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Ultraviolet light emitting diodes (UV LEDs) are now being developed for various potential

applications including water purification, surface decontamination, optical sensing, and solid-state

lighting. The basis for this development is the successful production of AlxGa1�xN UV LEDs

grown by either metal-organic vapor phase epitaxy (MOVPE) or molecular beam epitaxy (MBE).

Initial studies used mainly sapphire as the substrate, but this result in a high density of defects in

the epitaxial films and now bulk GaN or AlN substrates are being used to reduce this to acceptable

values. However, the lattice parameters of GaN and AlN are significantly different, so any AlGaN

alloy grown on either substrate will still be strained. If, however, AlGaN substrates were available,

this problem could be avoided and an overall lattice match achieved. At present, the existing bulk

GaN and AlN substrates are produced by MOVPE and physical vapor transport, but thick free-

standing films of AlGaN are difficult to produce by either method. The authors have used plasma-

assisted MBE to grow free-standing AlxGa1�xN up to 100 lm in thickness using both an HD25

source from Oxford Applied Research and a novel high efficiency source from Riber to provide

active nitrogen. Films were grown on 2- and 3-in. diameter sapphire and GaAs (111)B substrates

with growth rates ranging from 0.2 to 3 lm/h and with AlN contents of 0% and �20%. Secondary

ion mass spectrometer studies show uniform incorporation of Al, Ga, and N throughout the films,

and strong room temperature photoluminescence is observed in all cases. For films grown on GaAs,

the authors obtained free-standing AlGaN substrates for subsequent growth by MOVPE or MBE by

removing the GaAs using a standard chemical etchant. The use of high growth rates makes this a

potentially viable commercial process since AlxGa1�xN free-standing films can be grown in a sin-

gle day and potentially this method could be extended to a multiwafer system with a suitable

plasma source. VC 2016 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1116/1.4940155]

I. INTRODUCTION

Ultraviolet light emitting diodes (UV LEDs) are now

being developed for various potential applications including

water purification, surface decontamination, optical sensing,

and solid-state lighting. The basis for this development is the

successful production of AlxGa1�xN UV LEDs grown by ei-

ther metal-organic vapor phase epitaxy (MOVPE) or molec-

ular beam epitaxy (MBE). The required wavelength for the

different applications varies, but, for example, in water puri-

fication, LEDs emitting in the wavelength range 250–280 nm

are required.1 This in turn means that films with different Al

content are required with relatively low dislocation density.

UV LEDs grown on sapphire have a high defect density

which in turn limits their efficiency, so lattice matched sub-

strates of AlGaN would be ideal. At present, both free-

standing bulk GaN and AlN can be grown by MOVPE,

hydride vapor phase epitaxy, and physical vapor transport

methods; however, their lattice parameters are significantly

different.1 This has led to the search for methods to produce

AlxGa1�xN substrates of arbitrary Al content.2,3

Typical growth rates in MBE are about 0.5 lm/h, so the

growth of thick free-standing substrates requires many hours

of continuous MBE operation. Using plasma-assisted MBE

(PA-MBE), we were nevertheless able to produce 3-in. di-

ameter zinc-blende layers of GaN on (001) GaAs substrates

up to 100 lm in thickness with up to 200 h continuous MBE

operation.4 Free-standing GaN films were obtained by

removing the GaAs substrate using a standard chemical etch.

The same method was also used to grow free-standing wurt-

zite AlxGa1�xN wafers on (111) GaAs with compositions

from 0% to 50% AlN content.5 However, this is both an ex-

pensive and time consuming process; therefore, to make this

a viable commercial process, much higher growth rates are

needed, and ideally, the time for MBE growth needs to be

less than 24 h operation. The main limit to growth rate

comes from the supply of active nitrogen from the RF

plasma source, so improving the efficiency of the plasma

source is a key requirement.

Recently, Riber developed a novel plasma source (RF-N

50/63) for the growth of GaN layers at higher growth rates.

The main differences were modification of the pyrolytic bo-

ron nitride crucible and an increase in the number of holes in

the PNB aperture plate to 1200 with 0.3 mm diameter. Using

this source, the group in Santa Barbara produced thin layers

of GaN at growth rates up to 2.65 lm/h.6 We have used a

similar source in our GEN-II MBE system to obtain growth

rates for bulk GaN up to 1.8 lm/h on 2-in. diameter GaAsa)Electronic mail: Sergei.Novikov@Nottingham.ac.uk
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(111)B and sapphire substrates.7 By further increasing the

number of holes to 5880, the group in Santa Barbara has

now achieved growth rates of up to 7.6 lm/h, but with very

high nitrogen flow rates of about 25 sccm.8

In this study, we report our recent experience in the

growth of free-standing wurtzite (hexagonal) AlxGa1�xN

films with AlN content up to x� 0.2 by PA-MBE using this

latest highly efficient Riber nitrogen plasma source. This is a

first stage in developing PA-MBE technology for free-

standing AlxGa1�xN layers over the whole AlN composition

range.

II. EXPERIMENTAL SETUP AND METHODOLOGY

Wurtzite polytype layers of GaN and AlxGa1�xN were

grown by PA-MBE on both (0001) sapphire and GaAs

(111)B substrates in a Varian MOD-GENII MBE system.

Elemental sources were used for both Al and Ga and active

nitrogen was provided from two different RF plasma sour-

ces, one from Oxford Applied Research (HD25) and one

higher efficiency source from Riber (RF-N 50/63). For films

grown on GaAs, to avoid any thermal degradation and

roughening of the substrate, the oxide was removed prior to

growth by heating to �630 �C under an arsenic (As2) beam

equivalent pressure (BEP) of approximately 6� 10�6 Torr

from a two zone arsenic cracker. The arsenic flux was

stopped before growth of either GaN or AlxGa1�xN layers

with x� 0.2.

At the beginning of each growth before the epitaxy of

AlGaN, a thin GaN buffer layer was grown under Ga-rich

conditions. It is now well established that Ga-rich conditions

are required to produce the best quality material for growth

by PA-MBE.9 After the thin GaN buffer layer was grown,

the Al shutter was opened to form AlxGa1�xN of the desired

composition. The higher reactivity of Al determined the

composition of AlGaN layers. For films grown on GaAs sub-

strates, the growth temperature was limited to �700 �C to

prevent decomposition of the substrate.

Thick wurtzite AlGaN layers were grown on (111)B

GaAs substrates. The GaAs substrate was removed using a

standard chemical etch (20 ml H3PO4:100 ml H2O2)7 to pro-

vide free standing AlGaN up to 100 lm thick as we have pre-

viously shown for both zinc-blende and wurtzite AlGaN.4,5

In situ reflection high-energy electron diffraction

(RHEED) and ex situ x-ray diffraction (XRD) and transmis-

sion electron microscopy (TEM) were used to investigate the

structural properties of the layers. XRD measurements were

performed using a Philips X’Pert MRD diffractometer. TEM

samples were prepared using a combination of mechanical

polishing, dimple grinding, and ion milling with an accelera-

tion voltage of 4 kV, and the resulting samples were studied

in a JEOL 4000 EX microscope.

The optical properties of the free-standing AlGaN layers

were studied using photoluminescence (PL). The samples

were excited using a pulsed frequency multiplied Ti-

sapphire laser. The excitation wavelength was 250 nm (pho-

ton energy �5 eV), and average excitation power density

was �2 kW/cm2. The luminescence was collected using

dispersion-free reflective optics and analyzed using a UV

enhanced Ocean Optics CCD spectrometer.

The chemical concentrations of Al, Ga, N, and impurities

were studied as a function of depth using secondary ion mass

spectrometry (SIMS) in two commercial systems—a Cameca

IMS-3F and a Cameca IMS-4F system. The samples were

also studied using an Oxford Instruments Energy-dispersive

X-ray spectroscopy (EDX) system for comparison.

III. RESULTS AND DISCUSSION

Before the growth of thick free-standing films, thin

(�1 lm) wurtzite AlGaN layers were grown on 2 in. diame-

ter (111)B GaAs substrates after the growth of a �50 nm

thick GaN buffer layer. Both RF plasma sources showed a

RHEED pattern consistent with the growth of wurtzite GaN

during the growth of the GaN buffer layer. Recent studies by

TEM of the GaN/GaAs interface have shown that there are

zinc-blende crystallites in the first few nanometers into the

wurtzite GaN layer, which may result from As contamina-

tion. By optimizing the nucleation process, we have reduced

this to a minimal amount.

Following this initial study, we then grew thick AlGaN

layers using the new Riber source with the increased number

of 5880 holes in the aperture plate. Due to the finite pumping

in our GEN-II system, we used nitrogen flow rates of 6 sccm

compared to 25 sccm in the previous study.8 Using lower

flow rates enabled us to keep the chamber pressure to

�10�4 Torr and increased the time between regeneration of

the cryopump.

First, we studied the growth rate of GaN as a function of

Ga flux to determine the transition from N- to Ga-rich

growth mode.9 For this purpose, we grew GaN films at nitro-

gen flow rates of 6 sccm with an RF power of 500 W. Each

sample was grown for a fixed time of 30 min on 2 in. diame-

ter (0001) sapphire wafers. The layer thickness was meas-

ured using a standard optical interference method. Films

grown under N-rich conditions were free from Ga droplets,

which were clearly visible under Ga-rich conditions.9 Figure

FIG. 1. (Color online) Growth rate dependence for GaN layers on 2 in. sap-

phire on the Ga flux for the Riber plasma source with 5880 holes in the aper-

ture plate (6 sccm N2 flow, 500 W, and growth time 0.5 h).
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1 shows that the maximum growth rate achieved in this study

was �3 lm/h, which is consistent with previous studies

using the Riber source.8

From the above data, we determined the Ga flux corre-

sponding to the transition from N- to Ga-rich growth. Using

that information we have grown a set of AlxGa1�xN layers

under slightly group III-rich conditions with an AlN content

of about 20 mol. % and with different thicknesses. In 2h-x
XRD plots, we observed a shift of the AlxGa1�xN peak to

higher angle in comparison with a pure GaN layers, indicat-

ing a small decrease in lattice parameter in agreement with

the literature.1 As shown in Fig. 2 for a 100 lm thick wurt-

zite AlxGa1�xN layers, we observe a single 0002 reflection

at �35�, which using Vegards law is consistent with the AlN

mole fraction x� 0.2. This estimate of the AlN mole fraction

was also confirmed by both EDX and SIMS studies. XRD

measurements show that the zinc-blende content was below

the detection limit (0.1%).

Figure 3 shows an XRD x-plot for the same �100 lm

thick wurtzite AlxGa1�xN layer with an AlN content �0.2.

We observed a single 0002 diffraction peak. Figure 4

presents the data for full-width-at-half-maximum (FWHM)

of the 0002 peak from XRD x-plots for several wurtzite

AlxGa1�xN layers as a function of their growth time. The

AlxGa1�xN layers were grown at a growth rate of �2.2 lm/h

and with an AlN content of x� 0.2. The growth time was up

to 48 h and the thickness of the layers was up to �100 lm. In

all of our earlier experiments with the growth of bulk zinc-

blende AlxGa1�xN layers, we observed degradation of the

crystal quality of the layers with increasing thickness due to

a gradual build up of the concentration of wurtzite inclusions

in the zinc-blende matrix. In the current research, the struc-

tural quality of the wurtzite AlxGa1�xN layer improves rap-

idly with increasing layer thickness during first few hours of

epitaxy. However, the structural quality then degrades

slightly during further MBE growth. This may arise because

we are probably gradually shifting from the optimum Ga/N

flux ratio after the first ten hours of growth, due to depletion

of Ga in the 400 g SUMO Ga-cell during the long growths

with high fluxes of BEP �2� 10�6 Torr.

Our earlier XRD studies using reciprocal space maps for

�10 lm thick free-standing wurtzite AlxGa1�xN layers show

that with increasing AlN content there is a gradual increase

in the x FWHM and decrease in peak intensity.5 However, a

reasonable crystal quality remains for AlN mole fractions up

FIG. 2. (Color online) XRD scan of 2h-x of the 0002 peak for a wurtzite

AlxGa1�xN layer (x � 0.2, thickness �100 lm).

FIG. 3. (Color online) x XRD scan of the 0002 peak for a wurtzite

AlxGa1�xN layer (x � 0.2, thickness �100 lm).

FIG. 4. (Color online) Dependence of x XRD 0002 peak FWHM for a wurt-

zite AlxGa1�xN layer (x � 0.2) on the growth time.

FIG. 5. (Color online) SIMS profiles for Al, Ga, and N for a w-AlxGa1�xN

layer (x � 0.2).
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to x� 0.5. We intend to study the MBE growth with the

highly efficient nitrogen source of free-standing wurtzite

AlxGa1�xN layers with the AlN content higher than x� 0.2

in the near future.

As SIMS studies show in Fig. 5, the Al, Ga, and N pro-

files are uniform with depth within experimental error. For

example, Ga and Al SIMS signal intensities are 146 018 and

23 188 counts per second (c/s) at a SIMS profile depth of

2 lm and are 145 530 and 23 296 c/s at a depth of 6 lm,

respectively. The profile is from the center of the film, and

there may be small variations of Al:Ga concentration as a

function of radial position. There was no significant As

detected in the SIMS profiles. In Fig. 5, we show data for a

relatively thin �9 lm thick AlxGa1�xN layer in order to

decrease the SIMS sputtering time, but the general trends

will remain valid for the thicker layers.

PL studies show an increase in room temperature peak

energy with increasing AlN content again as previously

observed in the literature.1 Figure 6 shows that we observe

strong room temperature luminescence from the surface of a

100 lm thick layer, suggesting the sample is of good optical

quality. The energy of the PL peak is about 100 meV lower

than expected for Al0.2Ga0.8N, assuming zero bowing factor,

which suggests the peak may be due to donor–acceptor pair

recombination.

IV. SUMMARY AND CONCLUSIONS

We have studied the growth of free-standing wurtzite

(hexagonal) AlxGa1�xN films by PA-MBE using the latest

model of highly efficient Riber nitrogen plasma source. We

have grown AlxGa1�xN layers with controlled AlN content

of x� 0.2 and thicknesses up to 100 lm on (111)B oriented

GaAs substrates. Films can be removed chemically from the

GaAs substrate and with thicknesses greater or equal to

50 lm can be handled without cracking to provide free-

standing AlxGa1�xN substrates. Using the novel RF plasma

source enables us to grow such AlxGa1�xN films on 2 and 3

in. diameter GaAs in 24 h making this a potentially viable

commercial process.
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