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Abstract 

An increase in intracellular calcium represents one of the early events during an ischaemic 

stroke. It triggers many downstream processes which promote the formation of brain oedema, 

the leading cause of death after an ischaemic stroke. As impairment of blood-brain barrier 

(BBB) accounts for much of oedema formation, the current study explored the impact of 

intracellular calcium on barrier integrity in relation to protein kinase C, caspase-3/7, 

plasminogen activators and the pro-oxidant enzyme NADPH oxidase. Human brain 

microvascular endothelial cells alone or in co-culture with human astrocytes were subjected 

to 4 hours of oxygen-glucose deprivation alone or followed by 20 hours of reperfusion 

(OGD±R) in the absence or presence of inhibitors for urokinase plasminogen activator 

(amiloride), NADPH oxidase (apocynin), intracellular calcium (BAPTA-AM) and protein 

kinase C-α (RO-32-0432). Endothelial cells with protein kinase C-α knockdown, achieved by 

siRNA, were also exposed to the above conditions. BBB permeability was measured by 

transendothelial electrical resistance and Evan’s blue-albumin and sodium fluorescein flux. 

Intracellular calcium and total superoxide anion levels, caspase-3/7, NADPH oxidase, 

plasminogen activator and protein kinase C activities, stress fibre formation, the rate of 

apoptosis and BBB permeability were increased by OGD±R. Treatment with the specific 

inhibitors or knockdown of protein kinase C-α attenuated them. This study reveals successive 

increases in intracellular calcium levels and protein kinase C-α activity are key mechanisms 

in OGD±R-mediated impairment of BBB. Furthermore inhibition of protein kinase C-α may 

be therapeutic in restoring BBB function by reducing the rate of cytoskeletal reorganisation, 

oxidative stress and apoptosis.  
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Abbreviations 

N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-, 

bis[(acetyloxy)methyl] ester (BAPTA-AM), blood-brain barrier (BBB); bovine serum 

albumin (BSA); bovine brain microvascular endothelial cells (BBMEC); central nervous 

system (CNS); Evan’s blue albumin (EBA); foetal bovine serum (FBS); Hank’s Balanced 

Salt Solution (HBSS); human astrocytes (HA); human brain microvascular endothelial cells 

(HBMEC); inositol-1,4,5-triphosphate (IP3); normoxia (N); oxygen-glucose deprivation 

with/out reperfusion (OGD±R); phosphate buffered saline (PBS); protein kinase C (PKC); 

phorbol-12-myristate-13-acetate (PMA); reactive oxygen species (ROS); small interfering 

RNA (siRNA); sodium fluorescein (NaF); superoxide anion (O2
•-); tissue plasminogen 

activator (tPA); transendothelial electrical resistance (TEER); urokinase plasminogen 

activator (uPA) 
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1. Introduction 

The blood-brain barrier (BBB) is composed of tightly packed endothelial cells surrounded by 

astrocytic endfeet, a basement membrane, pericytes and neurones. It regulates the passage of 

circulating molecules into the brain, maintaining central nervous system (CNS) homeostasis. 

Hence, any pathology capable of affecting BBB integrity would have dramatic consequences 

for the CNS [1]. During an ischaemic stroke, affected cells experience an intracellular 

calcium overload due to depletion of ATP and subsequent ion pump dysregulation which 

result in calcium influx. This increase in intracellular calcium is recognised as one of the first 

mechanisms that ultimately compromise BBB during an ischaemic stroke. However, the 

precise molecular targets and cascade of events remain vague. Since calcium is a second 

messenger and can trigger various signalling pathways depending on its specific localisation 

within a cell [2, 3] its potential to influence deleterious processes is vast. Furthermore the 

effect of increasing intracellular calcium can be two-fold; the immediate effect of direct 

interaction of calcium with proteins and less rapid events which involve changes in gene 

expression which can be achieved through signal transduction pathways [4]. 

Calcium overload has also been associated with cell death during ischaemic stroke both via 

apoptosis and necrosis [5]. The apoptotic pathway can be triggered by many protein cascades 

and results in caspase-3/7 activation. Many in vitro and in vivo studies have shown caspases 

to become activated during ischaemia/reperfusion [6-8] and inhibition of caspases with 

carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone has been shown to have 

beneficial effects in reducing infarct volumes, tight junction disruption and BBB permeability 

[9-12]. 

BBB permeability is predominantly governed by the tight junctions between adjacent cells 

and both low and high levels of calcium have been shown to have an adverse effect on these 

endothelial cell junctions. Increasing intracellular calcium concentrations has been shown to 

interfere in tight junction development [13], and lowering calcium levels have been observed 

to change the cellular localisation of occludin and zonula occluden-actin binding [14]. 

Furthermore in bovine brain microvascular endothelial cells (BBMEC) exposed to hypoxia-

aglycaemia and treated with a calcium channel blocker SKF 96365, occludin cellular 

localisation and BBB permeability was partially protected [15]. Therefore the ability of 

endothelial cells to maintain a balance in calcium concentration is vital to their ability to 

maintain BBB integrity.   
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Many studies have shown calcium to be a key governor in BBB permeability. In BBMEC 

cultured with rat astroglioma cells BBB permeability was increased after hypoxia-aglycaemia 

which was ameliorated by a calcium channel blocker nifedipine indicating the role of calcium 

flux in BBB permeability [16]. Furthermore in porcine endotheial cells nifedipine also 

reduced the increase in ischaemia-induced BBB permeability and evidence was provided that 

blockage of protein kinase C (PKC) translocation to the membrane played a part [17]. In 

BBMEC intracellular calcium levels were increased after hypoxia/reoxygenation although 

capacitive calcium entry was inhibited. Furthermore the increase was blocked by superoxide 

dismutase and inhibitors of mitochondrial electron transport, indicating the role of reactive 

oxygen species (ROS) in calcium signalling [18].    

Calcium regulates many downstream processes such as protein phosphorylation (through 

PKC) and ROS generation, both of which can regulate protein activity and have been 

implicated in BBB damage during ischaemic stroke. Conventional (calcium-dependent) PKC 

isoforms are therefore a key focus in BBB permeability especially since they have been found 

to be upregulated in hyperglycaemic and ischaemic conditions. In BBMEC, 

hypoxia/aglycaemia induced expressions of membrane-bound PKC-α and -βI, [19]. In 

cultured porcine endothelial cells, ischaemia induced increases in PKC and inhibition of 

PKC-α reduced endothelial permeability [17] and in rat brain microvessel endothelial cells 

total PKC activity was increased after hypoxia [20]. PKC is also known to affect cell 

morphology by activating endothelial contraction [21] which alters adherens and tight 

junctions and thus evoke BBB permeability [22]. Recent studies have also shown PKC and 

ROS to be involved in BBB damage under hyperglycaemic conditions. In human brain 

microvascular endothelial cells (HBMEC) hyperglycaemia induced BBB permeability 

appeared to be mediated by PKC and subsequent activation of nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase activity which elevated total superoxide anion 

(O2
•-) levels and therefore oxidative stress [23, 24]. Similar findings have also been reported 

in bovine vascular endothelial cells [25]. 

Another element of BBB hyperpermeability during ischaemic stroke is the increased damage 

observed during reperfusion which can lead to vasogenic brain oedema. During reperfusion 

there is a substantial increase in oxidative stress which contributes to BBB impairment [26, 

27]. Many studies suggest that increases in ROS levels disrupt endothelial tight junctions, 

resulting in increased BBB permeability [28-30]. Studies have also shown NADPH oxidase 
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to be involved in reperfusion injury [31-33] for example in an immortalised Lewis rat cell 

line, O2
•- has been shown to disrupt tight junctions and induce F-actin polymerisation into 

stress fibres [34].  

Endogenous reperfusion is achieved through the activation of the plasminogen-plasmin 

system and in particular tissue plasminogen activator (tPA) and urokinase plasminogen 

activator (uPA). Both these serine proteases cleave plasminogen to form plasmin which then 

degrades the fibrinous blood clot, restoring blood flow to the occluded vessel and 

downstream tissue. tPA and uPA have been studied well under ischaemic conditions [35, 36]. 

The literature however is undecided as to whether these serine proteases are beneficial or 

damaging [37, 38]. Our previous study has shown both tPA and uPA activities to be 

upregulated during in vitro ischaemia-reperfusion settings and more pertinently to be 

regulated by ROS [33]. However this area remains largely unexplored and even less well 

studied, is the link between plasminogen activators and intracellular calcium.  

A few studies have shown that tPA can cleave the N-methyl-D-aspartate receptor and induce 

calcium influx in neurones [39, 40], however studies in endothelial cells are lacking. tPA has 

also been shown to have both an apoptotic and anti-apoptotic effect on cortical neurones [41, 

42]. Studies in human umbilical vein endothelial cells have shown PKC to regulate uPA by 

upregulating expression of the uPA receptor [43-45]. Some studies have shown the role of 

uPA in apoptosis in ganglion cells [46] and kidney allograft rejection [47], however studies 

looking at the BBB are needed.    

This study explores the link between calcium-induced signalling cascades such as PKC 

activation and their role in ROS generation and BBB damage. Additionally this study 

attempts to take this link further by looking at cell apoptosis, stress fibre formation and 

plasminogen activator activities under oxygen-glucose deprivation with/out reperfusion 

(OGD±R).  

 

2. Materials and methods 

2.1 Cell culture and OGD±R experiments  

HBMEC were purchased from ScienCell and grown to subconfluence in its specialised media 

(containing 10% FBS) before exposure to OGD (94.5% N2, 0.5% O2 and 5% CO2) or 
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normoxia (75% N2, 20% O2 and 5% CO2) for 0.5 to 4 hours. These OGD conditions were 

used to mimic a severe ischaemic attack. In some experiments, OGD was followed by 20 

hours of reperfusion in which the RPMI media (ischaemic culture medium lacking glucose, 

pyruvate and foetal bovine serum (FBS), Sigma) was replaced with fresh HBMEC cell media 

containing 5.5 mM glucose and 10% FBS before exposing cells to normoxic conditions. In 

other experiments, amiloride (uPA inhibitor, 2.5 µM, Sigma), apocynin (NADPH oxidase 

inhibitor, 1 mM, Sigma), BAPTA-AM (intracellular calcium chelator, 10 µM, Merck), 

bisindolylmaleimide (PKC inhibitor, 5 µM, Calbiochem), LY-333531 (PKC-β inhibitor, 1 

µM, Enzo Life Sciences), CGP-53353 (PKC-βII inhibitor, 1 µM, Calbiochem) or RO-32-0432 

(PKC-α inhibitor, 1 µM, Calbiochem) was also added to culture media during OGD or 

reperfusion stages. In other experiments, normoxic HBMEC were exposed to phorbol-12-

myristate-13-acetate (PMA, a PKC activator, 0.1 µM, Sigma) with/out BAPTA-AM.   

2.2 In vitro model of human BBB  

Human astrocytes (HA) were purchased from ScienCell and seeded onto the outer surface of 

untreated polyester Transwell inserts (0.4 µm pore, Corning Costar) seated upside down in 

HA media. The next day, HBMEC were seeded onto the inner surface of the same inserts in 

HBMEC media. Both sets of cells were grown to confluence (~5-6 days) in their specialised 

cell media before exposure and/or treatment. The inserts provided free flow of media and/or 

any substances produced by the HBMEC and HA to encourage BBB development.  

2.3 Assessment of BBB permeability  

The BBB integrity and function were studied as previously described [48-51]. 

Transendothelial electrical resistance (TEER) was measured using STX electrodes and an 

EVOM resistance meter (World Precision Instruments). To measure Evan’s blue-labelled 

albumin (EBA, 67 kDa) or sodium fluorescein (NaF, 376 Da) flux, inserts were transferred to 

new 12-well plates containing 2 mL of Hank’s Balanced Salt Solution (Sigma). EBA (500 

µL, 165 µg/mL, Sigma) or NaF (500 µL, 10 µg/mL, Sigma) was added to the luminal 

compartments and after 60 minutes samples were taken from both abluminal and luminal 

chambers. The concentration of dye in each chamber was determined by measuring the 

absorbance (610 nm, EBA) or fluorescence (excitation 485 nm and emission 520 nm, NaF) of 

the samples and flux was calculated (abluminal reading x 2000 x luminal reading-1).  

2.4 Small interfering RNA (siRNA) knockdown 
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Subconfluent cells were transfected with ON-TARGET plus SMARTpool human PKC-α (50 

nM) or non-targeting (50 nM) siRNA using DharmaFECT transfection reagent 4 (Thermo 

Scientific) for 16 hours on day one after which the transfection reagent was replaced with 

HBMEC cell media. On day three the transfection was repeated after which the cells were 

used in relevant experiments. The sequences of the oligonucleotides used in PKC-α 

SMARTpool were: UCACUGCUCUAUGGACUUA, GAAGGGUUCUCGUAUGUCA, 

UUAUAGGGAUCUGAAGUUA and UAAGGAACCACAAGCAGUA.  

2.5 Intracellular calcium determination 

Intracellular calcium levels were determined using the Fluo-4 NW Calcium Assay kit 

(Invitrogen). Briefly, cells grown in opaque black 96 well plates (Nunc) were incubated with 

dye loading solution for 45 minutes to load cells with Fluo-4 AM, an indicator for 

intracellular calcium. This solution was then removed, the cells washed once with phosphate 

buffered saline (PBS, Sigma) and then either RPMI or HBMEC media was added to the 

wells. Cells were then exposed/treated after which the fluorescence was measured (excitation 

485 nm and emission 520 nm, room temperature) and buffer blanks subtracted.    

2.6 Caspase-3/7 activity 

Caspase-3/7 activity was determined using the Apo-ONE Homogenous Caspase-3/7 Assay 

(Promega) as previously documented [52]. Briefly, cells grown in opaque black 96 well 

plates were exposed or treated as above after which 100 µL of Apo-ONE Caspase-3/7 reagent 

was added to each well and the plates frozen immediately at -80°C. After one freeze thaw 

cycle the fluorescence was measured (excitation 485 nm and emission 520 nm) and buffer 

blanks subtracted.   

2.7 TUNEL staining 

To view apoptotic nuclei a DeadEnd Colorimetric TUNEL System was used (Promega). 

Briefly, HBMEC were grown on coverslips, exposed/treated as above and then fixed with 4% 

paraformaldehyde (Sigma) in PBS. To enable end-labelling of DNA fragments, coverslips 

were incubated with a recombinant terminal deoxynucleotidyl transferase reaction mix for 60 

minutes at 37°C. Incorporated biotinylated nucleotides were detected by horseradish 

peroxidase-labelled streptavidin and the chromogen diaminobenzidine which stains apoptotic 

nuclei dark brown. HBMEC were viewed with a light microscope and average % rate of 
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apoptosis calculated from 3 different fields per coverslip for one independent experiment 

from the following equation: (number of apoptotic nuclei / total number of nuclei) x 100. 

2.8 PKC activity 

PKC activity was determined as before using the PepTag Assay for Non-Radioactive 

Detection of Protein kinase C (Promega) [53]. Briefly, cell pellets were sonicated in PKC 

extraction buffer (containing 0.05% Triton X-100) to obtain cytosolic and membranal PKC 

proteins. The sonicate was passed through a diethylaminoethyl cellulose column. PKC 

samples were incubated with PepTag C1 peptide, a fluorescent substrate, in a PKC reaction 

mix (containing calcium and phoshatidylserine) for 30 minutes at 30°C. The PKC reaction 

mix ensured all components required for PKC activation were present. Samples, including 

positive (purified active rat PKC) and negative (ultra-pure water) controls, were 

electrophoresed on a 0.8% agarose gel at 80 V for 45 minutes and the bands visualised under 

UV light.  Bands were excised and their absorbance measured at 570 nm. 

For the specific activities of PKC-α and PKC-βI, the isoforms were immunoprecipitated using 

respective primary antibodies (Santa Cruz Biotechnology) and Dynabeads protein G 

(Invitrogen) before using the above assay kit. 

2.9 tPA and uPA ELISA 

uPA and tPA activities were measured using an ELISA-based assay as previously described 

[33]. Briefly, 96 well plates were coated with PAI-1 (300 ng/mL; Abcam) to detect and bind 

active tPA or uPA. Plates were then blocked with 3% bovine serum albumin (BSA, Thermo 

Fischer Scientific). Equal volumes of cell culture media or uPA and tPA standards 

(Calbiochem) were added to the PAI-1-coated wells and the plates incubated for 2 hours at 

room temperature. PAI-1-bound active uPA or tPA was detected by anti-tPA or anti-uPA 

primary antibodies (1:50, Santa Cruz Biotechnology) and primary antibodies were probed 

with horseradish peroxidase-linked secondary antibodies (1:5000, Santa Cruz). A 

colourimetric horseradish peroxidase substrate, 3,3’,5,5’-tetramethylbenzidine (Thermo 

Scientific), was added to the wells to visualise and quantitate PAI-1-tPA/uPA-antibody 

complexes. The reaction was stopped with H2SO4 and absorbances were read immediately at 

450 nm and normalised against the respective standards and total protein concentrations.   

2.10 Total O2
•- production and NADPH oxidase activity 
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Total O2
•– levels were determined using the cytochrome C reduction assay [48]. Briefly, cell 

pellets were sonicated in cold lysis buffer containing HEPES buffer (20 mM, pH 7.2, 

Calbiochem), ethylene glycol tetraacetic acid (1 mM, Sigma), mannitol (210 mM, Sigma) and 

sucrose (70 mM, Sigma). Equal amounts of homogenate (100 µg) were incubated with 

cytochrome C (50 µM, Sigma) at 37°C for 60 minutes before absorbances were measured at 

550 nm.   

NADPH oxidase activity was measured with the lucigenin chemiluminescence assay [51]. 

Briefly, samples of homogenates (~100 µg) were processed as above then incubated at 37°C 

in assay buffer containing potassium phosphate buffer (50 mM, pH 7.0, Sigma), ethylene 

glycol tetraacetic acid (1 mM), sucrose (150 mM) and lucigenin (5 µM, Sigma). The assay 

buffer also contained the specific inhibitors for other ROS-generating enzymes; nitric oxide 

synthase (NG-nitro-L-arginine methyl ester, 100 µM, Sigma), mitochondrial complex I 

(rotenone, 50 µM, Sigma), xanthine oxidase (allopurinol, 100 µM, Sigma) and 

cyclooxygenase (indomethacin, 50 µM, Sigma). After 15 minutes, NADPH (100 µM; 

Calbiochem) was added to initiate the reaction. The reaction was monitored every minute for 

2 hours and the rate of reaction calculated. Buffer blanks were also run for both assays and 

subtracted from the data. 

2.11 Western blotting  

HBMEC were harvested with 0.1% Triton X-100 (Sigma) in PBS containing 1 mg/ml 

aprotinin, 10 mg/ml leupeptin and 1 mM phenylmethylsulfonyl fluoride. The lysate was 

centrifuged at 11500 x g for 20 minutes at 4°C. Protein concentration was quantified using 

the Bradford Protein Assay Kit (Pierce). Protein samples (50 µg) were run on a 10% SDS-

polyacrylamide gels before transferring onto Hybond-P PVDF membrane (GE healthcare). 

Membranes were blocked with 5% milk then exposed to PKC-α (1:500, Santa Cruz 

Biotechnology) and β-actin (1:15,000, Sigma) primary antibodies followed by infrared dye-

tagged secondary antibodies (1:30,000, LI-COR Biosciences). The bands were detected and 

analysed using the Odyssey Infrared Imaging System. 

 

2.12 F-actin staining   

HBMEC grown on coverslips to ~80% confluence were exposed to experimental conditions 

before successively fixing, permeabilising and blocking with 4% paraformaldehyde, 0.1% 
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Triton X-100 and 1% BSA for 20 minutes each. Cells were stained in the dark with 

rhodamine phalloidin dye (20 U/mL, Invitrogen) for 20 minutes then washed with PBS. 

Finally cells were stained with DAPI (1 ug/mL) and visualised with fluorescence microscopy. 

2.13 Cell viability 

An aliquot of cells were mixed with 0.1% Trypan blue and visualised under a light 

microscope. Percentage viability was calculated from counting 100 cells. 

2.14 Statistical analyses 

Data are presented as mean±SEM from at least 3 independent experiments. Statistical 

analyses were performed using one way ANOVA followed by a Tukey post hoc analysis or, 

where appropriate, by an independent Student’s t-test. p<0.05 was considered as significant. 

 

3. Results 

3.1 OGD±R increase intracellular calcium levels, caspase-3/7 activity and apoptosis  

Exposure of HBMEC to OGD (0.5-4 hrs) alone or followed by 20 hours of reperfusion led to 

significant increases in intracellular calcium levels, caspase-3/7 activity (Fig. 1A-B) and 

apoptosis rate as ascertained by TUNEL staining (Fig. 2A-B), as early as 30 minutes of OGD. 

Interestingly, while reperfusion augmented the increases observed in calcium levels, it 

decreased those seen in caspase-3/7 activity and apoptosis rates. As the impact of 4 hrs of 

OGD±R on the above parameters was slightly higher, albeit not significantly so, this time 

period was chosen for all subsequent experiments. It is noteworthy that this time point is 

clinically relevant [54] and consistent with previous studies [33].  

3.2 PKC activity is increased during OGD±R 

To determine the specific conventional PKC isoform(s) that are affected by ischaemic injury, 

HBMEC were exposed to OGD±R in the absence or presence of specific inhibitors for PKC-

α (RO-32-0432) [55], -β (LY-333531) [56] and -βII (CGP-53353) [57]. OGD±R evoked a 

significant increase in PKC activity which were normalised by inhibition of total PKC 

activity with bisindolylmaleimide [58] (Fig. 3A). HBMEC treated with RO-32-0432 showed 

equally suppressed PKC activity in both OGD and reperfusion stages compared to untreated 
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cells. Treatment with LY-333531 and CGP-53353 also showed significant decreases in PKC 

activity compared to untreated cells however higher levels of activity were observed during 

the reperfusion stage compared to OGD alone (Fig. 3B). To probe PKC-α and -βI activities 

directly, the isoforms were immunoprecipitated before performing the PKC activity assay. 

The activities of both isoforms were significantly increased during OGD±R compared to 

normoxic cells (Fig. 3C-D). Since the use of RO-32-0432 produced similar levels of total 

PKC inhibition during both OGD and reperfusion it would appear that PKC-α activity is the 

most consistent during OGD±R and therefore this isoform was studied further in the 

experiments below.     

3.3 BAPTA-AM attenuates the rise in PKC activity during OGD±R 

As conventional PKC isoforms require calcium for their activity [59], reduction of 

intracellular calcium in HBMEC with BAPTA-AM [60] expectedly decreased the OGD±R-

mediated rise in PKC activity (Fig. 3E). To test whether BAPTA-AM had a direct effect on 

PKC activity, PMA, a proven PKC activator [61], was used to induce PKC activity. As 

expected, PMA significantly enhanced PKC activity which was normalised by co-exposure or 

pre-exposure (4 h) with BAPTA-AM (Fig. 3F). PMA also markedly increased PKC-α activity 

(Fig. 3G). 

3.4 Inhibition of uPA and NADPH oxidase attenuates OGD±R-evoked increases in 

PKC-α activity  

Inhibition of uPA and NADPH oxidase in HBMEC exposed to OGD±R normalised the 

stimulatory effects of both phenomena on total PKC and PKC-α activities (Fig. 4A-B). 

However since the uPA inhibitor, amiloride, has known effects of inhibiting Na+ and 

Na+/H+ exchange channels it is possible these effects may also be due to inhibition of these 

channels as well as uPA. To determine the effect of intracellular calcium and PKC-α on 

plasminogen activators, the activities of tPA and uPA were determined in cells subjected to 

OGD±R with BAPTA-AM or RO-32-0432. Similar to a previous study while OGD±R 

induced tPA and uPA activities [33], chelation of intracellular calcium or inhibition of PKC-α 

selectively reduced uPA activity albeit remaining slightly but insignificantly higher compared 

to normoxic cells with the RO-32-0432 treatment (Fig. 4C-D).   

3.5 Inhibition of PKC-α reduces total O2
•- levels and NADPH oxidase activity 
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To test whether O2
•- or NADPH oxidase activity is affected by intracellular calcium, total 

PKC and PKC-α, HBMEC were exposed to OGD±R with or without BAPTA-AM, 

bisindolylmaleimide or RO-32-0432. In support of our recent study [33], reperfusion has 

been shown to further potentiate the increases observed in total O2
•- and NADPH oxidase 

activity evoked by OGD. Although all the aforementioned inhibitors reduced both increases 

(Fig. 5A-D), the levels still remained significantly higher than normoxic cells with 

bisindolylmaleimide and RO-32-0432 treatment. To examine the direct effect of PKC 

activity, HBMEC were exposed to PMA which significantly increased both total O2
•- levels 

and NADPH activity where addition of BAPTA-AM reversed these increases (Fig. 5E-F). 

3.6 Rises in calcium levels and caspase-3/7 activity are attenuated by amiloride, 

apocynin, BAPTA-AM and RO-32-0432         

HBMEC were exposed to OGD±R and treated with amiloride, apocynin, BAPTA-AM or 

RO-32-0432. Amiloride and apocynin significantly reduced increases in intracellular calcium 

levels during reperfusion only whereas BAPTA-AM reduced calcium levels during OGD and 

reperfusion. However since amiloride can also inhibit Na+ channels and the Na+/H+ 

exchanger, it is possible that the above effects are not entirely due to uPA inhibition. RO-32-

0432 significantly reduced calcium levels during both OGD and reperfusion although levels 

remain elevated compared to normoxic cells (Fig. 6A). All the inhibitors mentioned also 

significantly reduced the increases observed in caspase-3/7 activity during OGD and 

reperfusion however activity levels in cells treated with apocynin and amiloride still remained 

higher than normoxic cells during reperfusion (Fig. 6B).  

3.7 PKC-α silencing reduces OGD±R-evoked increases in calcium levels, caspase-3/7 

activity and apoptosis rate  

To look directly at PKC-α activity and establish results with RO-32-0432, PKC-α gene 

expression was silenced using specific siRNA. PKC-α knockdown significantly reduced 

PKC-α protein levels compared to control cells and cells exposed to non-targeting siRNA 

(Fig. 7). PKC-α knockdown significantly reduced caspase-3/7 activity and the rate of 

apoptosis compared to cells exposed to OGD±R, however the rate remained significantly 

higher than normoxic cells. TUNEL staining also showed fewer apoptotic nuclei with PKC-α 

siRNA compared to NT siRNA (Fig. 8A-B).    
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3.8 Amiloride, apocynin, BAPTA-AM and RO-32-0432 reduced the rate of apoptosis 

during OGD±R  

To examine the specific relevance of uPA, NADPH oxidase, intracellular calcium and PKC-α 

to cell viability, HBMEC were exposed to OGD±R in the presence of their respective 

inhibitors before viewing apoptotic nuclei via a TUNEL kit. All inhibitors dramatically 

reduced the rate of OGD±R-mediated apoptosis however the rate remained significantly 

elevated compared to normoxic cells (Fig. 9). 

3.9 OGD±R induces stress fibre formation  

HBMEC grown on coverslips were exposed to OGD±R in the absence or presence of 

aforementioned enzyme inhibitors. Cells targeted with PKC-α siRNA or non-targeting siRNA 

were also exposed to OGD±R. All the above inhibitors and PKC-α siRNA showed reduced or 

no stress fibre formation when compared to HBMEC exposed to OGD±R alone (Fig. 10). 

3.10 Suppression of PKC-α activity protects the BBB during OGD±R  

Ultimately the usefulness of PKC-α inhibition was determined on a co-culture model of the 

BBB comprised of HBMEC and HA. OGD±R significantly increased BBB permeability as 

observed by decreases in TEER and increases in EBA and NaF flux. Furthermore, 

reperfusion showed significantly lower TEER values and higher flux volumes compared to 

OGD alone, supporting previous data [33]. Chelation of intracellular calcium normalised 

TEER values and EBA flux volumes where NaF volumes remained significantly higher than 

normoxic cells (Fig. 11A-C). PKC-α suppression via siRNA also restored BBB permeability 

as indicated by significant increases in TEER values and reductions in flux volumes 

compared to untreated cells (Fig. 11D-F). To determine the effect of BAPTA-AM and PKC-α 

siRNA on PKC activity co-cultures were exposed to PMA before treatment. PMA increased 

BBB damage which was reversed with BAPTA-AM or PKC-α knockdown. Double treatment 

with both BAPTA-AM and PKC-α siRNA showed a slight benefit over single treatment as 

observed by completely normalised TEER values and paracellular flux (Fig. 11G-I).  

 

4. Discussion 
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Interruption of blood flow during an ischaemic stroke results in a cascade of molecular events 

which elicit BBB damage and may be exacerbated during reperfusion [62]. An increase in 

intracellular calcium is one of the first events which trigger these harmful cellular cascades 

and our study shows intracellular calcium to not only be increased as early as 30 minutes of 

OGD but to still be elevated at 20 hours of reperfusion [63, 64].  

Calcium has been a therapeutic target in ischaemic stroke and calcium channel blockers have 

been shown to have therapeutic relevance in neurones such as nimodipine, an L-type channel 

blocker which has been shown to improve cerebral blood flow and metabolic rates in humans 

[65, 66]. However not much is known about the role of calcium in BBB damage. Indeed, 

there is no firm proof that clinical outcome after stroke is improved with calcium channel 

blockers [67, 68]. The present study suggests that chelation of intracellular calcium is an 

effective therapeutic option in HBMEC and in vitro BBB damage.  

As the presence of astrocytes is a prerequisite for appropriate expression and localisation of 

endothelial cell tight junction proteins, a HBMEC-HA contact co-culture model was 

employed throughout this study to measure BBB permeability [69, 70]. Although the 

normoxic barrier function may be considerably lower than in vivo studies, the contact co-

culture model employed in this study has been shown to be one of the most reliable in vitro 

models of human BBB in previous studies [24, 48]. Indeed, similar to in vivo settings, the 

close proximity (≤10 M) between endothelial cell and astrocyte layers in this model allows 

cells to effectively communicate with one another and respond to agents that may be released 

by the other cell line. This feature of the contact co-culture model was of particular 

importance in discovering presence of endothelial cells as an important prerequisite for 

maintaining higher rates of astrocytic viability as ascertained by lower apoptosis rates of 

astrocytes cultured in endothelial cell conditioned medium [52].  

It is possible that the varying results obtained with calcium antagonists may be due to their 

different specificities for different types of neuronal calcium channels [71] and the different 

treatment times, where pre-dosing of the animals was seen to be most effective [72]. More 

importantly, these antagonists block extracellular calcium from entering and increasing 

intracellular calcium levels. Therefore it is likely that calcium released from intracellular 

sources such as the endoplasmic reticulum and mitochondria can sufficiently increase 

intracellular calcium levels under stress [73] and affect various downstream signalling 
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pathways such as PKC [74]. Therefore the buffering of intracellular calcium ions may prove 

to be more effective as shown in the current study.  

Our results show that conventional PKC isoforms are predominantly activated during 

OGD±R, similar to findings in other pathologies such as hyperglycaemia [23, 24], with PKC-

α inhibition and gene silencing shown to be an important therapeutic intervention. 

Additionally chelation of intracellular calcium proved to be a pivotal inhibitory mechanism 

for PKC, substantiating its role as an initiator of this deleterious cascade. Indeed, it has been 

shown that the use of BAPTA, a non-cell permeable chelator of calcium, did not affect 

increases in PKC activity [61] further supporting the hypothesis that cytosolic calcium 

triggers signalling cascades detrimental to BBB permeability.  

Investigating these findings deeper, inhibition of PKC-α with RO-32-0432 was shown to 

downregulate OGD±R-induced uPA activity whereas calcium-chelation completely 

normalised it. These results not only suggest the involvement of other calcium-dependent 

PKC isoforms in uPA regulation but also prove the effective inhibition of PKC with BAPTA-

AM. Given that BAPTA-AM is an intracellular calcium chelator, its inhibitory effects on 

uPA activity are likely to be more diverse than the sole inhibition of PKC and to include 

inhibition or downregulation of other calcium-dependent cascades. Conversely inhibition of 

PKC-α and chelation of intracellular calcium did not affect tPA activity. Therefore it is 

possible that tPA may operate upstream to these mechanisms.  

The OGD±R-mediated increases observed in both plasminogen activator activities were 

consistent with the present literature [38, 75]. Inhibition of uPA by amiloride [76] 

downregulated both total PKC and PKC-α activities and thus implied a reciprocal 

relationship between uPA and PKC. However since amiloride is known to inhibit Na+/H+ 

exchange and Na+ channels generally at higher concentrations (>130 µM), it is possible the 

effects seen from its use may also be due to inhibition of these channels. Amiloride has been 

observed to be a specific inhibitor for uPA at lower concentrations such as that used in the 

current study [76] however its implications in ion channel inhibition cannot be discounted 

therefore interpretation of the data needs to be done with caution.  

The regulation of uPA activity by PKC is well-documented [43-45] however the reverse is 

much less explored. Interaction of uPA with its receptor may indirectly affect PKC activity 

via mitogen-activated protein kinases which despite regulating both uPA and PKC separately 
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may also be able to connect them [77-79]. Moreover, impairment of glucose uptake has also 

shown uPA to indirectly affect PKC activity [80] which may be a prominent factor in OGD 

studies.  

The use of amiloride selectively attenuated rises in intracellular calcium during reperfusion 

but not OGD, an effect mimicked by inhibition of NADPH oxidase. This difference between 

the two stages is somewhat surprising. Lack of glucose and associated ATP production and 

therefore failure of ion pumps and influx of calcium may explain ineffectiveness of uPA and 

NADPH oxidase suppression in affecting calcium levels during OGD phase [62] whereas 

during reperfusion when ATP production is re-established and therefore ion pumps are 

working the inhibition of uPA and NADPH oxidase may be more apparent.  

The relationship between calcium and uPA or NADPH oxidase remains largely unknown. 

uPA binding to its receptor has been shown to increase intracellular calcium concentrations in 

phagocytes [81] and stimulate production of inositol-1,4,5-triphosphate (IP3) which then 

releases calcium from intracellular stores [82]. In skeletal muscle, NADPH oxidase activation 

was required for intracellular calcium increases [81-86] and in human endothelial cells, 

NADPH oxidase increased calcium release via IP3 [84, 85].  

Conversely, other studies have shown that vascular cell adhesion molecule-1-induced 

calcium mobilisation is required for NADPH oxidase activity in lymphocytes [87] and that 

calcium is required for activation of Nox5, a NADPH oxidase isoform [86]. Similar to studies 

with amlodipine, a calcium channel blocker, which reduced NADPH oxidase activity [88] 

and oxidative stress [89] in rats, our study showed calcium chelation completely normalised 

O2
•- levels and NADPH oxidase activity. Our study further suggests this is in part mediated 

through PKC since PKC inhibition was shown to also reduce oxidative stress albeit to a lesser 

extent indicating that other calcium-dependent mechanisms also contribute to oxidative stress 

and PKC activation is not the only mechanism that induces NADPH oxidase activity and O2
•- 

production. Indeed other pathologies arising from ischaemia-reperfusion injury including the 

excessive release of pro-inflammatory cytokine tumour necrosis factor-α [52] and ROS due 

to increased mitochondrial calcium levels [90] can contribute to oxidative stress.  

Our results also suggest that NADPH oxidase and PKC reciprocally activate each other. This 

may partly be due to the sensitivity of PKC for oxidants like O2
•- which can modify its N-

terminal regulatory domains making it more resistant to autoinhibition [91] and also through 
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phosphorylation of NADPH oxidase subunits by PKC which increases the overall activity of 

the oxidase complex [92, 93].  

The results from this study indicate that abolishing the activity of one enzymatic target alone 

is not enough to completely reverse cell death and that combination therapy may be required. 

It would appear that some cell death is inevitable and future experiments looking at 

combination therapy and far reaching targets of the enzymes involved are needed. For 

example, some studies suggest matrix metalloproteinase-2 and -9 may induce caspase-3 

activation [94] and since our previous study has linked matrix metalloproteinase-2 to uPA 

and NADPH oxidase activity [33], it is possible that in HBMEC caspase-3/7 activation is also 

mediated by matrix metalloproteinase-2. Additionally in our previous study [33] uPA was 

shown to operate upstream to NADPH oxidase and this study now indicates the involvement 

of PKC in this relationship.  

All the above inhibitors also markedly decreased OGD±R-evoked actin polymerisation, 

revealing that all the components discussed have a role in cytoskeletal infrastructure which is 

necessary for maintenance of cell morphology and function. Pathologies capable of affecting 

actin redistribution and polymerisation to form stress fibres have been shown to increase tight 

junctional permeability [52, 95-97]. Also in rat brain microvascular endothelial cells 

exposure to OGD±R induced ROS formation, caspase-3 activity, stress fibre formation and 

tight junction disruption and inhibition of ROS and caspase-3 attenuated BBB 

hyperpermeability through protection of tight junctions and the cytoskeleton [98].  

Prevention of BBB damage during or restoration of the BBB after an ischaemic stroke is a 

priority and any potential therapeutic targets need to be assessed against their ability to do 

this. Inhibition of uPA and NADPH oxidase has been shown in a previous study to restore 

BBB integrity [33] and in the present study chelation of intracellular calcium and knockdown 

of PKC-α has also shown this effect. Indeed even in the presence of PMA, BAPTA-AM and 

PKC-α siRNA have been shown to have a beneficial effect indicating the major role played 

by intracellular calcium and PKC-α.  

 

5. Conclusions 



 
 

19 
 

This study shows that in HBMEC exposed to OGD±R many individual events occur which 

ultimately compromise BBB function. Furthermore these events appear to be interlinked in a 

complex manner. This study strongly suggests intracellular calcium is a key mediator of BBB 

damage during OGD±R and the mechanism of increased BBB permeability is an increase in 

HBMEC apoptosis mediated through a reciprocal PKC-uPA-NADPH oxidase pathway which 

warrants exploring in greater detail for possible therapeutic outcomes. Furthermore although 

many studies conducted with calcium channel blockers show neuroprotection, the results with 

regards to stroke outcome are inconclusive partly due to hypotensive effect of these drugs and 

associated complications. Therefore studies examining BBB function and intracellular 

calcium levels regardless of the source are needed to define the calcium-induced mechanism 

of BBB disruption. Therapeutic interventions which target buffering of intracellular calcium 

without affecting blood pressure are a possible avenue of exploration.   
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7. Figure Legends 

Figure 1 – 1 column 

Shorter periods of OGD±R result in increases in intracellular calcium levels and caspase-3/7 

activity. HBMEC were exposed to 30 mins, 1 hour, 2 hours or 4 hours of OGD alone or 

followed by 20 hours of reperfusion (R). Intracellular calcium levels (A) and caspase-3/7 

activity (B) are increased compared to normoxic cells in all OGD±R conditions. Data 

represented as mean ± SEM from n ≥ 4.  * P < 0.05 compared to Normoxia. † P <0.05 

compared to respective OGD group. 

 

Figure 2 – 2 column 

Shorter periods of OGD±R result in increases the rate of apoptosis. HBMEC were exposed to 

30 mins, 1 hour, 2 hours or 4 hours of OGD alone or followed by 20 hours of reperfusion (R). 

The rate of apoptosis was increased during all OGD±R time points compared to normoxic 

cells (A). TUNEL staining showed an increase in the number of apoptotic nuclei (dark brown 

staining) in all OGD±R conditions compared to normoxic cells (Bar 50 µm, B). Arrows 

indicate representative apoptotic nuclei. Data represented as mean ± SEM from n = 4.  * P < 

0.05 compared to Normoxia.  

 

Figure 3 – 2 column 

PKC-α is a key player in increasing total PKC activity during OGD±R. HBMEC were 

exposed to 4 hours OGD (OGD) with or without reperfusion (R) or a PKC activator PMA. 

Bisindolylmaleimide, a general PKC activity inhibitor, normalised the increases in PKC 

activity seen during OGD±R (A). Inhibitors for α (Ro-32-0432), β (LY-333531) and βII 

(CGP-53353) isoforms also show attenuation of increased PKC activity during OGD±R (B). 

PKC-α (C) and PKC-βI (D) activities are increased during OGD±R. Chelation of intracellular 

calcium with BAPTA-AM decreased the rise in PKC activity seen during OGD±R (E).  PMA 

increased PKC activity and co-exposure or 4 hours pre-exposure with BAPTA-AM 

normalised the increases seen (F). Exposure to PMA also increased PKC-α activity (G). Data 
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represented as mean ± SEM from ≥ 3. * P < 0.05 compared to Normoxia or control. † P < 

0.05 compared to respective untreated group. § P < 0.05 compared to PMA. 

 

Figure 4 – 2 column 

Amiloride and apocynin reduce PKC activity and uPA activity affected by PKC-α. HBMEC 

were exposed to 4 hours OGD (OGD) with or without reperfusion (R) in the absence or 

presence of inhibitors for uPA (amiloride), NADPH oxidase (apocynin), intracellular calcium 

(BAPTA-AM) or PKC-α (RO-32-0432). Amiloride and apocynin decreased the rise in total 

PKC (A) and PKC-α (B) activities seen during OGD±R. tPA activity is increased during 

OGD±R and treatment with BAPT-AM and RO-32-0432 show no effect (C). uPA activity is 

also increased during OGD±R and BAPTA-AM and RO-32-0432 normalised the increases 

seen (D). Data represented as mean ± SEM from n ≥ 3.  * P < 0.05 compared to Normoxia. † 

P < 0.05 compared to respective untreated group. 

 

Figure 5 – 2 column 

PKC-α reduces total O2
•- levels and NADPH activity. HBMEC were exposed to 4 hours OGD 

(OGD) with or without reperfusion (R) in the absence or presence of inhibitors for PKC 

(bisindolylmaleimide), intracellular calcium (BAPTA-AM) or PKC-α (RO-32-0432). 

HBMEC were also exposed to PMA, a PKC activator, with or without BAPTA-AM 

treatment. Total O2
•- levels were increased during OGD±R and treatment with 

bisindolylmaleimide or RO-32-0432 normalised O2
•- levels although they remained higher 

than normoxic cells (A). Treatment with BAPTA-AM completely normalised the increases 

observed (B). NADPH oxidase activity followed a similar pattern to that of O2
•- levels during 

OGD±R (C-D). Exposure to PMA increased O2
•- levels and NADPH oxidase activity and 

treatment with BAPTA-AM abolished these changes (E-F). Data represented as mean ± SEM 

from n ≥ 3.  * P < 0.05 compared to Normoxia or control. § P < 0.05 compared to 4 hrs 

OGD. † P < 0.05 compared to respective untreated group. 

 

Figure 6 – 1.5 column 
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Inhibition of NADPH oxidase, PKC-α, and uPA reduces OGD±R induced increases in 

caspase-3/7 activity and apoptosis rate. HBMEC were exposed to 4 hours OGD (OGD) with 

or without reperfusion (R) in the absence or presence of inhibitors for uPA (amiloride), 

NADPH oxidase (apocynin), intracellular calcium (BAPTA-AM) or PKC-α (RO-32-0432). 

Amiloride and apocynin reduced increases in intracellular calcium levels during reperfusion 

only whereas BAPTA-AM reduced calcium levels during OGD±R. RO-32-0432 reduced 

calcium levels during OGD±R although levels remained elevated compared to normoxic cells 

especially during OGD (A). Amiloride and apocynin reduced the increase observed in 

caspase-3/7 activity during OGD±R however activity still remained higher than normoxic 

cells during reperfusion. Both BAPTA-AM and RO-32-0432 normalised caspase-3/7 

activities during OGD±R (B). Data represented as mean ± SEM from n ≥ 3.  * P < 0.05 

compared to Normoxia. † P < 0.05 compared to respective untreated group.  

 

Figure 7 – 1 column 

Knockdown of PKC-α reduces PKC-α protein levels. PKC-α knockdown reduces PKC-α 

protein levels compared to control cells and cells exposed to non-targeting (NT) siRNA as 

confirmed by Western blotting. Data represented as mean ± SEM from n = 4.  * P < 0.05 

compared to control.  

 

Figure 8 – 2 column 

Knockdown of PKC-α reduces OGD±R induced increases in caspase-3/7 activity and 

apoptosis rate. HBMEC were exposed to 4 hours OGD (OGD) with or without reperfusion 

(R) in the absence or presence of PKC-α siRNA. PKC-α knockdown cells reduced caspase-

3/7 activity and the rate of apoptosis compared to untreated cells (A and B). TUNEL staining 

for PKC-α knockdown cells exposed to OGD±R showed fewer apoptotic nuclei (dark brown 

staining) compared to NT siRNA treated cells (Bar 50 µm, C). Arrows indicate representative 

apoptotic nuclei. Data represented as mean ± SEM from n ≥ 3.  * P < 0.05 compared to 

Normoxia. † P < 0.05 compared to respective untreated group.  
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Figure 9 – 2 column 

Amiloride, apocynin, BAPTA-AM and RO-32-0432 reduced the rate of apoptosis. HBMEC 

were exposed to 4 hours OGD (OGD) with or without reperfusion (R) in the absence or 

presence of inhibitors for uPA (amiloride), NADPH oxidase (apocynin), intracellular calcium 

(BAPTA-AM) or PKC-α (RO-32-0432). All inhibitors showed a reduced rate of apoptosis 

during OGD±R however the rate remained elevated compared to normoxic cells (A). TUNEL 

staining showed fewer apoptotic nuclei (dark brown staining) compared to untreated cells 

(Bar 50 µm, B). Arrows indicate representative apoptotic nuclei. Data represented as mean ± 

SEM from n ≥ 4.  * P < 0.05 compared to Normoxia. † P < 0.05 compared to respective 

untreated group. 

 

Figure 10 - 2 column 

OGD±R increases stress fibre formation. HBMEC were grown on coverslips and exposed to 

4 hours OGD (OGD) with or without reperfusion (R) in the absence or presence of inhibitors 

for uPA (amiloride), NADPH oxidase (apocynin), intracellular calcium (BAPTA-AM) or 

PKC-α (RO-32-0432). Cells targeted with PKC-α siRNA or non-targeting (NT) siRNA were 

also exposed to the above conditions. Cells were stained with rhodamine phalloidin to 

visualise F-actin. Cells exposed to OGD±R showed stress fibre formation compared to 

normoxic cells and treated cells showed less stress fibre formation compared to untreated 

cells exposed to OGD±R (bar 50 µm). Data represented from n ≥ 4.   

 

Figure 11 – 2 column 

PKC-α knockdown restores BBB integrity after OGD±R.  HBMEC and HA co-cultures were 

exposed to 4 hours OGD (OGD) with or without reperfusion (R) in the absence or presence 

of BAPTA-AM, an intracellular calcium inhibitor.  Co-cultures were also exposed to PMA, a 

PKC activator ± BAPTA-AM.  HBMEC targeted with PKC-α siRNA or NT siRNA in co-

culture with HA were also exposed to the above OGD±R or PMA conditions. Co-cultures 

exposed to OGD±R reperfusion with BAPTA-AM show higher TEER values and lower EBA 

and NaF flux volumes compared to co-cultures exposed to OGD±R alone (A). PKC-α 

knockdown increases TEER and decreases EBA and NaF flux compared to co-cultures 
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exposed to OGD±R alone (D-F). PMA increases BBB permeability which is normalised with 

BAPTA-AM and PKC-α knockdown (G-I). Data represented as mean ± SEM from n ≥ 4.  * 

P < 0.05 compared to Normoxia. § P < 0.05 compared to respective 4 hrs OGD exposed 

cells. † P < 0.05 compared to respective untreated group. ‡ P < 0.05 compared to respective 

NT siRNA targeted group. ∞ P < 0.05 compared to PMA. Ψ P < 0.05 compared to PMA with 

NT siRNA.  
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Normoxia

4 hrs OGD + NT siRNA 4 hrs OGD + R + NT siRNA

®

®

®

®

4 hrs OGD 4  hrs OGD + R

4 hrs OGD + Amiloride 4 hrs OGD + Apocynin4 hrs OGD + R + Amiloride 4 hrs OGD + R + Apocynin

4 hrs OGD + BAPTA-AM 4 hrs OGD + Ro-32-04324 hrs OGD + R + BAPTA-AM 4 hrs OGD + R + Ro-32-0432

4 hrs OGD + PKC-a  siRNA 4 hrs OGD + R + PKC-a  siRNA

®

®

®

®

®

®

®

®

®
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