required, that Avogadro had identified. Thus, Avogadro could 
have supposed that each molecule of oxygen and hydrogen is made up of four atoms of 
oxygen and hydrogen (respectively), and that each molecule of water is made up of four 
hydrogen atoms and two oxygen atoms. 
 
While Avogadro considered the possibility of there being gases with different 
compositions (such as four atoms comprising one molecule of the gas, etc.) he did not 
pay serious attention to such an option in the case of the production of steam (or the 
production of ammonia, nitrous oxide, and nitric oxide).5  
  

 […] [W]e suppose, namely, that the constituent molecules of any simple gas 
whatever […] are not formed of a solitary elementary molecule, but are made up 
of a certain number of these molecules […] and further, that when molecules of 
another substance unite with the former to form a compound molecule, the 
integral molecule which should result splits up into two or more parts (or integral 
molecules) composed of half, quarter, &c., the number of elementary molecules 
going to form the constituent molecule of the first substance, combined with 
half, quarter, &c., the number of constituent molecules of the second substance 
that ought to enter into combination with one constituent molecule of the first 
substance […] ; so that the number of integral molecules of the compound 
becomes double, quadruple, &c., what it would have been if there had been no 
splitting-up, and exactly what is necessary to satisfy the volume of the resulting 
gas.  
On reviewing the various compound gases most generally known, I only find 
examples of duplication of the volume relatively to the volume of that one of the 
constituents which combines with one or more volumes of the other. We have 
already seen this for water. […] Thus in all these cases there must be a division of 
the molecule into two; but it is possible that in other cases the division might be 
into four, eight, &c. (Avogadro (English translation), [1923], p. 32)6 

                                                
5 Partington ([1964], pp. 213-7) contains a discussion of the cases that Avogadro discussed and goes on to 
address his later applications of the same reasoning. 
6Here is the original text in French.   

[…] c’est de supposer que les molécules constituantes d’un gaz simple quelconque […] ne sont 
pas formées d’une seule molécule élémentaire, mais résultent d’un certain nombre de ces molécules 
[…], et que lorsque des molécules d’une autre substance doivent se joindre à celles-là pour former 
des molécules composées, la molécule intégrante qui devroit en résulter se partage en deux ou 
plusieurs parties ou molécules intégrantes composées de la moitié, du quart, etc. du nombre de 
molécules élémentaires dont étoit formée la molécule constituante de la première substance, combinée 
avec la moitié, le quart, etc. du nombre des molécules constituantes de l’autre substance, qui 
devroit se combiner avec la molécule totale […]; ensorte que le nombre des molécules intégrantes du 
composé devienne double, quadruple, etc., de ce qu’il devroit être sans ce partage, et tel qu’il le faut 
pour satisfaire au volume du gaz qui en résulte. En parcourant les différens composés gazeux plus 
connus, je ne trouve que des exemples de redoublement de volume relativement au volume de 
celui des composans, qui s’adjoint une ou plusieurs fois son volume de l’autre : on l’a déjà vu 
pour l’eau. […] Ainsi, dans tous les cas il doit y avoir partage des molécules en deux; mais il est 
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Here he claims that for all known cases where the volume of the produced gas doubles 
from what we would expect, the molecules involved in the production have to be 
composed of two atoms. 7  While he allows that for other, unknown gases, it might be 
the case that molecules of those gases are composed of four, or eight, etc. atoms, the 
quantitatively parsimonious alternative is being treated as a default hypothesis when the 
volume of the produced gas is double of the expected one. 
  
Finally, we need to introduce a third case, also less discussed than the neutrino case. This 
is the case to which we turn now, namely, the postulation of Neptune. The failure of 
Newtonian physics together with the known facts about the solar system to accurately 
capture the motion of Uranus led to the postulation of a planet beyond the orbit of 

Uranus.  The claims of priority and merit of the work of Adams and Le Verrier—that led 

to the identification of Neptune by Galle in 1846—have been much discussed.8  
 
For our purposes, the role that quantitative parsimony played in the postulation of one 
trans-Uranian planet is of particular interest. Gould ([1850], pp. 29-30) describes how Le 
Verrier rules out several hypotheses based on their incompatibility with the data known 
at the time.  For example, Le Verrier discarded the hypothesis that a comet could have 
caused the disturbances in the motion. He also ruled out an intra-Uranian planet. No 
such planet could have accounted for the disturbances without also disturbing the 
motion of Saturn to a discernible degree.  The postulated planet would therefore have to 
be a trans-Uranian one, but yet could not be too remote.  If its orbit was at too great a 
distance from Uranus, then its mass would have to be so large that it would again be 
expected to produce detectable disturbances in the motion of Saturn.  
 

                                                                                                                                      
possible que dans d’autre cas le partage se fasse en quatre, en huit, etc.  (Avogadro, [1811], pp. 60-
1) 

7 What Avogadro explicitly asserts in a footnote is that ‘[…] the integral molecule of water will be 
composed of a half-molecule of oxygen with one molecule, or what is the same thing, two half-molecules 
of hydrogen’ (Avogadro (English translation), [1923], p. 32).  However, if we do not take this together with 
the claim that the division of the molecule is ‘[…] exactly what is necessary to satisfy the volume of the 
resulting gas’ to imply that water is made up of two hydrogen atoms and one oxygen atom then we raise 
trouble for the overall understanding of Avogadro’s paper.  To see why, let us assume for the moment that 
we should not take the half-molecules discussed to be hydrogen and oxygen atoms, but rather just half of 
the number of atoms in a hydrogen or oxygen molecule.  The project is to determine the relative masses of 
atoms (elementary molecules) and the relative proportions in which they enter into compounds.  If it was 
enough to satisfy the 2:1 ratio of hydrogen to oxygen in water that water consisted of one hydrogen 
molecule and one half-molecule of oxygen then H6 combining with O2 to form H6O would satisfy the 
requirement.  However, now we could not determine the relative masses of hydrogen and oxygen atoms in 
the way suggested for determining the ratio of masses in the first section.  To rule this out hydrogen 
molecules and oxygen molecules have to have the same number of atoms.  Since Avogadro does not 
mention this constraint we take it to be a reasonable reading that he does not feel the need to postulate this 
constraint.  This makes sense if he is assuming that the two half-molecules of hydrogen that make up water 
are two elementary molecules (atoms) of one molecule of hydrogen and that the half-molecule of oxygen 
that makes up water is one of two elementary molecules (atoms) of one oxygen molecule.  We will only 
consider alternative hypotheses that keep the number of atoms in hydrogen and oxygen molecules the 
same. 
8 See for example Gould ([1850]), Grant ([1852], chapter XII, appendix III), and Hanson ([1962]). 
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It was known at the time that more than one body could provide a suitable explanation.  
Hanson ([1962], p. 361) reports that Hansen speculated about aberrations in the motion 
of Uranus being due to more than one body as early as 1829, in a letter to Bouvard.  
Although Hansen denies ever having claimed that the observations required the existence 
of more than one unknown planet, he allows that more than one body could be involved 
in producing the disturbances.9  Thus, throughout the discussion of these scenarios it is 
assumed that, in spite of the fact that more than one unknown body could be posited, we 
are looking for one body to account for the disturbances of the motion of Uranus.  When 
Le Verrier tries to account for the anomalies in the motion of Mercury in the same way 
that he tackled those of Uranus he explicitly considers postulating not one body but 
rather several asteroids.10  However, this scenario is considered only to solve the 
difficulties of the failed observation of a single body.  Here the quantitatively 
parsimonious hypothesis is being treated as the default.   
 

2. Three Desiderata 
 
We have the cases. Now we need some desiderata. In this section we note three 
desiderata that applications of a principle of quantitative parsimony ought to satisfy. The 
first desideratum concerns the scope of the set of situations in which the principle may 
be applied. The challenge turns on the worry that, as typically formulated, a principle of 
quantitative parsimony may apply to too many cases. We must find a way of limiting the 
application of the principle. The second desideratum concerns whether or not the 
principle is robust enough to withstand an attack from those who would worry about the 
overall size of our ontology. The third and final desideratum asks that any justification 
for preferring quantitatively parsimonious hypotheses should cover all three of the cases, 
described above. We illustrate each point in turn and treat the satisfaction of these 
desiderata as requirements on any successful attempt to justify appeals to quantitative 
parsimony. We concede that the satisfaction of these desiderata by a single principle is 
only prima facie desirable and that there may ultimately be reasons to be given as to why 
more than one principle must be involved. Nonetheless, in the absence of said reasons 
being provided, we assume, here, that it would be best if a single principle could be 
provided that does satisfy these desiderata. 
 
2.1 Limiting 
First, many statements of the principle of quantitative parsimony are formulated in such 
a way that they entail that we should, ceteris paribus, try to reduce the overall size of our 

                                                
9 As printed in Gould ([1850], p. 12), Hansen’s letter reads ‘Ich kann möglicher Weise geschrieben haben, 
dass vielleicht die bis dahin in der Bewegung des Uranus nicht erklärten Abweichungen von der Theorie 
nicht von einem, sondern von mehreren auf ihn einwirkenden, unbekannten Planeten herrührten […]’. 
10 ‘Mais se pourrait-il qu’un tel astre existât sans avoir jamais été aperçu?  Assurément il serait doué d’un 
très-vif éclat : doit-on croire qu’en raison de sa faible élongation il se fût toujours perdu dans la lumière 
diffuse du Soleil?  Comment admettre qu’on n’eût point été frappé de sa vive lumière durant quelqu’une 
des éclipses totales de Soleil ?  D’où vient qu’on ne l’ait jamais découvert passant sur le disque de cet astre?  
Toutes les difficultés disparaîtraient en admettant, au lieu d’une seule planète, l’existence d’une série de 
corpuscules circulant entre Mercure et le Soleil.’ (Le Verrier, [1859], p. 382) 
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ontology.11  Indeed, this was how we glossed the principle in the previous section when 

we described quantitative parsimony as the practice of ‘minimizing the number of 

entities postulated’.  Some considerations of parsimony seem to fit this injunction.  For 
example, in the Uranus case, the preference for postulating one unobserved celestial 
body, rather than several celestial bodies, seems to minimize the (total) number of 
entities postulated.   
  
But while it also seems intuitively plausible to prefer the hypothesis that minimizes the 
number of neutrinos postulated in order to account for the missing spin (and energy and 
momentum), it is not at all clear that discussion of this case supports a general principle 
that requires us to try to minimize the number of entities in our overall ontology.  
 
Imagine (contrary to fact) that the scientific community agreed that the universe will end 
in a big crunch.  An injunction to prefer a theory that postulates fewer entities in the 
universe would now require us to prefer a theory that states that the universe will end 
sooner rather than later, since such a theory would (assuming that the theories are 
otherwise similar and that the rate of beta decay occurrences in them is the same) 
postulate a lower total number of neutrinos.  We call this the ‘Early-Big-Crunch’	  
hypothesis. We take it that, at least intuitively, Early-Big-Crunch is not a theory that 
considerations of parsimony should favour on the grounds that it reduces the number of 
neutrinos postulated to exist.12, 13  
 
Here is Wallace ([2012], p. 105) offering the same conclusion from a different evidential 
base. 

Generally in physics, we try to keep our number of postulates as low as possible.  
But we’re not usually that bothered about how much there is in the Universe of 
any given entity we postulate.  For instance, we don’t tend to assume that 
cosmological theories are a priori more or less likely to be true according to how 
many galaxies they postulate.	   

 
Thus, we submit, considerations of scope should allow us to apply considerations of 
quantitative parsimony only to particular cases. Call this concern the ‘LIMITING’ 
concern. 
 
2.2 Robustness 

                                                
11 See for example Baker ([2013]) and Huemer ([2009], p. 216). 
12 Further, there is no evidence that we can find of Early-Big-Crunch-like hypotheses being preferred within 
scientific debate. We will return to the question of why and how this might be justified later on in the paper in 
section 2.4. 
13 A referee reported a different intuition here, that it is equally plausible to describe this as a case where 
parsimony considerations favor Early-Big-Crunch, but these are outweighed by other theoretical considerations. 
We are open to alternative explanations, of course, but would want to see the details of such an explanation. 
Even upon review, we were of the view that this is a case where quantitative parsimony shouldn’t get a grip 
given that all else is equal. 
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It seems (to us, and others) that we should be able to apply considerations of parsimony, 
independently of the overall size of our ontology.  As Nolan ([1997], p. 340) notes, the 
preference for quantitatively parsimonious theories does not seem to hinge on the size of 
the ontology that we are already committed to.  Whether or not we are mathematical 
Platonists seems to have little bearing on how we treat the beta decay case.  Yet, if we 
were concerned only with the overall number of entities postulated, we would expect the 
overall number of entities in play to be highly relevant.  Thus, we think, the justification 
for preferring quantitative parsimony must remain robust, independently of the overall 
number of objects that populate our ontology. We call this concern the ‘ROBUSTNESS’	  
concern.  
 
Earlier discussion of (what we call) ROBUSTNESS	  is flawed. Nolan suggests that the 
concern here should be, not just with how many entities there are, but how many entities 
of a given kind that there are (Nolan, [1997], p. 340).  We think this a step in the right 
direction, but this modification is not strong enough. Consider the neutrino case again. 
Even if we make the assumption that the universe is infinite in extent and that there are 
infinitely many beta decays in total, it still seems to us that considerations of parsimony 
militate in favour of preferring H1 over Hn>1, despite the fact that H1 would not, in this 
context, lower the number of beta decays in the universe, when contrasted against Hn>1.  
We do not see that an infinite universe should undermine our preference for parsimony 
when dealing with an explanation of beta decay. Thus, we think, Nolan’s defence against 
(what we call) the ROBUSTNESS concern isn’t successful. 
 
2.3 Breadth 
Baker ([2003]), when attempting to justify a preference for quantitatively parsimonious 
hypotheses, restricts his attention to cases that he calls ‘additive’ (meaning, in his terms, 
that they involve the postulation of qualitatively identical objects to collectively explain 
some phenomenon by simple summing of their contributions). Baker then relies on 
showing that, in cases such as that of H1-Hn, the less quantitatively parsimonious 
hypotheses run up against what we describe as a dilemma.   
 
Horn 1: the less quantitatively parsimonious hypotheses provide a worse basis for an 
answer to a question that they themselves make it necessary to answer and that the 
parsimonious hypothesis provides the basis for a ready explanation of. In the neutrino 
case, the question that the less parsimonious hypotheses makes it necessary that we 
answer is why we have not observed spin in fractions other than ½. The more 
parsimonious hypothesis (H1) provides the basis for a ready explanation: there are no 
particles with such a spin; the more complex hypothesis does not, on its own, provide 
the basis for such an answer. 
	  
Horn 2: the less quantitatively parsimonious hypotheses meet the explanatory challenge 
just described only by postulating a new law. For instance, to the more complex 
hypothesis we could add an additional law dictating for example that neutrinos are only 
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ever emitted in pairs and so on, which now makes the non-parsimonious alternatives less 
syntactically simple by increasing the number of postulates.14 
 
Baker’s ([2003]) diagnosis fits his description of the beta decay case well (as he shows). 
But, as it stands, it does not extend to other, similar cases such as Avogadro’s hypothesis 
case; for that reason, we do not think it sufficiently general.  Whether we account for the 
production of 2 volumes of water resulting from the combination of 2 volumes of 
hydrogen and 1 volume of oxygen by H2 and O2 creating H2O or by H4 and O4 creating 
H4O2 seems to involve considerations similar to those raised by the beta decay case.15  But, 
as we shall demonstrate, appearances are deceptive. We begin by working through the 
appearances.  
 
2.3.1 A limited success for Baker 
There are, as we have noted, a number of hypotheses that Avogadro could have formed: 
 

AH1: Water results from the combination of H2 and O2 
 

AH2: Water results from the combination of H4 and O4 
 

AHn: Water results from the combination of H2n and O2n
16 

 
To illustrate the appearance of similarity with the neutrino case, we must now 
demonstrate that either: AH2 provides a worse basis for an answer to a question that it 
makes salient, and that AH1 provides a ready basis for; or that AH2 meets this 
explanatory challenge only by postulating a new law, etc., which makes a theory with AH2 
less syntactically simple than one with AH1, by increasing the number of postulates. 
 
If we postulate AH2, we raise the question: what prevented more than 2 volumes of 
water being produced? Given the weak background assumption that water contains twice 
as much hydrogen as oxygen, the presence of 2 volumes of H4 and 1 volume of O4 gives 
one the raw material to make, at most, 4 volumes of water.  In contrast, given AH1, there 
could not be more than 2 volumes of water created since there was only 1 volume of 
oxygen where each oxygen molecule contained only enough oxygen atoms for 2 
molecules of water.17 
 

                                                
14 Baker ([2013]) sometimes restricts the notion of syntactic simplicity to foundational postulates.  We will not 
follow that practice here for reasons that will become clear in section 3.  
15To have 2 volumes of H and 1 volume of O combining to create H2O is ruled out (given the background 
assumptions) since this would only create 1 volume of H2O (contrary to the observation of 2 volumes of water 
being produced).  
16 In what follows we focus upon AH2. 
17Of course, we could ask, compatible with our background assumptions, why it is that 2 volumes of H2 and 1 
volume of O2 did not create 1 volume of H4O2 instead of 2 volumes of H2O.  However, we can similarly ask 
why it is that 2 volumes of H4 and 1 volume of O4 did not create 1 volume of H8O4 instead of 2 volumes of 
H4O2.  So, here the two hypotheses are on a par.   
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We can easily concede that some explanation that incorporates AH2 could be given. But 
we think it’s clear that such an explanation, in the form of a law or additional hypothesis, 
would have to be given—it has not, as yet. If we consider adding a law then, following 
Baker, the resulting total explanatory hypothesis would be less syntactically simple than 
AH1.  Syntactic simplicity in the sense that Baker is using it here has to do with elegance 
and is viewed as the number and complexity of hypotheses required.  It is fairly intuitive 
that adding additional laws would lower the theoretical elegance of the resulting theory.  
To support this judgement we could compare the laws needed with AH1 as the basis for 
the explanation to the laws needed with AH2 as the explanatory basis.  Here the only 
difference is the extra law needed when AH2 rather than AH1 is the base hypothesis.  It is 
less clear-cut how to judge comparative elegance when we are dealing with an ‘additional’ 
hypothesis.  The reason for this is that we are adding a hypothesis to AH2 rather than to 
AH1.  We no longer have a shared category (like the laws) that we are merely adding 
complexity to.  Nonetheless, we take Baker’s point—that the alternative package of 
hypotheses offers a less elegant explanation—to intuitively be right.18  
 
 
2.3.2 Rejecting Baker’s analysis 
So far, this story seems like it fits Baker’s diagnosis. Ultimately, however, the diagnosis 
does not go far enough. Baker himself explicitly restricts the application of his diagnosis 
to cases where the entities involved are, as he puts it, qualitatively identical and their 
contribution to the phenomenon under consideration is additive. To illustrate: for each 
qualitatively identical neutrino we can say what the spin of it is and the total effect to be 
explained is then obtained by summing a number of such contributions.19  
 
There is a good reason for this restriction.  If we did not include the restriction to 
additive cases, then Baker’s account should be expected to apply more widely. But, as 
Baker himself notes, it is not clear that it functions in the Neptune case. In brief, the 
worry for Baker’s account in the Neptune case is that postulating two bodies, rather than 
one, does not raise any unanswered questions where the more parsimonious hypothesis 
provides a good basis for an answer and the less parsimonious hypothesis fails to do so.  
In the neutrino case, our background theory and assumptions together with H2 do not 

have the resources to suggest an answer the question of why we have not observed ¼ 
values of spin, but the same background theory and assumptions together with H1 do. In 
the Neptune case, the very same background theories (of Newtonian mechanics and 
gravitation) allow us to explain the deviation of Uranus in both cases and there is no 
question raised by the two bodies hypothesis that the background theories and 
assumptions do not have the resources to suggest an answer to. 20 

                                                
18 We take it to be a virtue of our view that we will later vindicate Baker’s overall verdict without directly relying 
on a judgment of comparative elegance. 
19 For this to make sense it matters that we are trying to explain only the missing spin-1/2 that is needed in order 
to make it possible for the decay to conserve angular momentum.    
20 This is somewhat of a simplification.  There are difficulties of application and computation.  However, such 
considerations are better suited to giving a pragmatic defence of the simplicity considerations at hand and they 
do not fit with Baker’s overall project.  
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The only non-ad-hoc explanation of why to not try to apply Baker’s reasoning to the 
Neptune case, that Baker gives, is that the Neptune case is not additive.21 So, without the 
restriction to additive cases, Baker’s justification for preferring quantitatively 
parsimonious theories should be expected to extend to the Neptune case. But, as 
explained, it does not apply. And that means that Baker requires the restriction to additive 
cases only. 
 
But, we think, we cannot keep the restriction as strictly stated and deal with the case 

involving Avogadro’s hypothesis. In the case of Avogadro’s hypothesis, there is no type 
of entity that contributes to the explanandum in this additive way. Rather, we have two 
different kinds of entities (the different hydrogen and oxygen molecules) that jointly 
contribute to the effect. For instance, in AH1 we have H2 and O2 combining. H2 and O2 

are not qualitatively identical. (In contrast, each of the neutrinos posited in any of H1 and 
Hn are qualitatively identical with every other neutrino posited by that hypothesis). 
 
Moreover, the effect is not achieved in the process simply by adding the contributions of 
the qualitatively identical entities. It’s true that in the neutrino cases, to account for the 
explanandum, we need simply add together the spins of the various neutrinos posited by 
the hypothesis under consideration. But, in the Avogadro case, we must make 
substantive assumptions about how that production worked in order to account for the 
production of 2 instead of 1 or 4 volumes of water. As a consequence, we cannot keep 
the restriction to additive cases only and give a satisfactory account of the Avogadro case.  
 
So, we concede to Baker that he intends to restrict the cases to which his justification of 
a preference for quantitatively parsimonious theories should apply. But, if we keep that 
restriction, then (contra Baker) his justification for preferring quantitatively parsimonious 
theories will not extend to the Avogadro case. We think this surprising and limiting.  

Since intuitive judgements along the lines of Baker’s account seem to apply more 

generally, we would think it best—all things considered—if our justification of appeals to 
quantitative parsimony could be applied more generally. 
  
Thus, we suggest: any justification of appeals to quantitative parsimony should apply to 
more than just one case—ideally, it should apply to all of the cases discussed here. We 
call this criterion ‘BREADTH’.  

 
2.4 The proposal 
Our suggestion is that (roughly) we should relativize principles of parsimony to directly 
competing explanations of the same explanandum.  This allows us to address the 
challenges above and to show what the various cases mentioned have in common.   
 

                                                
21 See Baker ([2003], pp. 257-8). 
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The idea of directly competing explanations requires some clarification. But in the hopes 
of illustrating what is meant, we think that remarks made above are worth repeating: it 
seems intuitively plausible to prefer the hypothesis that minimizes the number of 
neutrinos postulated in order to account for the missing spin (and energy and momentum); it is 
not at all clear that discussion of these cases supports a general principle that requires us 
to try to minimize the number of entities in our overall ontology. We think that this 
insight is important. Relative to the explanation of some phenomena, we should try to 
minimize the number of entities posited.  
 
What we have in mind in general, here, are explanations that share the same broad 
theoretical framework, but that postulate different specific hypotheses to account for 
some particular explanandum.  In the neutrino case we assumed a shared theoretical 
framework of conservation of energy, momentum, angular momentum, etc.  The 
hypotheses involved are therefore in direct competition with each other in a way that 
they would not be if we were also allowing theoretical and background assumptions to 
vary. 
 
Our guiding principle is QP: 
 

QP:  First, assume a framework of theoretical and background knowledge. 
Second, locate directly competing hypotheses, compatible with that framework, 
that allow for the explanation of some explanandum. Third, prefer, ceteris 
paribus, the hypothesis that minimizes the number of entities that the hypothesis 
involves in the explanation. 

 
In the next sections, we will clarify the ceteris paribus qualification and make the very 
rough QP more precise.   
 
Notice, that by relativizing the principle to explanations of some given explanandum, we 
will satisfy LIMITING. Our concern, with LIMITING, was that the principle of 
parsimony ought to apply only to specific cases, and not lead us to favour hypotheses 
like Early-Big-Crunch. With QP we are minimizing our ontological commitments only 
relative to a specific explanandum and so we are forced to consider the minimization 
with respect to a specific case of some sort. This explains what it is that is so unintuitive 
about favouring Early-Big-Crunch.  In order to favour Early-Big-Crunch under QP, it 
would have to be the case that the number of beta decays is somehow crucially involved 
in a hypothesis about the end of the universe, and that this hypothesis, complete with 
beta decays, was explaining some explanandum.  The fact that, given our background 
knowledge, it is extremely implausible that beta decay is implicated in such an explanation 
makes it easy to see why it is unreasonable to favour the Early-Big-Crunch on such 
grounds.  
 
Our proposal also seems to satisfy ROBUSTNESS. QP ignores the question of the total 
number of entities in existence and asks us to compare specific explanatory hypotheses, and the 
number of entities that they posit. In the beta decay case, for instance, we can agree that 
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there are infinitely many instances of beta decay quite generally and still have grounds for 
preferring H1 to competitors: the phenomena in need of explanation (the apparent 
missing spin 1/2) is explained by a scientific explanatory hypothesis that posits only one 
neutrino be emitted in each particular instance of beta decay. It remains for us to show 
that a version of QP can satisfy BREADTH. We must also explain and motivate QP. 
 
 

3. Probabilistically Additive Hypotheses and a (sort of) Bayesian Account: 
The Limpid Rationale Relativized and Reconsidered 

 
Our key claim is that it is not simply that the less parsimonious hypotheses raise 
questions that are harder to answer with these hypotheses than with their more 
parsimonious alternatives; rather, the key claim is that in order to account equally well for 
the data, the less parsimonious alternatives will, in these cases, turn out to have a lower 
prior probability than the parsimonious alternative (given the shared background 
knowledge and theories).  In the cases above we are presented with hypotheses that seem 
to all account for the data equally well.  We will show that this is not the case.  By 
modifying the scenarios so that the competing hypotheses do account equally well for 
the data (given the background assumptions) in the minimal sense of having the same 
likelihood the less parsimonious alternative ends up with a lower prior.  By analysing the 
cases in probabilistic terms in this way, we can show that all three cases discussed in this 
paper can fit under the same analysis.22   
 
To make the comparison precise, we will make use of the idea of probabilistically 
additive hypotheses.  This is an extension of what Sober ([1981], p. 145) refers to as 
Quine’s “limpid”	  account of parsimony.  That is, in general, removing existence claims 
increases the probability of a hypothesis, since a conjunction cannot be more probable 
than its conjuncts.   
 
In the cases under consideration, we will treat H1 as a hypothesis that is relatively 
quantitatively parsimonious and entails the relevant evidence E. For reasons that will 
become clear, we will treat H2 as a hypothesis that is less parsimonious than H1 but that 
does not entail E. We will assume that H1 is at least on a par with H2 when it comes to any 
part of our total evidence that is not part of E.  That is, we take H2 to at most have the 
same prior as H1 (relative to our background knowledge). We will treat H3 as a 
hypothesis that is equivalent to the conjunction of H2 with some other hypothesis (H4, 
H5, etc.) that, collectively, entail the evidence.   
 
To generate our extension we will, thus, not focus on the postulation of existence claims. 
Rather, we will focus upon the relationship between hypotheses that obtains when the 
prior probably of hypothesis H1 is not lower than the prior probability of H2.  We know 

                                                
22 Moreover, this analysis also lends itself to an easy extension to the cases of parsimony that Sober ([1994]) 
considers.  The cases discussed here just form a natural group with shared properties that we can use to motivate 
applying a principle of quantitative parsimony to them.   
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that the probability of a hypothesis H3—obtained by taking the conjunction of H4 and 

H2—will typically be lower than that of H1 (assuming that H4 is not trivial).  A 
conjunction cannot be more probable than its conjuncts. We will exploit this fact. 
 
To extend the terminology introduced by Baker ([2003]), we will call hypotheses related 
as H1 and H3 probabilistically additive hypotheses.  The terminology is apt since H3 is 
composed of one hypothesis not more probable than H1, together with an extra, added, 
hypothesis (H4 or H5, etc.). 
 
The main claim of this section is that all three cases discussed above are cases where the 
hypotheses (or alternatives based on the hypotheses) can be understood as being additive 
in this sense and that, as a consequence, the simpler hypothesis in each case (H1) is to be 
preferred. 
 
In our rough statement of QP we captured sensitivity-to-evidence in explanatory terms 
and by restricting the case to directly competing hypotheses.  We need this assumption 
since we do not assume that we can make judgements about the priors involved, or 
about the extra hypotheses needed, in the absence of such considerations.  Moreover, it 
is only when the theory and background assumptions do give us reasons to think that the 
hypotheses are related in this probabilistically additive way that the defence we give here 
will have force.  This makes our defence a limited one. But Sober is likely right that we 
should not expect a completely general defence of any principle of parsimony.  We 
would certainly be surprised if it turned out that hypotheses that included more entities 
were always considered as having a lower prior than those with fewer entities.  
 
This leaves us with a wrinkle that requires ironing out. Above, we suggested that it was a 
defect of Baker’s view that he is not able to account for parsimony being a virtue in the 
cases involving Avogadro’s reasoning and the postulation of Neptune. If appeals to 
quantitative parsimony are only ever justified in particular cases, then what is the benefit 
of our proposal being able to justify appeals to parsimony in more cases? Here is where 
we part ways from Sober.   
 
While we cannot give a justification for parsimony without taking into account 
background conditions involved in particular cases, this does not prevent a general 
account of when considerations of quantitative parsimony have force.  A general account 
can be given as long as the role that the background conditions play in these cases is 
relevantly similar. Thus, we think, what we provide here is a defence of appeals to 
quantitative parsimony in all cases where, when background conditions are taken into 
consideration, we are considering directly competing hypotheses related as H1 and H2. 
This, we think, is a significant advance on Baker’s account which seems—at best—to 
function only in a relatively small number of cases and that leaves the justification of the 
principle in those cases directly hostage to other principles of simplicity such as elegance. 
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3.1. Neutrinos and beta decay 
 
Let us start by showing how this idea plays out in the case of the postulation of neutrinos 
to account for the missing spin in the case of beta decay. Take H1 to be the hypothesis 
that there is one spin-½	  particle emitted in beta decay and H2 to be the hypothesis that 
there are two spin-¼	  particles emitted.  As Baker ([2003]) points out, if there were spin-
¼	  particles emitted, given our background knowledge, we would expect to see them 
produced singly in some interactions (barring some reason for restricting interactions to 
the production of two of them).  Moreover, given our background assumptions, we 
expect two spin-¼	  particles to generally be detectable individually and not merely in 
pairs.23   
 
Though this is largely following Baker ([2003]) there is a subtlety in the way that we have 
described the case that will be of importance.  Baker considers the additional explanation 
to be simply why there is no observation of spin-¼	   particles in general and notes that H1 
does not explain this on its own either, but is rather compatible with an easy (or easier) 
explanation for this phenomenon than H2.   
 
In our description of the case the claim is directly concerned with the neutrinos that are 
supposed to exist.  The question is not one of explaining why, in general, we have not 
seen spin-¼	  particles of any kind.  It is rather why we have not observed any of the 
neutrinos emitted in the case of beta decay display spin ¼	  in interactions individually. On 
H2, given that H2 postulates the existence of just such particles, this is puzzling.  This is 
not similarly puzzling with the spin-½	  particles in H1.  Even though H1 does not entail 
that there could be no spin-¼	  particles of any kind, H1 does entail that the particles 
emitted in beta decay are not spin-¼ particles.  Hence, it is not puzzling that we have not 
seen the particles in beta decay interact individually to display spin-¼.	  	   
 
Our background theory and knowledge leads us to expect that, if in beta decay there 
were fractions of spin as postulated by H2, then it should be possible to observe them 
singly. We need to add an additional hypothesis in order for H2 to account for our 
evidence (including the absence of such an observation).  Here we have a few different 
hypotheses to choose from, but two of the most readily available ones are as below.24 
 

H4
*: There are interactions that would make it possible to observe the spin-¼	  

particles, but we have not yet performed the experiments to allow us to do so. 
 
H5

*: There are no interactions that would make it possible to observe the spin-¼	  
particles, since a law forbids them from being emitted or interacting other than as 
pairs. 

 

                                                
23 Although, of course, they do not need to be easy to detect. 
24 This list is not exhaustive.  
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So, let us be explicit and add to the observations of missing spin ½ in beta decay	  that 
constitute our body of evidence, the fact that there have been no observations of spin ¼ 
for the particles involved in beta decay. Let E stand for this enlarged body of evidence, K for 
our background knowledge, and T for our background theories.   
 
Notice that H2 (together with the background theory and knowledge) does not entail E 
(although H2 together with H4

* or H5
* does).  Let us assume for now that our background 

knowledge and theory does not favour there being two new particles emitted over there 
being one new particle emitted, so that Pr(H1|K & T) is not lower than Pr(H2|K & T).  
For simplicity, say that Pr(H1|K & T) = Pr(H2|K & T).25  Given this, we will find that in 
a direct comparison the evidence favours H1 over H2.  After all, H1 together with the 
background knowledge and theory entails the evidence, E (where, remember, E includes 
the failure to observe ¼	  values of spin for the neutrinos in beta decay singly), but H2 
does not.26  By Bayes’	  theorem we have that Pr(H1 | E & K & T) = Pr(H1 | K & T) Pr(E 
| H1 & K & T)/Pr(E | K & T) and that Pr(H2 | E & K & T) = Pr(H2 | K & T) Pr(E | 
H2 & K & T)/Pr(E | K & T).  Since by stipulation the only term that differs between the 
two cases is the likelihood and since this is lower for H2 than for H1, the evidence will 

favour H1 over H2.
27 This draws on similar reasoning to Huemer’s ([2009]) support of a 

likelihood defence of parsimony.  However, such a defence falters when the likelihood is 
the same and, as is shown below, such a defence captures only part of what makes 
considerations of quantitative parsimony seem reasonable in the scenarios we discuss. 28  
 
We noted above that H2 together with H4

* or H5
*  (and, as always, T and K) will entail the 

evidence.  Let H3
* be H2 & H4

* and H3
** be H2 & H5

*. In terms of likelihoods, H3
*
 and 

H3
** will be on a par with H1.  A likelihood defence of parsimony will not yet tell us why 

we should prefer H1 over H3
*
 and H3

** and, thus, prefer H1 over H2. As before, we will 
assume that Pr(H1|K & T) is not lower than Pr(H2|K & T). Given this we have a case 
where H1 and H3

* as well as H1 and H3
** are related as probabilistically additive 

hypotheses.  Now the prior of H3
*
 and H3

** will be lower than that of H1 (since the 

                                                
25 The reasoning will hold a fortiori if Pr(H1|K & T) > Pr(H2|K & T). 
26 We are assuming here that our background knowledge and theory precludes skeptical scenarios like being 
systematically mistaken about our observations, measurement instruments, etc.  
27 Notice that by holding fixed background knowledge and theory across H1 and H2 we are going some way to 
ruling out the use of our proposal in cases other than tie-breaking cases where all else is equal. This, we think, 
helps us preserve the claim we made in QP that we do not take our proposal to extend beyond ceteris paribus 
cases. 
28 We also flag, here, that this seems to be a typical case of where were use parsimony considerations, rather than 
in cases where evidence tells directly against a particular hypothesis, as it seems to tell against H2 when H2 is 
considered in isolation.  A Bayesian defence purely in terms of likelihood principles runs up against the 
additional challenge that when we apply parsimony considerations we are typically dealing with explanations of 
known evidence rather than predictions.  This brings with it familiar difficulties of how to treat old evidence. 
Our account in terms competing explanations cashed out in terms of probabilistically additive hypotheses goes 
some way to alleviate this challenge.  We are now dealing with competing explanations of E.  This motivates the 
demand that the competing explanations need to be on equal footing at least when it comes to the entailment of 
E given the background knowledge and theory.  This provides a non-ad hoc reason for not treating E as part of 
the background knowledge. 
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probability of a conjunction is generally lower than probability of either conjunct).29  This 
gives us reason to favour H1 over H3

*
 and H3

** and so again to favour H1 over H2.   
 
This reasoning is particularly nice since it shows that, for example, the stronger reason 
we have to think that H5

* holds, the weaker this preference is. That is, if we had some 
particular strong and independent reason for thinking that there are no interactions that 
would make it possible to observe the spin-¼	  particles singly, since a law forbids them 
from being emitted or interacting other than as pairs (H5

*), then that would leave H3
** 

only very slightly less probable than H1. This, we think, is the right result. It is not a 
result that we can see how to recover given Baker’s account. 
 
Finally, notice that all of the reasoning above takes place given K and T.  It only holds 
given our background knowledge and theory.  Our background theory and knowledge 
allows us to expand the evidence to include what we would expect to have seen and to 
compare the priors of H1 and H2.  Moreover, the reasoning is defeasible (as it should be).  
It seems plausible that our theory and background knowledge did not favour a many 
particle hypothesis over a single particle hypothesis, but it could have done so.30  If this 
had been the case then the same reasoning that we have just given here shows that it has 
to be the case that the increased support for H2 outweighs either the lack of entailment 
of the evidence or the decrease in probability incurred by moving to H3

* or H3
**. 

 
3.2. Avogadro’s hypothesis 

 
The reasoning in section 3.1 applies also to the case of Avogadro’s hypothesis.  Here 
both the hypothesis (AH1) that 2 volumes of H2 and 1 volume of O2 create water with a 
2-1 ratio of hydrogen to oxygen and the hypothesis (AH2) that 2 volumes of H4 and 1 
volume of O4 create water with a 2-1 ratio of hydrogen to oxygen are compatible with 
the evidence of 2 volumes of water (with a presumed 2-1 ratio of hydrogen to oxygen) 
being created. Given the background assumptions, theory, and AH1, we find that the 
possible atomic compositions of water that would respect a 2-1 ratio are H2O and H4O2.  
We would plausibly view these options as equally probable given the background 
knowledge and theory.  So, the production of 2 volumes of water and 1 volume of water 
are equiprobable, given the background theory, assumptions, and hypothesis AH1.  
However, on hypothesis AH2 (and the same background assumptions and theory) there 
are 3 options for the production of water with a 2-1 ratio.  We could get 4 volumes of 
H2O, 2 volumes of H4O2, or 1 volume of H8O4.  Given the background assumptions and 
theory these are also plausibly equiprobable.31  The observation gives us that 2 volumes 

                                                
29 When it is clear from the context we will drop the reference to the background theory and knowledge.	  
30 Baker ([2003], p. 250) discusses such a case.  His focus is, however, on whether inductive reasoning can 
explain the entire preference for the parsimonious hypothesis.  We agree that this is not straightforwardly the 
case.  
31 Here it is again important that our defence only holds under the assumption of shared background knowledge 
and theory.  The claim is only that this reasoning is plausible given that background knowledge and theory. We 
do not rely on the claim that a principle of indifference is generally defensible. We do not offer an account of how 
 



18	  

of steam was produced, so the likelihood term for AH2 is lower than that for AH1.  Even 
if we regard them as having equal prior probability (given the background assumptions 
and theory), AH1 should be preferred to AH2. As in the earlier case, even though AH1 
and AH2 are both compatible with the evidence they are not, as presented, on a par when it 
comes to the likelihood of the evidence when we take into account background theory 
and assumptions.  However, we can amend the case to make this so.  
 
Let us now move to such a case where we ensure the entailment of the evidence. So, let 
us now say that AH1

* is AH1 conjoined with the principle that the volume is not 
minimized in the relevant interactions.32 Now AH1

* (together with the theory and the 
background assumptions) entails that 2 volumes of H2O will be produced.  However, 
when we try to do the same for hypothesis AH2 we find that we have to add yet another 
hypothesis.  Simply ruling out minimization of volume (taking us to AH2

*) is not enough; 
we also have to rule out maximization of volume (let us call this new hypothesis AH3

*).33  
Under the assumption that the prior of AH1 is not lower than that of AH2 we get that 
the prior probability of AH1

* is not lower than that of AH2
*.  We now know that AH3

* 
and AH1

* are related as probabilistically additive hypotheses, so the prior of AH3
* will be 

lower than that of AH1
*.  Again we have reason to prefer AH1 over AH2. 

 
Now we have a way of justifying the application of a principle of quantitative parsimony 
in this case.  By taking into account the background theory and assumptions we have 
argued that a likelihood defence can favour AH1 over AH2.  On its own this has not yet 
convincingly shown that we have an epistemic reason for a principle of quantitative 
parsimony that allows us to prefer AH1 over AH2.  After all, it is easy to modify the 
description of the case so that the competing hypotheses are on a par and a likelihood 
defence does not apply.  However, when we do so we end up with a new hypothesis of 
which AH2 is part that has as lower prior than the competing one of which AH1 is a part 
(relative to the background theory and assumptions).  Yet again, then, we have reason to 
favour AH1 over AH2.  
 
We can now see that given our background theory and assumptions we have robust 
reasons to prefer AH1 over AH2.  When the likelihood defence applies it favours AH1 

and when it does not AH1 is favoured by considering the priors of the new competing 
hypotheses.  Moreover, it is the intuitively non-parsimonious nature of AH2 that is the 
source of the trouble.  In this case a principle of quantitative parsimony is on solid 
ground in favouring AH1. 
 

3.3. Postulation of Neptune 
 
                                                                                                                                      
these probability judgements are made.  It is, however, a substantive assumption of our account that they can be 
made.   
32 We could have claimed that volume is maximised, but that would rule out AH2 for simply being 
incompatible with the evidence.  
33 Ruling out minimization allows us to block the production of 1 volume of H8O4 and ruling out maximization 
allows us to block the production of 4 volumes of H2O.  
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Finally, let us consider the case of the postulation of Neptune to account for the 
aberrations in the motion of Uranus.  This case too will follow the structure above.  
Given our background knowledge and theory, the non-parsimonious hypothesis either 
has a lower likelihood on the evidence or a lower prior than its parsimonious rival. 
 
Let us call the postulation of one new celestial body to account for the deviation in the 
motion hypothesis UH1.  We also know that two new celestial bodies could have 
accounted for the deviation and let us call this hypothesis UH2.  As before, let us assume 
that our background knowledge and theory gives us no reason to assign UH2 a prior 
higher than that of UH1.  For the sake of simplicity, let us say that they are given equal 
priors. Now, given our background knowledge and theory, the likelihood of UH1 on the 
evidence is higher than that of UH2.  In this case, neither hypothesis entails the evidence 
without further specification of the masses and the orbits involved.  Our focus here, 
however, is that part of our evidence is that the aberration can be accounted for by the 
presence of a single body.  We also know that it could be accounted for by two or more 
bodies. But in order for two or more bodies to account for this motion, we would have 
to restrict their orbits and masses with respect to one another. Our background 
knowledge and theory does not give us reason to think that they typically are so restricted 
and this makes the additional assumption required a costly one. 
 
In a move that is now familiar, we could consider a more specific hypothesis UH3

* that 
adds to UH2 the requirement that the motion and masses of the two bodies are 
orchestrated as to mimic the periodic perturbation that could be produced by the 
presence of a single mass (UH4

*).  Now, however, UH1 and UH3
* are related as 

probabilistically additive hypotheses.  Yet again we reason to prefer UH1 over UH2.  
 
4. Conclusion 
 
All of the cases that we have considered share a similar structure.   The problem for the 
non-parsimonious hypotheses, as we see it, is that in order to form packages of 
hypotheses that entail the evidence, we typically have to add extra, costly, assumptions.  
The more parsimonious hypotheses do not come with this cost and are, as such and in 
the range of cases described, to be preferred to their competitors. Our approach has the 
advantage that it can deal with probabilistically additive hypotheses in general and not 
merely additive cases in Baker’s ([2003]) sense.   
 
We have taken considerations of quantitative parsimony to come into play at the level of 
directly competing explanations of the same explanandum.  This means that we have not 
provided an argument that the parsimonious hypothesis will generally be preferable (on 
epistemic grounds) to the disjunction of the non-parsimonious competitors.  This strikes 
us as correct.  We would not want to claim, for instance, that perfectly generally we have 
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epistemic reason to prefer a parsimonious hypothesis to the disjunction of less 
parsimonious ones.34   
 
Finally, our account shows how, in these generally characterized cases, the likelihood 
defence translates to a defence in terms of priors and how we can move between the 
two.  Although Sober is not focused on quantitative parsimony, the approach here 

diffuses the seemingly large difference between Sober’s two cases of parsimony where 
one is motivated by considering priors and the other by considering likelihoods.  These 

cases motivate Sober ([1994], p. 141) to claim that ‘[…] the legitimacy of parsimony 

stands or falls […] on subject matter specific […] considerations’ and to reject general 
logical and mathematical defences of parsimony.  We have shown how a mathematical 

and not merely local defence can be given even while accepting Sober’s ([1994], p. 152) 

point that ‘[…] whether one hypothesis (H1) provides a better explanation of the 

observations (O) than another hypothesis (H2) does […] depends on further auxiliary 

assumptions A’.  
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34 Whether or not the parsimonious hypothesis is to be preferred (on epistemic grounds) to a disjunction 
of non-parsimonious ones will depend on how high the likelihood of the disjunction of the non-
parsimonious hypotheses is on the evidence, whether the extra hypotheses needed in the non-
parsimonious cases are compatible or incompatible, how independently likely those extra hypotheses are, 
etc.  The case where we have the strongest reason to prefer the parsimonious hypothesis even over a 
disjunction of non-parsimonious ones will be when the non-parsimonious cases involve the postulation of 
very costly additional hypotheses (such as additional laws) that are incompatible with one another and 
where the likelihood of the individual non-parsimonious hypotheses on the evidence is low without these 
additional hypotheses.  Several of the cases that we have discussed follow this pattern. 
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