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Abstract.
We study eigenvectors in the deformed Gaussian unitary ensemble of random

matrices H = WH̃W , where H̃ is a random matrix from Gaussian unitary
ensemble and W is a deterministic diagonal matrix with positive entries. Using the
supersymmetry approach we calculate analytically the moments and the distribution
function of the eigenvectors components for a generic matrix W . We show that specific
choices ofW can modify significantly the nature of the eigenvectors changing them from
extended to critical to localized. Our analytical results are supported by numerical
simulations.
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1. Introduction

The Random Matrix Theory (RMT) was initially introduced in physics as a tool for

understanding energy levels of heavy atoms. The simplest and the most prominent

ensemble of random matrices is the Gaussian Unitary Ensemble (GUE), in which

elements Hij = H∗ji of an N×N random Hermitian matrix are given by the independent

Gaussian distributed complex random variables with the zero mean value 〈Hij〉 = 0 and

the variance 〈|Hij|2〉 = 1/N . This ensemble captures many universal features of complex

quantum systems and has numerous applications in other fields [1].

While the statistical properties of the eigenvalues of GUE matrices are highly non-

trivial, the statistical distribution of their eigenvectors is very simple. The normalized

eigenvectors are distributed uniformly over a unit sphere in CN . In the limit N → ∞,

all the eigenvector components ψn become independent and the distribution function of

y = N |ψn|2 is given by

P (y) = e−y, (1)

which in particular implies that
∑N

n=1 〈|ψn|4〉 ∝ 1/N . The quantity I2 =
∑N

n=1 〈|ψn|4〉
is known as an inverse participation ratio and it measures the number of components

contributing significantly to the eigenvector normalization. The 1/N scaling of the

inverse participation ratio shows that the number of such components is of the order

of N and therefore the eigenvectors of GUE matrices can be considered as extended

over a one-dimensional lattice of size N . This property of the eigenvectors is closely

related to the invariance of the distribution function of H under an arbitrary unitary

transformation, which in turn follows from the equivalence of the variances 〈|Hij|2〉.
Later on it was realized that RMT can be used in order to describe various

phenomena discovered in quantum disordered systems such as Anderson localization

and the metal-insulator transition [2]. New non-invariant ensembles were introduced,

for which the variance of the matrix elements is not a constant, but given by some

non-trivial matrix 〈|Hij|2〉 = Fij. Finding statistical properties of the eigenvectors

for a generic matrix Fij is too complicated problem to be solved analytically, but some

results have been obtained for a certain non-invariant ensembles such as banded random

matrices [3, 4], power law banded random matrices [5, 6], almost diagonal random

matrices [7, 8], ultrametric [9] and Ruijsenaars-Schneider ensembles [10] .

The eigenvectors of such ensembles can be not only extended, but also localized or

critical. The eigenvectors of different characters can be distinguished by scaling of their

moments Iq =
∑N

n=1 〈|ψn|2q〉, which generalize the notion of the inverse participation

ratio, with the matrix size N :

Iq ∝ N−dq(q−1). (2)

For GUE matrices Eq.(1) yields 〈yq〉 = Γ(q+1), where Γ(z) is the gamma function, and

hence

IGUEq = Γ(q + 1)N1−q. (3)

The above result means that dq = 1 and this is the condition, which characterizes
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extended eigenvectors. For a localized eigenvector, Iq is not sensitive to changing of N

and therefore dq = 0. If 0 < dq < 1, then one deals with critical states, which are typical

at the point of the Anderson metal-insulator transition [11]. Their fractal nature can

be quantified by the fractal dimensions dq, which can be different for different values of

q in the case of multifractal eigenvectors.

In this work we study the random matrix ensembles, in which the variances of Hij

are given by a rank one matrix 〈|Hij|2〉 = wiwj/N , where all wi > 0. Any matrix H

from such an ensemble can be represented as H = WH̃W , where H̃ is a GUE matrix

and W is a diagonal matrix Wij = wiδij, so that this ensemble can be considered as a

deformed GUE. The presence of the matrix W breaks the unitary invariance of GUE and

provides a preferred basis, in which W is diagonal, making it possible for localization of

eigenvectors to occur.

The deformed GUE defined in this way is closely related to the generalized

eigenvalue problem for a GUE matrix H̃ and a positive definite Hermitian matrix A:

H̃g = EAg, (4)

where E is an eigenvalue and g is the corresponding eigenvector [12]. Using the fact

that A is positive definite, we can introduce a vector f = A1/2g and rewrite Eq.(4) as

A−1/2H̃A−1/2f = Ef. (5)

The unitary invariance of H̃ allows us to choose the basis, in which A is diagonal, and

hence the generalized eigenvalue problem (4) is equivalent to the standard eigenvalue

problem for the matrix WH̃W with W = A−1/2. The generalized eigenvalue problem

for random matrices appears naturally in various applications such as random reactance

networks [13], statistical signal processing [14], vibration analysis [15] and others.

The mean eigenvalue density for the eigenvalue problem (4) or (5), in the case

when H and W are both random, was studied a long time ago [16, 17]. More recently,

correlation properties of the eigenvalues were investigated in Ref.[13]. Remarkably, it

was found that the presence of the matrix W does not change the two-point spectral

correlation function, which remains the same as for GUE matrices and is given by the

well known Wigner-Dyson expression. At the same time, we demonstrate that depending

on the matrix W the eigenvectors of Eq.(5) can be extended, localized or critical. Thus

the random matrices considered in this work is an unusual example of an ensemble, for

which localization of the eigenvectors can coexist with the Wigner-Dyson statistics of

the eigenvalues, which is typical for extended states.

The paper is organized as follows. In Section 2 we derive a general result for the

moments of the eigenvectors and their distribution function for a generic matrix W

using the supersymmetry technique [18]. Various particular choices of the matrix W

leading to extended, localized or critical eigenvectors are considered in Section 4. We

calculate analytically the scaling of the moments and confirm our results by numerical

simulations. Finally we conclude the paper with a summary of the main results and a

discussion of open problems.
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2. General result for the moments of the eigenvectors and the distribution

function

In this section, we derive a general expression for the moments of the eigenvectors of

H = WH̃W for an arbitrary diagonal W > 0, using the supersymmetry approach.

The local moments of the nth eigenvector component ψn at a given energy E are

defined as

Iq(n) =
1

ρ(E)

∑
α

〈
|ψαn |2qδ(E − Eα)

〉
, (6)

where Eα is an eigenvalue of H corresponding to a normalized eigenvector ψα and

ρ(E) = 1
N

∑
α 〈δ(E − Eα)〉 is the average density of states. The moments of the

eigenvectors can be expressed through the diagonal matrix elements of the Green’s

functions as

Iq(n) =
il−m

2πρ(E)N

(l − 1)!(m− 1)!

(l +m− 2)!
lim
ε→0

(2ε)l+m−1
〈
(GR

nn)l(GA
nn)m

〉
, (7)

where l and m are positive integers such that l + m = q and the retarded GR and

advanced GA Green’s functions are defined as

GR/A(E) = (E ± iε−H)−1. (8)

The averaged products of the matrix elements of the Green’s functions can be

calculated effectively using the supersymmetry approach. The main steps of the method

include representing the Green’s functions by the Gaussian integrals over supervectors,

averaging over the random matrix H̃, decoupling the resulting integral by the Hubbard-

Stratonovich transformation, which allows us to integrate out the initially introduced

supervectors. All these steps are standard and exactly the same as in the case of

GUE, and their detailed description can be found in the existing literature [18, 19, 13].

Performing them, we arrive at the following expression:〈
(GR

nn)l(GA
nn)m

〉
=

∫
dQ̂
∑
j

C l
jC

m
j

(
gBBrr

)l−j (
gBBaa

)m−j (
gBBar

)j (
gBBra

)j
(9)

× exp

[
−N

2
StrQ̂2 −

N∑
i=1

Str lnL{iE1̂− iviQ̂− εΛ̂}

]
, vi = w2

i .

where Cp
q = p!/(q!(p−q)!), the supermatrix Q̂ is the integration variable of the Hubbard-

Stratonovich transformation, gBBαβ are the matrix elements of the Bose-Bose block of the

supermatrix (E1̂− vnQ̂n + iεΛ̂)−1 in the retarded-advanced notation, and

L = diag(1, 1,−1, 1), Λ̂ = diag(1, 1,−1,−1). (10)

One can notice that in contrast to the standard GUE case the action depends on

vi, whereby we can recover the GUE case if we set vi = 1. In the limit N → ∞, the
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integral over Q̂ is dominated by the saddle-points that satisfy the relation [13]

Q̂ =
1

N

N∑
i=1

vi

E1̂− viQ̂
. (11)

The saddle-point solutions can be parametrized as

Q̂s.p = t1̂ + isT̂−1Λ̂T̂ , (12)

where s 6= 0 and t are real parameters satisfying the simultaneous equations

t =
1

N

N∑
i

vi(E − vit)
(E − vit)2 + s2v2

i

, and 1 =
1

N

N∑
i

v2
i

(E − vit)2 + s2v2
i

, (13)

and the matrix T̂−1Λ̂T̂ belongs to the standard coset space appearing in the GUE case

[18, 19]. As it was shown in Ref.[13], using the supersymmetric approach for calculation

of the density of states one obtains

ρ(E) =
s

πN

N∑
i

vi
(E − vit)2 + s2v2

i

. (14)

It turns out that this expression along with the system of equations (13) can be

considered as a particular case of some general result by Pastur and Girko derived

a long time ago [16, 17].

Applying the saddle-point approximation to the integral (9), we find〈
(GR

nn)(GA
nn)q−1

〉
=

∫
dµ(T )(gBBaa )q−2{gBBaa gBBrr + (q − 1)gBBar g

BB
ra }

× exp
{
−επNρ(E)Str[T̂−1Λ̂T̂ Λ̂]

}
, (15)

where, for simplicity, we set m = q − 1 and l = 1.

In order to explicitly evaluate the integral we have above, over the coset space

parametrized by T̂ , we employ Efetov’s parametrization [18, 20]:〈
(GR

nn)(GA
nn)q−1

〉
=

∫
dµ(T )(gBBaa )q−2{gBBaa gBBrr + (q − 1)gBBar g

BB
ra }

× exp [−2επNρ(E)(λ1 − λ2)] , (16)

with λ1 ∈ [1,∞), λ2 ∈ [−1, 1] and the expressions for the integration measure dµ(T )

and the matrix elements gBBαβ are given explicitly in Appendix A.

As the action depends only on the parameters λ1 and λ2, all other variables can be

easily integrated out:〈
(GR

nn)(GA
nn)q−1

〉
= (q − 1)

∫ ∞
1

dλ1

∫ 1

−1

dλ2
(E − vnt+ isvnλ1)

q−2

[(E − vnt)2 + s2v2
n]q

s2v2
n

×

{
1 +

λ1 + λ2

λ1 − λ2

+
isvn(q − 2)(λ2

1 − 1)

(E − vnt+ isvnλ1)(λ1 − λ2)

}
exp [−2επNρ(E)(λ1 − λ2)] (17)
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According to Eq.(7) the product of the Green’s functions
〈
(GR

nn)(GA
nn)q−1

〉
is singular in

the limit ε→ 0 and we need to extract the most singular part of it, in order to calculate

the moments of the eigenvectors. As ε enters only in the exponential function in the

integral in the combination ε(λ1 − λ2), it is clear that main contribution to the integral

in the limit ε→ 0 is given by large values of non-compact variable λ1. This observation

motivates a formal change of the variable λ1 by z = ελ1. Then the limit ε → 0 can be

calculated explicitly, as it is shown in Appendix B.

Once the integration has been completed this leads to our final result for the

moments of the eigenvectors

Iq(n) =
1

(πρ(E)N)q

[
svn

(E − vnt)2 + s2v2
n

]q
Γ(q + 1). (18)

In contrast to the GUE case, we notice that the moments are not independent of n,

therefore each component of the eigenvectors is distributed differently. This is a natural

consequence of breaking of the unitary invariance of GUE. Although Iq(n) depends

explicitly only on the corresponding value of vn in a simple way, one should remember

that there is a implicit and non-trivial dependence on all vi’s through the variables s, t

and ρ(E).

Having the result for the moments at our disposal, we can restore the full

distribution function of the eigenvectors components:

Pn(x) = πρ(E)N

[
(E − vnt)2 + s2v2

n

svn

]
exp

[
−(πρ(E)N)

(E − vnt)2 + s2v2
n

svn
x

]
, (19)

where x = |ψn|2. Eq.(18) and Eq.(19) represent the main result of our work.

To corroborate this result we re-derive the GUE case by setting vi = 1. As all

vi = 1 the system (13) can be easily solved giving s =
√

1− (E − t)2 and t = E/2.

Substituting these expressions into Eq.(14) we find

ρ(E) =
1

π

√
1− (E/2)2 (20)

This is exactly Wigner’s semi-circle law for the density of states in the GUE case.

Substituting the density of states and the expressions for s and t into our result for the

moments we see that it reproduces exactly the GUE result given in the introduction:

N∑
n

Iq(n) = Γ(q + 1)N1−q. (21)

We also note as a special case the moments for E = 0 valid for any vi,

Iq(n) =
v−qn

(
∑

i
1
vi

)q
Γ(q + 1) (22)

with the corresponding distribution function as

Pn(x) = vn

N∑
i

v−1
i exp

[
−vn

N∑
j

v−1
j x

]
. (23)
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Eq.(22) can be interpreted as follows. The eigenvectors of WH̃W can be obtained from

the GUE eigenvectors of H̃ simply by multiplying their nth component by v
−1/2
n = w−1

n

and then normalizing them. The existence of such a simple interpretation suggests that

there is probably a more direct way of getting this result. It turns out that this is indeed

the case, as we show in the next section.

3. Alternative derivation of the zero energy result for the moments of the

eigenvectors

In this section we present an alternative derivation of the zero energy result (22), which

does not involve the supersymmetry technique. Instead it is based on the well known

result for the distribution function of the eigenvector components of GUE matrices and

the fact that there is a straightforward relation between the eigenvectors of H and H̃

corresponding to E = 0.

The zero energy eigenvector g of H satisfies WH̃Wg = 0, which is equivalent to

H̃Wg = 0, as wi 6= 0. Hence f ≡ Wg is the zero energy eigenvector of H̃. If we assume

that f is normalized then g = W−1f is not normalized, and we define its normalized

counterpart u ≡ g/||g||. The components of u read

un =
w−1
n fn(∑

i |w
−2
i f 2

i |
) 1

2

, (24)

so that any component of u depends on all components of f due to the normalization

condition. The averaged local moments of the eigenvector u are given by

Iq(n) ≡
〈
|un|2q

〉
=

〈
|w−1

n fn|2q(∑
i |w

−2
i f 2

i |
)q
〉
. (25)

The main difficulty in computing the above average comes from the term in the

denominator. In order to overcome this problem we use the following integral

representation for the denominator(∑
i

|w−2
i f 2

i |

)−q
=

1

Γ(q)

∫ ∞
0

dα αq−1e−α
P
i xi|fi|2 , (26)

where xi ≡ w−2
i and Γ(z) is the gamma function. Then the expression for Iq(n) can be

written as

Iq(n) =
1

Γ(q)

∫ ∞
0

dα αq−1xqn

〈
|fn|2qe−α

P
i xi|fi|2

〉
. (27)

It is well known that the components of a normalized eigenvector of GUE matrix become

statistical independent in the limit N →∞ and the distribution function of y ≡ N |fi|2
is given by P (y) = e−y. Using this result the averaging over fi can be easily calculated:

Iq(n) =
Γ(q + 1)

Γ(q)

(xn
N

)q ∫ ∞
0

dα αq−1
(

1 +
αxn
N

)−q∏
i

(
1 +

αxi
N

)−1

. (28)
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The above integral can be calculated asymptotically in the limit N →∞. Keeping only

the leading in 1/N terms we can write the integral over α as∫ ∞
0

dα αq−1e−
α
N

P
i xi =

(
1

N

∑
i

xi

)−q
Γ(q), (29)

which yields the final result for the local moments

Iq(n) =
xqn

(
∑

i xi)
qΓ(q + 1). (30)

Recalling that xi = w−2
i = v−1

i , we can see that this result is indeed equivalent to Eq.(22)

derived in the previous section. We would like to stress that the above derivation works

only for E = 0, where a simple relation between the eigenvectors of the two problems

can be established.

This approach allows us also to establish a simple necessary condition for the

validity of the final result. Indeed, deriving Eq.(29) from the integral in Eq.(28) we

assumed that
∑

i(xi/N)2 �
∑

i xi/N . Taking into account that ρ(0) = (1/πN)
∑

i xi,

we conclude that a necessary condition reads∑
i

x2
i � ρ(0)N2. (31)

4. Extended, localized and critical eigenvectors

In this section we consider few specific choices for entries of the diagonal matrix W ,

which enable us to see how the deformation of the ensemble changes the nature of the

eigenvectors. In particular, we find that depending on choice of W the eigenvectors of

H = WH̃W can be extended, localized or critical.

The zero energy formula (22) provides the convenient starting point of our analysis

due to its simplicity. However it turns out that scaling of the moments in the limit

N → ∞ remains qualitatively the same regardless of the energy. Therefore we present

here analytical results in the generic case for arbitrary value of E. We verify them by

direct numerical diagonalization of random matrices in two different cases.

We focus on the power-law dependence of vn on n, which as we show below is an

interesting example comprising a variety of different types of eigenvectors.

vn = c

(
1

n

)p
, (32)

where c is the normalization constant, chosen in such a way that the density of states

is independent of N as N → ∞. It must be split into three cases, p > 0, −1 < p < 0,

and p < −1, as the scaling of the moments is different in each case.

In the case of p > 0, vn must be normalized as shown below

vn =

(
N

n

)p
, p > 0. (33)
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Substituting vn into the expression for the moments we obtain

Iq ≡
N∑
n

Iq(n) =
c−q

N q

N∑
n

[
s(N/n)p

(E − (N/n)pt)2 + s2(N/n)2p

]q
Γ(q + 1). (34)

Estimating the divergent sum in the above equation, we find that the scaling of the

moments in this case is independent of p and is given by

Iq ∝ N1−q. (35)

The scaling is the same as in the GUE case and it corresponds to the extended states.

Thus this particular deformation of the ensemble has no qualitative effect on the nature

of the eigenvectors.

For the next case, that we consider, −1 < p < 0, the normalization constant is the

same as in the previous one:

vn =

(
N

n

)p
, −1 < p < 0. (36)

The expression for the moments is formally the same as in Eq.(34), however for

−1 < p < 0 the sum can converge or diverge depending on value of q. As a result

we obtain

Iq ∝


N−q(p+1), q > −1

p
,

N1−q, q < −1
p
,

ln(N)N1−q, q = −1
p
.

(37)

The scaling with the non-trivial power of N corresponds to the critical states, whose

fractal dimensions can be determined by comparison of the above result with Eq.(2):

dq =

{
q(p+1)
q−1

, q > −1
p
,

1, q < −1
p
.

(38)

This result indicates that the eigenvectors belong to the sort of “frozen” phase [11] and

combine properties of extended and critical states.

Finally we consider the case p < −1, in which the normalization constant must be

altered and vn is given by

vn =
1

Nnp
, p < −1. (39)

As the convergence of the sum in Eq.(34) is again determined by the value of pq, three

different sub-cases pq < −1, pq = −1, and pq > −1 must be considered separately ‡.

‡ The necessary condition (31) is not directly applied to this case. However, one can see that the
integral over α in Eq.(28) becomes N independent and it tends to a constant, as n → ∞. As a result
Iq(n) ∝ (xn/N)q, which yields the same scaling with N as Eq.(30) and Eq.(18).
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Figure 1. Numerical results (symbols) for ln(Iq) as a function of ln(N) for q = 1.5
and q = 2.2. The solid lines represent the best fit to the numerical data.

Estimating the sum in each of these cases we find

Iq ∝


const, q > −1

p
,

Npq+1, q < −1
p
,

ln(N), q = −1
p
,

(40)

and the corresponding fractal dimensions read

dq =

{
0, q > −1

p
,

pq+1
1−q , q < −1

p
.

(41)

This time the eigenvectors belong to a different “frozen” phase, in which eigenstates

share properties of localized and critical states.

Numerical simulations using direct diagonalization were performed to test the

validity of the analytical results for vn = (N/n)−1/2, with N ranging from 500 to 5000.

The moments were calculated over 5000 realizations for the eigenvectors, for which the

corresponding eigenvalues were close to E = 0. The numerical results for q = 1.5, and

q = 2.2 are presented in Fig. 4 along with the best fit solid lines. The numerical values

of the gradients of the lines are −0.49 and −1.16 for q = 1.5 and q = 2.2 respectively,

which is in nice agreement with the analytical results −0.5 and −1.1 following from

Eq.(37).

Finally we discuss briefly the possibility of having completely localized states for

the deformed Hamiltonian H. The zero energy result (22) suggests that such states

appear in our model provided that the sequence {vn} is itself localized in space. For

example, taking vn = Nx−n with x > 1, we obtain that all the moments Iq → const for

all q > 0, as N →∞, implying that the eigenvectors are localized in this case.
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5. Conclusions

In this paper we introduced the non-invariant matrix ensembles, in which the variances

of the random matrix elements are position dependent and given by 〈|Hij|2〉 = wiwj/N .

We studied the eigenvector statistics of such matrices in the limit N → ∞ and found

that the local statistics is determined by vi = w2
i . For the eigenvectors corresponding

to the zero eigenvalue E = 0 the expression for the moments of the eigenvectors takes a

particular simple form (22). The general result (18), which is valid for arbitrary E, was

derived using the supersymmetry technique. It turns out that two parameters s and

t, which enter in Eq.(18), are determined by the same systems of coupled equations as

appeared first in the work Pastur and Girko, who studied the density of eigenvalues for

deformed random matrix ensembles. The full information of the eigenvectors statistics

is given by the distribution function of their components, which we found in Eq.(19).

Our general result can be applied to any particular choice of vn. We considered in

detail the power law dependence vn ∝ 1/np. In this case we showed that, by varying

p, eigenvectors are changing from extended, for p > 0, to critical quasi-extended, for

−1 < p < 0, and further to critical quasi-localized, for p < −1. Other choices of vn may

lead to completely localized states, such as, for example, the exponential dependence

vn ∝ x−n with x > 1.

It would be interesting to consider a similar problem for the matrix H̃ from other

symmetry classes. Our calculations and especially the alternative derivation of the zero

energy result suggest that the formula for the moments will have similar structure for

other symmetry classes: it will contain the universal factor, describing the dependence

on vn, such as the factor v−qn (
∑

i v
−1
i )−q in Eq.(22), and a symmetry dependent factor,

which is the same as for the non-deformed ensemble, such as Γ(q + 1) for GUE.

We thank Yan Fyodorov for useful comments. KT acknowledges support from the

Engineering and Physical Sciences Research Council [grant number EP/M5065881/1].

Appendix A. Pre-exponential factors in Efetov’s parametrization

The pre-exponential factors entering into Eq.(16) are given in Efetov’s parametrization

by the following expressions:

gBBaa =
E − vnt+ isvnλ1 + isvn(λ1 − λ2)αα

∗

(E − vnt)2 + s2v2
n

, (A.1)

gBBar = −
µ1svn

(
1 +

αα∗

2

)(
1− ββ∗

2

)
+ µ∗2svnα

∗β

(E − vnt)2 + s2v2
n

, (A.2)

gBBra = −
µ∗1svn

(
1− ββ∗

2

)(
1 +

αα∗

2

)
+ µ2svnβ

∗α

(E − vnt)2 + s2v2
n

, (A.3)

gBBrr =
E − vnt− isvnλ1 + isvn(λ1 − λ2)ββ

∗

(E − vnt)2 + s2v2
n

. (A.4)
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The expression for the integration measure reads

dµ(T ) = − dλ1dλ2

(λ1 − λ2)2
dφ1dφ2dαdα∗dβdβ∗. (A.5)

where λ1 ∈ [1,∞), λ2 ∈ [−1, 1], φ2, φ2 ∈ [0, 2π], and α, α∗, β, β∗ are Grassmann

variables, for which the following convention is used∫
dα α =

∫
dα∗ α∗ =

∫
dβ β =

∫
dβ∗ β∗ =

1√
2π
. (A.6)

Appendix B. Evaluation of the integral over λ1 and λ2

In order to evaluate the integral in Eq.(17) in the limit ε → 0 we make use of the

substitution z = ελ1:〈
(GR

nn)(GA
nn)q−1

〉
= (q − 1)

∫ ∞
1

d
(z
ε

)∫ 1

−1

dλ2
(E − vnt+ isvnz/ε)

q−2

[(E − vnt)2 + s2v2
n]q

s2v2
n

×

{
1 +

(z/ε+ λ2)

z/ε− λ2

+
isvn(q − 2)(z2/ε2 − 1)

(E − vnt+ isvnz/ε)(z/ε− λ2)

}
exp {−2επNρ(E)(z/ε− λ2)} .

Extracting the most singular part of the above expression we find that the λ2 dependence

in the integrand vanishes and as a result we obtain〈
(GR

nn)(GA
nn)q−1

〉
=

2q(q − 1)iq−2ε1−q(svn)q

[(E − vnt)2 + s2v2
n]q

∫ ∞
0

dzzq−2exp {−2πρ(E)Nz}+O
(
ε2−q

)
.

Calculating the integral over z and substituting the result into Eq.(7) we arrive at

Eq.(18).
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