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Abstract

In this review, we consider green chemistry metrics, related software tools,

and the opportunities and challenges for their use in research laboratories.

We provide an overview of state-of-the-art software designed both to aid

researchers in planning and conducting chemical experiments and to assess

sustainability of individual reactions and synthetic routes. The increasing

digitalisation of research means that there is great opportunity for more

extensive use of computational tools by synthetic chemists and for closer

integration of green chemistry principles into the routine work of chemical

laboratories. We discuss the scope for using software tools in the laboratory

and assisting synthetic chemists in the adoption of green and sustainable

chemistry approaches that are suitable for their specific purposes.
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1. Introduction

Today, green chemistry is an increasingly innovative and interdisciplinary

research area [1]. One of the main challenges is the evaluation of the green-

ness of chemical processes [2] and setting this in the broader context of life

cycle analysis [3], for which there are a variety of assessment tools. Various

metrics of different types (see Figure 1) are used to quantify the environ-

mental, economic, and health and safety ramifications of chemical processes.

The choice of metrics mostly depends on personal preference or application

context, which means that a universal set of metrics suitable for pharmaceu-

tical companies, manufacturing organisations, or university laboratories does

not currently exist [4]. However, several methods and toolkits are available

for specific user needs [5]. These tools rely on well-known metrics, such as

process mass intensity (PMI), environmental factor (E-factor), yield, etc., to

assess whether a chemical process is efficient and the chemicals involved are

safe or usage of hazardous chemicals is minimised. Furthermore, new metrics

have been introduced, for example, in analytical chemistry: Eco-Scale, GAPI

(green analytical procedure index), AGREE (analytical greenness calculator

metric) [2], or in pharmaceutical chemistry: iGAL (innovation green aspi-

ration level) [6], AMGS (Analytical Method Greenness Score) [7], eco-label

[8].

Another challenge is the development of software tools to help synthetic

chemists assess the sustainability and greenness of chemical synthesis. Some

of this software has a potential to be adopted by chemists in academia and

industry if it can provide real advantage [9]. For example, some electronic

laboratory notebooks (ELNs) do contain a section for green chemistry met-
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rics. However, their visibility may be limited amongst numerous other fea-

tures. Moreover, only a small minority of researchers use ELNs, whereas most

chemists still prefer paper laboratory notebooks [10, 11]. The reasons for not

adopting ELNs include cost, usability, and accessibility issues across different

devices and operating systems [12]. Even if these barriers are overcome and

chemists are able to calculate various green chemistry metrics with the help

of ELNs, this would not guarantee the choice of more sustainable synthetic

routes. Knowledge of those metrics is only the starting point for further anal-

ysis of individual synthetic steps and, more importantly, for decision making

on possible solutions to improve the reaction route or (ideally) to choose the

greenest one. For this purpose, chemists can use retrosynthetic software that

exploits artificial intelligence (AI) along with extensive databases of known

chemical reactions to navigate alternative reaction sequences (Y Lin et al.,

chemrxiv doi: 10.26434/chemrxiv.12765410.v1). Despite the improvement of

machine learning methods in chemistry, these software tools are still largely

in the domain of computational chemists rather than researchers in labo-

ratories [11, 13]. In the following sections, we survey some of the existing

software that could be useful for implementing green chemistry approaches

in a research laboratory.

2. Predictors of green metrics: standalone and within ELNs

In this review, we have separated software for calculating green chemistry

metrics into two types. The first type includes tools that use statistical anal-

ysis or machine learning techniques to estimate green metrics when reaction

data are incomplete or when we need to assess a reaction route. These tools
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require an accessible database of known reaction data [14]. Despite some

initiatives to create an open-access database of organic reactions from the

global research community [15, 16], they are still more limited than commer-

cially available solutions [17]. Aside from the issue of data availability, the

existing predictors of green metrics often focus only on one specific metric.

The American Chemical Society Green Chemistry Institute Pharmaceuti-

cal Roundtable (ACS GCIPR) has developed a web-based toolbox [18] for

predicting a set of the following green metrics for a given synthetic route:

cumulative PMI (cPMI) [19], iGAL [6], AMGS [7], and selection tools dis-

cussed in Section 4. This software calculates a distribution of cPMI for a

given synthetic route using a Monte Carlo procedure to draw samples from

a uniform distribution for stoichiometry ranges, and from a bivariate normal

distribution for PMI and yield. Here, the PMI metric is upgraded to allow

route comparison at the early stage of drug design. The ACS GCIPR toolbox

also includes a reagent selection guide [20], where one can visualise reagents

in a Venn diagram constructed based on the criteria of wide utility, scalabil-

ity and greenness. The ACS GCIPR Biocatalysis Guide [21] shows the most

used biocatalysis transformations, which can inform their consideration in

retrosynthetic analyses.

The second type of software represents tools that calculate green met-

rics directly from input data. This approach is implemented in some ELNs

that include a green chemistry section. Chemotion is an open source ELN

supporting the acquisition, storage and management of chemical data [22].

In addition to standard ELN features of processing molecules and reactions,

there is also an option to calculate mass-based metrics such as E-factor,
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Figure 1: Types of green chemistry metrics with examples: cPMI (cumulative process mass

intensity [19]), cEF (complete environmental factor [6]), EMY (effective mass yield [19]),

EHS (environment, health, and safety [19]), GAPI (green analytical procedure index [2]),

AGREE (analytical greenness calculator metric [2]), iGAL (innovation green aspiration

level [6])
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PMI, and atom economy. Other tools are specifically focused on green met-

ric calculation, e.g., CHEM21 Toolkit [23]. These tools allow one to calculate

metrics for a single reaction; some of them also propose impact base metrics

(e.g., solvent colour codes in CHEM21). CHEM21, for example, is being used

by chemists, with benefit, in the “Accelerated Discovery and Development

of New Medicines: Prosperity Partnership for a Healthier Nation” project

[24]. However, they are difficult to apply to synthetic route assessment or to

reactions with incomplete data.

In summary, current research and development activities are mostly fo-

cused on the the standalone predictors and direct calculators of green metrics

are underrepresented within existing ELNs. This may be for several rea-

sons. First, a lot of reaction data has been accumulated over the last several

decades, requiring new computational techniques to process the data [14].

Second, exploiting these chemical data requires the development of new ma-

chine learning approaches [25]. Finally, the lack of green chemistry sections

in ELNs is explained by low popularity of ELNs in general, as discussed in

the introduction [11]. Future perspectives of this software are discussed in

Section 6. The metrics predictors described in this section are presented in

Table 1.

3. Yield predictors

Reaction yield is a measure that can only be calculated after the com-

pletion of a reaction. In patent data from 1976-2016 (∼1 million unique

reactions), only 53% of all reactions report a yield value either directly in the

patent text or calculated from the reported data [26]. However, the number of
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Tool Description

PMI Predictor

[19]

Calculates Process Mass Intensity (PMI) for a chemical

synthesis route using the sequence of synthetic steps and

step information

https://acsgcipr-predictpmi.shinyapps.io/pmi calculator/

iGAL 2.0

Scorecard

Calculator [6]

Produces the scorecard output for an active pharmaceutical

ingredient (API) using the model of innovative green

aspiration level - iGAL 2.0

https://www.acsgcipr.org/tools-for-innovation-in-chemist

ry/green-chemistry-innovation-scorecard-calculator-igal/

AMGS

Calculator [7]

Calculates an analytical method greenness score (AMGS)

to enable the comparison of separation methods used in

drug development https://www.acsgcipr.org/amgs/

Chemotion [22] Open Source electronic lab notebook for researchers with a

green chemistry tab

https://github.com/ComPlat/chemotion ELN

CHEM21 toolkit

[23]

Unified metrics toolkit evaluating sustainability of

reactions, encompassing a comprehensive and holistic range

of criteria for measuring how green a reaction is, covering

quantitative and qualitative criteria both upstream and

downstream of the reaction itself

Table 1: Green metric predictors and electronic lab notebooks.

reactions with reliable yield data is even less, due to a discrepancy of > 10%

between text-mined and calculated yield values [26]. Thus, yield-predicting
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software can help overcome these challenges and open up new perspectives

in chemical synthesis planning.

In addition to traditional regression-based tools for reaction analysis, new

methods based on a range of machine learning approaches have been intro-

duced [27]. Random forest algorithms using quantum chemistry descriptors

as inputs and reaction yield as output demonstrated better predictive per-

formance than linear regression methods. However, the choice of molecular

descriptors can significantly improve the performance of support vector re-

gression (SVR) models [28]. In particular, the SVR models built on molecular

fingerprints outperformed the models based on quantum chemical descriptors

and on molecular graphs. Deep learning methods based on SMILES input

can predict the yield for various types of reactions with up to 99% accu-

racy without the use of molecular graphs, molecular fingerprints or quantum

chemistry descriptors [29].

Despite these promising results, machine learning tools can fail to predict

patent reaction yields accurately if input data are of low quality. The chal-

lenge is that the reported yields are heterogeneous and inconsistent due to

the large variability of methods of purification and reporting yields and the

different optimisation in each reported reaction [30]. The yield predictors

described in this section are collected in Table 2.

4. Solvent selection

In addition to software that predicts mass-based metrics, there are also

some tools assessing the environmental impact of chemical reactions and

compounds. These tools can help in selecting more sustainable reaction
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Tool Description

rxnpredict [27] Predicts yield of a palladium-catalyzed Buchwald-Hartwig

cross-coupling of aryl halides with 4-methylaniline in

the presence of various potentially inhibitory additives

using random forest algorithms with quantum chemical

descriptors https://github.com/doylelab/rxnpredict

yield prediction

[28]

Predicts yield of Buchwald-Hartwig amination reactions

using support vector regression with structure-based

descriptors

https://github.com/alexehaywood/yield prediction

rxn yield [29] Predict yield applying natural language processing

architectures to reaction SMILES representation, using an

encoder transformer model combined with a regression

layer https://rxn4chemistry.github.io/rxn yields/

Table 2: Reaction yield prediction software.

conditions or greener reagents [21]. Solvents represent at least half of the

material mass used in chemical industry. Hence, solvent selection tools can

assist in reducing the overall environmental impact of active pharmaceutical

ingredients, for example [31]. Quite a few solvent selection methods have been

developed and some of them are integrated in software tools [31, 32, 33].

The common principle of the existing software is based on classifica-

tion of and search for greener alternatives in solvent space [34]. For exam-

ple, the Sustainable Solvents Selection and Substitution Software (SUSSOL)

uses a neural network (Self-organizing Map of Kohonen) to cluster a solvent
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database based on the physical properties of the solvents [35]. A green-solvent

selection tool developed for printed electronics organizes a large set of sol-

vents according to their Hansen solubility parameters (the dispersion, polar,

and hydrogen-bonding energies), ink properties, and sustainability descrip-

tors [36]. This software also introduces a composite score value G - a new

metric involving scores of health, safety, environment, and waste disposal

categories from the GSK solvent selection guide [31]. The existing solvent

selectors rely on the experimentally established greenness of solvents (as im-

plemented in CHEM21 [31] or ACS GCIPR Solvent Tool [37]). If a solvent

is novel, then we have no tool to categorize it as green or otherwise. The

same is related to reaction conditions in general. Even though existing soft-

ware can predict reaction conditions [5], they do not provide an assessment

of greenness. The solvent selection tools from this section are summarized in

Table 3.

5. Retrosynthetic analysis

Retrosynthesis is challenging due to the enormous search space. At least

107 reactions are contained in commercially available data sets (C Yan et

al., arXiv doi: 2011.02893). Therefore, computer-aided synthesis planning

(CASP) can suggest synthetic routes to a desired product from available

chemicals through retrosynthesis [38, 39]. The development of software im-

plementing retrosynthetic analysis is of significant interest, but there is a gap

between the computationally generated fragments and available reagents. To

bridge this gap, one can use software like RetroXpert (C Yan et al., arXiv doi:

2011.02893) or SynthI [40] that generates synthons associated with actual
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Tool Description

SUSSOL [35] Processes solvents by a neural network, the Self-organizing

Map of Kohonen, which results in a 2D map of clusters

https://github.com/SUSSOLKDG/Sussol

Green Solvent

Selection Tool

[36]

Organizes a large set of solvents according to their Hansen

solubility parameters, ink properties, and sustainability

descriptors, and suggests green alternative solvents with

similar dissolution capacity as the current non-sustainable

solvent http://www.opeg-umu.se/green-solvent-tool

CHEM21 solvent

selection guide

[31]

Ranks solvents using a set of Safety, Health and

Environment criteria is proposed, aligned with the Global

Harmonized System (GHS) and European regulations

ACS GCIPR

Solvent Tool [37]

An interactive tool based on consideration of chemical

functionality, physical properties, regulatory concerns, and

safety/health/environmental (SHE) impact

https://www.acsgcipr.org/tools-for-innovation-in-chemist

ry/solvent-tool/

Table 3: Solvent selectors.

fragments or equivalent reactants. Another example is the approach of Lin

et al. [41], where an attention-based machine translation model Molecular

Transformer [42] is used to build retrosynthetic routes for 12 investigational

COVID-19 therapeutics. A different algorithm underpins the AiZynthFinder

software which is based on Monte Carlo tree search (MCTS) guided by an ar-

tificial neural network to suggest purchasable precursors for a target molecule
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[43]. This software and other similar tools (ASKCOS [44], LillyMol [44] etc.)

do not provide holistic green chemistry analysis [45]. Only in the work of

Christensen et al. [45] is each reaction in the routes proposed by MCTS eval-

uated by the “greenness” of neural network predicted solvents [46]. Table 4

contains the retrosynthetic software discussed here.

6. Future perspectives

As emphasized in Section 2 above, one of the key challenges in software

development for green chemistry is the availability of reaction data. More

broadly, a significant barrier to the development and application of tools is

that much chemical information is not machine readable or curated in a us-

able form. Initiatives to create a global open-access reaction database can

enable the development of new green chemistry tools and liberate researchers

from commercially curated data. Open software, in turn, will enable chemists

in research laboratories to incorporate green chemistry methods for planning

and analysing their experiments. There may no single metric or single tool

that is enough for a complete assessment of greenness or sustainability. Nev-

ertheless, integrating green metric predictors and solvent selectors into ELNs

can also make digital tools more attractive for experimental chemists. How-

ever, the limitations of integrated metrics in this software should be taken

into account to avoid biased decision making. For example, a synthetic route

may seem satisfactory according to the metrics from a certain software, but

this route may have toxic intermediate products not detected by the soft-

ware. Therefore, it is chemists who should make an informed interpretation

of metrics to plan chemical synthesis. There are many tools to help with tox-
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Tool Description

RetroXpert

(C Yan et al.,

arXiv doi:

2011.02893)

Identifies the potential reaction centre of the target

molecule through a graph neural network, generates

intermediate synthons and the reactants associated with

synthons https://github.com/uta-smile/RetroXpert

SynthI [40] Merges the space of the retrosynthetically generated

fragments and the pool of available reagents into a single

synthons space

https://github.com/Laboratoire-de-Chemoinformatique/

SynthI

covidroutes [41] Presents predicted retrosynthetic routes to 12 diverse

COVID-19 therapeutic candidates

http://covidroutes.cernaklab.com/

AiZynthFinder

[43]

Uses a Monte Carlo tree search guided by an artificial

neural network to recursively break down a molecule to

purchasable precursors

http://www.github.com/MolecularAI/aizynthfinder

ASKCOS [44] Predicts feasible synthetic routes towards a desired

compound and associated tasks related to synthesis

planning https://github.com/ASKCOS/ASKCOS

LillyMol [44] Uses reaction transformation rules learned from a large

patent reaction dataset

https://github.com/EliLillyCo/LillyMol

Table 4: Retrosynthetic software.
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icity and environmental fate prediction, some of which have been reviewed

recently [47, 48]. In general, automation of chemical experiments provides

new perspectives on integration of computer science, machine vision, an-

alytical software, and robotics [45]. Proprietary data present a particular

challenge. Recent work [49] has considered federated privacy-preserving ma-

chine learning methods in drug design with an appropriate split of chemical

data between training, validation and test set as a means of circumventing

difficulties in working with commercially sensitive data. On the other hand,

usage of social media for the exchange of open chemical data and integration

with chemistry software tools [50] may be an enabling step towards new qual-

ity of research across the globe, especially if online communication continues

to prevail over face-to-face meetings.
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A. Brown, A. M. Mason, T. Gärtner, J. D. Hirst, Kernel methods for

19

https://doi.org/10.1186/s13321-017-0240-0
https://doi.org/10.1039/C5GC00340G
https://doi.org/10.1039/C5GC00340G
https://doi.org/10.1021/acssuschemeng.1c06526
https://doi.org/10.1038/s41570-019-0124-0
https://doi.org/10.1038/s41570-019-0124-0
https://doi.org/10.1126/science.aar5169


predicting yields of chemical reactions, J Chem Inf Model (2022 (in

press)). doi:10.1021/acs.jcim.1c00699.

[29] S. Jiang, Z. Zhang, H. Zhao, J. Li, Y. Yang, B.-L. Lu, N. Xia, When

SMILES smiles, practicality judgment and yield prediction of chemical

reaction via deep chemical language processing, IEEE Access 9 (2021)

85071–85083. doi:10.1109/ACCESS.2021.3083838.

[30] P. Schwaller, A. C. Vaucher, T. Laino, J.-L. Reymond, Prediction of

chemical reaction yields using deep learning, Mach. Learn.: Sci. Technol.

2 (2021) 015016. doi:10.1088/2632-2153/abc81d.

[31] D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-

Shehada, P. J. Dunn, Chem21 selection guide of classical- and less

classical-solvents, Green Chem. 18 (2016) 288–296. doi:10.1039/C5

GC01008J.
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