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Abstract A computational method is described for
the generation of virtual air pores with randomized fea-
tures in granular materials. The method is based on the
creation of a stack of two dimensional stochastically
generated domains of packed virtual aggregate parti-
cles that are converted to three dimensions and made
to intersected with one another. The three dimensional
structure that is created is then sampled with an al-
gorithm that detects the void space left between the
intersected particles, which corresponds to the air void
volume in real materials. This allows the generation of
a map of the previously generated three dimensional
model that can be used to analyse the topology of the
void channels. The isotropy of the samples is here dis-
cussed and analysed. The air void size distribution in all
the virtual samples generated in this study is described
with the Weibull distribution and the goodness of fit
is successfully evaluated with the Kolmogorov-Smirnov
test. The specific surface of the virtual samples is also
successfully compared to that of real samples.
The results show that a stochastic approach to the gen-
eration of virtual granular materials based only on ge-
ometric principles is feasible and provides realistic re-
sults.

Keywords granular material · air void content ·
packing · porosity · asphalt

1 Introduction

The study of porosity in granular materials is impor-
tant to understand the behaviour of a number of physi-
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cal properties, e.g. Young’s modulus [23], strength [23],
noisiness [30], and infiltration rate [10]. In addition to
these, in the field of civil engineering, porosity is related
to other properties, such as the durability of pavements
[20] or their resistance to rutting, fatigue cracking, and
low temperature cracking [17]. Therefore, it is necessary
to take porosity into account when designing granular
materials for various applications.
The study of porosity, however, is usually pursued by
performing X-ray CT scans of the specimens under anal-
ysis [12], which is an expensive and time consuming
process. Due to their cost, X-ray CT scanners are not
accessible to all, thus, computational methods were de-
veloped to reproduce the internal structure of materi-
als. The models available in the current literature take
a variety of approaches and range from the use of the
discrete elements method (DEM) to analyse the par-
ticles in a granular material [4] [9] to the use of the
percolation method to describe the void space [24] [11].
Moreover, in [5] the authors show that three dimen-
sional particulate models obtained with DEM can be
further elaborated to perform an analysis of the void
space, too. The current models describing porous media
are all based on advanced theoretical principles, there-
fore, their implementation is complex, unless commer-
cial software is used [21] or the researchers are expert
in mathematical modelling.
In [6] a new model based on geometry only is described
and analysed by the present authors. The method was
developed in order to allow a theoretically-based and
simple way to generate granular material virtual repre-
sentations. In [6], the authors proved that the method
provides realistic results, however, a further investiga-
tion on the features of the void space is necessary, mainly
because the 3D model generated previously only pro-
vided a proof of concept and was obtained through a
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manual trial and error method.
In this paper, we describe the automation of the math-
ematical method presented in [6] and analyse the void
patterns that it generates, providing topological infor-
mation on the virtual samples that are created in terms
of isotropy and coordination number. In addition, the
void size distribution of the virtual porous media is
analysed.
The main aim of this paper is providing a first valida-
tion of this newly developed model for the generation of
air pores in granular materials by comparing the virtual
air voids to the air voids found in real samples.

2 Generation of 3D virtual granular materials

2.1 Packing of virtual granular elements in a 2D
domain

In [6] a method to generate virtual asphalt samples is
described. The method starts with the generation of
2D planes of virtual particles based on the biological
mechanism of contact inhibition and can be addressed
as a packing algorithm. A number of virtual particles
(circles or ellipses) are seeded in random points in an
arbitrary subset of R2 and grown until they reach a
fixed maximum radius, reach the border of the domain,
or touch another particle. Therefore, if we assume that
at any point of the analysis all particles respect the just
mentioned criteria and they all are circles, the condi-
tions for the growth are:


ri +∆r < rmax

Cri+∆r ⊂ A
d(ci, cj 6=i) ≥ ri +∆r + rj 6=i

(1)

where ri is the radius of the ith particle, ∆r is the fixed
radius increase, rmax is the maximum permitted par-
ticle radius,Cri+∆r is the set of points defining each
circumference after the radius increase, A ⊂ R2 is the
arbitrary domain of interest, and d is the Euclidean
distance (2D) between the centre of particle i from the
centres of all other particles. The role of the domain A
is further discussed in Section 5.1. A set of conditions
similar to relation 1 can be developed in the case of
ellipses, too. For further details on the packing method
for ellipses, see [6].
The randomization of the coordinates of the centres of
the particles in the selected portion of the xy plane (set
A in relation 1) is performed with a random number
generator using the standard uniform distribution [6].
This distribution is described by the following proba-

bility density function:

f(x) =
{

1
b−a for a ≤ x ≤ b
0 for x < a or x > b

(2)

where a = 0 and b = 1. It is important to mention that
the centres of growth in our method form a simple bi-
nomial point process in the compact set M = [a, b]2 [7].
The property of simplicity refers to the fact that with
probability 1 no points of the process may coincide [3].
In addition, since the shape chosen for the generation
of 2D sections in this study is a circle in the plane xy,
rejection sampling is applied [7]: a sequence of n inde-
pendent uniform random points is generated in M until
a point falls in the set W ⊂M and defined by the equa-
tion (x − cx)2 + (y − cy)2 = r2, where cx = cy = b/2
and r = 0.5. This operation is then repeated until a
satisfactory (user-defined) number of centres of growth
is reached. Furthermore, scale changes are applied to
the centres in order to reach the desired diameter for
the virtual cross sections. The shape of the subset W
was set as a circle (Fig. 1) in order to allow a compar-
ison with X-ray CT scans of commonly used asphalt
samples. In the case of a rectangular domain, the set
W would be defined as W ⊆M .
Even if the centres are seeded according to a uniform
distribution, the radii of the particles composing the
domains generated with our method do not show the
same behaviour. In fact, the presence of a minimum and
a maximum radius for the growth of the particles acts
as a limiting factor, causing the radii of the circles to
have the shape of a Weibull distribution (not shown).

Fig. 1 Sample domain generated with the algorithm described
in [6].
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2.2 Comparison of the growth mechanism with other
models

The model of growth introduced in [6] and used in this
paper belongs to the field of stochastic geometry, there-
fore, it is relevant to compare it to similar mathematical
methods mentioned in the scientific literature.
The conditions for growth defined in relation 1 and
used in [6] follow the so-called touch-and-stop model
of growth [2], which can be defined as a pattern forma-
tion process intermediate between the random sequen-
tial absorption (RSA) model [2] [7] and the Johnson-
Mehl-Avrami-Kolmogorov (JMAK) model [2]. In fact,
in the touch-and-stop model of growth, the particles
are characterised by shape persistence (as in the RSA
model), but not by size persistence (as in the JMAK
model) [2].
In addition, the model introduced in [6] adds a new
feature to the touch-and-stop model, as it allows new
centres of growth to be seeded once all particles have
stopped growing. This is done in order to obtain a lower
planar void area, as it was found to be necessary for the
generation of realistic representations of granular ma-
terials [6].
It is worth mentioning another similar growth mecha-
nism called the lilypond model, which is characterised
by hard grains growing radially with a constant speed
[7] [16] . This method, is based on a single finite set
of starting points in a subset of R2 or R3, thus it does
not involve multiple generations of growth as it is done
in [6]. In addition, the lilypond model possesses the
smaller grain-neighbour property [7] [16] , which states
that every grain has to touch at least one other grain
that has a smaller or equal radius. In the model de-
scribed in [6], this feature cannot be reproduced, be-
cause the algorithm developed aims at reaching a spe-
cific planar air void content while respecting the condi-
tions described in relation 1. This aspect can be seen in
Fig. 1 and it happens because the execution of the algo-
rithm stops when a chosen planar void area is reached,
even if some of the seeded centres have not yet touched
any other neighbouring particle. Another reason for this
phenomenon is the fact that boundaries are imposed
for the growth of particles, thus, if any of the points
defining a particle touches an edge of the domain, its
growth is stopped, even if the grain is still isolated. This
concept is clearly defined by the second condition in re-
lation 1.

As an example of DEM model, the Void Expansion
Method (VEM) can be mentioned [21]. The VEM fol-
lows a growth principle similar to the ones in [2], [6], and
in the lilypond model, as a number of particles called
structural particles are cyclically grown in 3 dimensions

in combination with void particles. The difference, how-
ever, lies in the fact that after each step of growth an
equilibration of the assembly of particles is executed by
the means of chosen physical principles, e.g. a linear
elastic contact law between the particles and damping
[21].

The main reason that led to the development of the
method introduced in [6] and analysed in this paper is
the intrinsic complexity of the existing methods, which
arises from the fact that they are based either on com-
plex mathematical formulations or on the implemen-
tation of physical laws that rule the interaction of the
particles in the computer models.

2.3 Combination of 2D packed planes to obtain 3D
virtual air pores

Each 2D domain created as explained can be converted
to 3D, i.e. circular particles can be converted into spheres,
and ellipses into ellipsoids, each with its centre at the
same place as the original circle or ellipse.
The aim of the procedure is, however, not to produce a
layer of randomly distributed spheres or ellipsoids, but
to produce a thicker virtual representation of a granular
material. Therefore, multiple such layers of spheres (or,
in principle, of ellipsoids) can be stacked on one another
at fixed spacing in order to obtain a structure resem-
bling that of a granular material. The z coordinate of
each xy plane containing the centres of the virtual par-
ticles, k, is set in the automation of the stacking process
as:

ki+1 = ki + hmaxi · (1− µ) (3)

where hmaxi is the radius of the largest sphere in the ith
plane and the value of µ has to be found based on the
properties of the material that needs to be generated.
In the case of asphalt, the value of µ was set as 0.8 and
it was found with an optimisation algorithm whose ob-
jective was to generate a realistic structure for the void
space in terms of voids size and isotropy. The result
of the stacking process is that many particles belong-
ing to the different planes are intersected and between
them a portion of empty space is left. The stacking pro-
cess described so far is a pragmatic method to obtain
realistic representations of the air voids in granular ma-
terials using only geometric principles. Therefore, it is
not meant to represent any of the natural phenomena
behind the actual manufacture of such materials, e.g.,
friction or contact forces. The validity of the approach
is discussed in the next sections and its use is motivated
only by its effectiveness.
In this paper, we consider asphalt as a granular mate-
rial in order to perform a comparison with real samples.
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The size of the particles and of the planes, however, can
be adapted (reduced or increased) to represent different
granular structures.
The use of spheres to describe asphalt may seem to
be unrealistic, as the aggregate composing the mate-
rial almost never has such a regular shape. The forced
overlapping of the spheres, however, means that the in-
tersected particles become part of the portion of space
representing matter in the virtual asphalt mixture and,
consequently, the solid fraction is a highly non-spherical
agglomeration with a surface comprised of multiple spher-
ical caps. In this paper, the aggregate is not analysed,
as only the void space is studied. However, the intersec-
tion of spheres or ellipsoids belonging to different planes
is meant to generate a solid structure that resembles a
packing of real stones.
It is relevant to add that from the point of view of
stochastic geometry it is possible to consider the result
of the process just explained as a germ-grain or Boolean
model Ξ [18] defined as:

Ξ =
∞⋃
n=1

(Ξn + xn) (4)

where Ξn are the compact subsets of R3 defined by
the spheres (or ellipsoids) of radii rn obtained following
the growth mechanism described in subsection 2.1 and
xn are their centres [7]. For a deeper discussion of this
aspect, see [7], [18], [19], and [22].
For convenience, the method described so far will be
referred to as the Intersected Stacked Air voids method
or ISA method.

3 Locating the void space

In the approach explained in Section 2, the intersected
particles cannot be considered singularly as stones (as
done in DEM models [4] [9]), because their original
shape is lost, but their surrounding void space may be
more representative.
For this reason, an algorithm was developed to locate
the void space inside a virtual granular material sam-
ple. The void location algorithm starts by generating
a set of points that covers the whole volume occupied
by the virtual sample. These points are compared with
the particles associated to matter in the virtual sample
and converted into a 3D boolean matrix that has zeros
in the void space and ones in the matter space. The
sampling process allows the generation of a 3D map of
the void space, as seen in Fig. 2 with a much exagger-
ated vertical scale. In Fig. 2, the distance between the
sampling planes on the z axis is 0.4 mm, i.e. the same
distance used to obtain the X-ray CT scans used in this

paper.
The sampling grid that is used shows numerically what
could be deduced by visual inspection of the surface
mesh mentioned above, i.e. that the very first and last
layers of the virtual material need to be discarded from
the analysis, because they contain particles that are
“floating” below or above the solid matter due to the
mechanism of the algorithm.
In order to show the effectiveness of the sampling method
used combined with the algorithm described in [6], a
comparison between the CT scan of a real sample and
a slice of a virtual sample is shown in Fig. 3. A simple
visual inspection of the real and the virtual CT scans
shows a high degree of similarity in the shape and size
of the void areas in both images (black areas in Fig. 3).
In addition, the void patterns in the virtual slice look
compatible with the ones seen in the real slice. The vi-
sual inspection, however, must be followed by the more
strict analysis done in the next sections.

Fig. 2 Sample layers obtained with the sampling algorithm
(porous space is black, 0.4 mm vertical spacing).

3.1 Grid spacing in the sampling matrix

The distance between the points in the grid imposed on
the 3D virtual model can be changed and a parametric
analysis can be performed. The grid spacing, ε, was
analysed for the values

0.4% ·Ddomain < ε < 1.3% ·Ddomain (5)

where Ddomain is the diameter of the 2D domains used
for the generation of the 3D model (Ddomain = 10 cm
in this paper). The lower boundary for ε was found
as the limiting value that could be used on a normal
office computer with a computational time lower than
45 minutes.
The analysis performed for a virtual sample with air
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(a) Real sample, 20% air void content,
100 mm diameter.

(b) Virtual sample, 21% air void content,
100 mm diameter.

Fig. 3 Comparison between a real and a virtual CT scans
(porous space is black).

void content equal to about 9% is shown in Fig. 4. The
data represented in Fig. 4 shows that a small difference
exists between the planar air void contents evaluated
with a variation of the grid spacing. In particular, for
the curves shown in Fig. 4 an average air void content
of 8.75% with standard deviation of 0.52% was found.
Therefore, it is possible to state that the result of the
sampling algorithm is grid independent, thus, the code
can be run according to the specific needs of the user.
In fact, if a very detailed grid is needed the user can
choose a small value of ε, while if a lower number of
points is sufficient ε can be set to a higher value. The
use of a dense grid also allows a more precise analysis of
the generated 3D domain, as some portions of the void
space may be too small to be effectively located with a
high spacing between the sampling points.
Generally speaking, in the case of a circular domain the
number of sampling points in the x and y directions can

be found as

nx = ny = Dsample/ε− 1 (6)

The number of sampling planes in the z direction, nz,
is also a function of the value of ε and it depends on
the thickness of the virtual sample.
Finally, it is relevant to notice that the set of points de-
scribing the air void content from Fig. 4 is in the shape
of a so-called “bathtub” curve [17]. This behaviour is
a first validation of our approach, since it was found
in both real and virtual samples of granular materials
used in civil engineering [5] [17] [26] [27].

Fig. 4 Parametric analysis of the grid spacing (8.75% air void
content).

4 Topology of the void space

The sampling matrix used to discern the void space
from the matter in the virtual models is a cubic lattice.
Therefore, each point that is not on a border of the lat-
tice will be connected to 26 other points [28]. The num-
ber of connections of each point in the porous space
to other neighbouring points belonging to the porous
space is called the void coordination number, Cn [24].
As reported in [28], even if the maximum void coordi-
nation number is 26, real porous media have a much
lower value of Cn. For example, in [24], average values
of Cn between 2.90 and 10.64 are reported and success-
fully compared to real values from the literature.
The study of the coordination number is of interest
in this study, because it determines how neighbouring
points belonging to the pore space are connected to one
another. The behaviour of the void coordination num-
ber for a dense and a porous samples generated with
the ISA method and sampled as described in Section 3
is shown in Fig. 5. For comparison purposes, the coor-
dination number of real samples is also shown if Fig. 5.
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The data shown is satisfactory, as in the virtual dense
sample (9% air void content) most particles have a low
Cn, while in the virtual porous sample (25% air void
content) many particles have higher values of the void
coordination number. In addition, the analysis of Fig. 5
clearly shows that the virtual materials have a realistic
coordination number when compared to real samples.
The data gathered in Fig. 5 also shows the variability of
the results obtained from different simulations. In par-
ticular, 15 virtual models with 9% air void content and
15 virtual models with 25% air void content were gen-
erated and the markers in Fig. 5 represent the average
values obtained for each coordination number.
In order to show the general validity of the ISA method
the number of points in the void space with a given co-
ordination is normalised, thus, allowing the comparison
between arbitrarily thick samples. The normalisation is
also necessary because the CT scanned samples come
with a given resolution that is determined by the cho-
sen equipment, thus, it is usually not possible to match
exactly the number of pixels in the real samples in the
virtual models that are generated: this mismatch would
lead to curves that look different because the number of
points under analysis is different. The normalisation is
achieved by dividing the number of points with a given
coordination number by the total number of points be-
longing to the void space. Let us specify that to achieve
a successful comparison it is necessary to use a small
value of ε, which allows a very good resolution in the
virtual slices seen e.g. in Fig. 2. In fact, while for the
calculation of the air void content the resolution is not
a concern, it is when considering more complex prop-
erties of the material. As a rule of thumb, values of ε
equal to about 0.5% of the longest side of the domain
were found to be effective.
In addition, it is worth mentioning that if the coordina-
tion number of the void points is computed for selected
slices inside the material on the z axis it will have a
very low variance (not shown).
Finally, it should be noted that the void coordination
number may show some degree of variability, due to the
fact that the virtual and real specimens never show the
exact same characteristics and to the techniques needed
to threshold the CT scans to isolate the void space.
Additional data concerning the void coordination num-
ber of the void space in the virtual samples built for
the present study are shown in Table 1. The compari-
son between the values of the average void coordination
number, 〈Cn〉, with those from [24] shows that the void
coordination numbers obtained with the ISA method
are realistic and similar to the results obtained in other
studies. Since the present work mostly concerns the gen-
eration of void channels, a successful comparison of the

Table 1 Average void coordination number for the generated
virtual samples, 〈Cn〉.

Nvoid points Air void content [%] 〈Cn〉 〈Cn〉 from [24]
33865 9.2 1.62 –
40516 11.2 1.91 –
53282 15.3 2.47 –
72937 22.2 3.37 2.9-3.36
124941 45.2 5.82 5.14-7.31

Table 2 Normalised number of connections, δ (directions from
Fig. 2).

Air void content [%] δx δy δz

9.2 0.5937 0.5956 0.5788
11.2 0.6157 0.6149 0.5997
15.3 0.6863 0.6858 0.6714
22.2 0.7308 0.7298 0.7152
45.2 0.7901 0.7892 0.7790

void coordination number is a good sign that the model
is able to produce realistic results. This measure, how-
ever, does not provide information on the pore network
as a whole, as it considers points with maximum dis-
tance of

√
3 ε due to the choice of the cubic lattice. For

this reason, further characterisation methods are shown
in section 5.

Fig. 5 Void coordination number vs. Normalised number of
points with a given coordination number.

5 Analysis and comparison with real asphalt
samples

The results of the model developed are now compared
with real asphalt samples. To begin with, it is rele-
vant to notice that the virtual samples generated for
the present study show a realistic behaviour in terms
of internal structure. In fact, not only the average air
void content in the samples follows a “bathtub” shaped
curve as seen in Subsection 3.1, but also the air void
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content in the radial direction shows the expected be-
haviour. In fact, as shown in Fig 6, the air void content
in the centre has a value that is very similar to the
average air void content of the whole sample, while it
increases significantly approaching the border of the do-
main, as it was also observed in previous studies of real
and virtual samples [27] [5].

Fig. 6 Sampling planes in a typical cross section (a) and ex-
ample of radial air void content in different sampling planes
(b).

5.1 Isotropy in the virtual samples

In the previous studies using virtual granular materials
[24] [11], isotropic media were considered. Since our aim
was to compare the virtual samples to asphalt samples,
we developed an anisotropic 3D model. In fact, asphalt
is isotropic on the xy plane, but anisotropic if the x

or y directions are compared to the z direction (i.e. it
is a cross-anisotropic material), as shown from studies
on its hydraulic conductivity [14] or mechanical testing
[13].
The number of connections between points of the sam-
pling matrix in the void space, δ, can be calculated
for all the virtual domains generated. The number of
connections in each direction was divided by the total
number of points in the void space in order to obtain a
normalised value. This was done as in the 3D Boolean
matrix generated in the analysis of the void space the
number of sampling points in the z direction is gener-
ally different from the number of points in the x and
y directions. A normalisation of the number of connec-
tions is interesting also because it provides a measure
of the global connectivity of the porous space [24] This
measure will generally depend on the chosen grid spac-
ing ε, however consistent comparisons can be performed

if the value of ε is fixed.
Based on the parameter δ, the isotropy of the virtual
domains can be assessed. A simple comparison of the re-
sults gathered in Table 2 shows that between δx and δy
the relative difference is lower than 0.3%, while the rel-
ative differences with δz are up to almost 2.8%. There-
fore, anisotropy on the z axis only is shown in all the
virtual samples.
The analysis of the data generated for this paper strongly
suggests that by purposely changing the value of µ
(Eq. 3) the isotropy of the virtual materials can be con-
trolled and adapted to the specific needs of the investi-
gation. Future research should investigate the effect of
the variation of µ on the properties of the 3D models
that are generated.
If the model does not need to show anisotropy in the z
direction, a different approach can be used. The three
dimensional model could be generated directly rather
than by stacking planes of extruded particles by follow-
ing a procedure similar to the one described in Section
2.

5.2 Statistical analysis of the size of the air voids

In order to analyse the size of the air voids two ap-
proaches can be followed: the first one is the use of the
maximal ball (MB) algorithm mentioned in [24] and in-
volves the growth of particles in the void space in order
to estimate their maximum size and their coordination
number, while the second one consists in the actual re-
construction of the void channels. Since our aim was
the generation of void patterns in porous media and we
already determined the coordination number, we used
the second approach. An example of the result of the re-
construction of the void channels can be seen in Fig. 7,
where the void space in a virtual sample is shown (a re-
gion of interest was selected for clarity). In Fig. 7, void
channels connect the top of the sample to the bottom,
while in cases with lower values of air void content the
reconstruction only consists of a number of unconnected
air voids of various sizes in the domain (not shown).

Fig. 7 Reconstructed air void channels in a virtual sample.
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Moving from the sampling matrix described in Sec-
tion 3 to an actual reconstruction of the void space
allows a clear comparison with real samples.
We define the void volume, Vvoid, as the volume in vox-
els of each portion of void space that can be considered
as a single entity. In particular, two neighbouring por-
tions of space (subsets of R3) are considered connected
only if they share at least a face.
Since the samples have different values of air void con-
tent, and, therefore, different void sizes, we compared
their voids based on a dimensionless parameter defined
as:
λvoid = Vvoid/Vmax (7)
where Vmax is the volume of the largest void in each
sample. After evaluating the volume of the voids and
the variable λ for the reconstructed models, we were
able to establish that the relative void size in all our
samples can be described with a Weibull distribution,
as shown in Fig. 8 (sample with 9.2% air void content).

Fig. 8 Weibull Probability Plot.

In fact, the approximately linear behaviour of the
data shown in Fig. 8 suggests that a Weibull distribu-
tion could be used to fit the empirical values. If the
same data used in Fig. 8 were to be used in their un-
normalised form, they would still show the same ap-
proximately linear behaviour in the Weibull plot, since
the normalisation was introduced only to visualise di-
mensionless results.
In [17], the authors analysed the X-Ray CT scans of
real asphalt samples and showed that in this material
the void size distribution can be described with the a
Weibull model. Therefore, recalling the notation used
in [17], the two-parameters Weibull distribution (prob-
ability density function, PDF) used to fit our data is in
the form:

f(λ) = β

θ

(
λ

θ

)β−1
e−(λ/θ)β λ > 0 (8)

Table 3 ML estimates of the parameters for the Weibull model
(Eq.8).

Air void content [%] β θ
9.2 0.6186 0.0669
11.2 0.6501 0.0708
15.3 0.6437 0.0778
22.2 0.6889 0.0592
45.2 0.7614 0.0776

where λ is the data to fit, β is a shape parameter, and θ
is a scale parameter. The corresponding cumulative dis-
tribution function (CDF), shown in Fig. 9 for a virtual
and two real samples, can be written as:

F (λ) = 1− e−(λ/θ)β λ > 0 (9)

Fig. 9 Cumulative Distribution Function.

The maximum likelihood (ML) estimates of β in
Table 3 are similar (slightly lower) to those reported
in [17], but the value of θ cannot be compared, as the
curves fit different kinds of data. However, a similar
shape parameter β implies that the curves have overall
similar shapes, thus, the comparison is acceptable.

In fact, for our model the actual size of the voids
(which is described by θ in the Weibull equation) is not
of great importance, since the virtual samples can be
very easily scaled and adapted, while the ratio λvoid
is very significant and actually determines the realism
of the computational reconstruction of the void space.
In other studies such as [24] different probability den-
sity functions were used to fit the air void size distri-
bution, however, that was done because different kinds
of materials were analysed (e.g. isotropic rather that
anisotropic).
The goodness of fit of the Weibull distribution for the
computed data was evaluated with the Kolmogorov-
Smirnov (KS) test [8] at a 5% significance level (0.05).
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The KS test accepts the null hypothesis that our empir-
ical results come from the respective Weibull interpo-
lating curves, obtaining p-values between 0.14 and 0.63
(>>0.05).
Because the meshed pore space is described digitally it
has the potential to be readily converted to a mesh for
finite element or finite difference modelling, e.g. for the
computational analysis of fluid flow through the pore
space. As an example, Fig. 10 shows a virtual repro-
duction of the operation called asphalt coring obtained
using the ISA method. A visual inspection suggests
that the virtual model looks realistic, even if the sin-
gle stones are not represented. It should be noted that
what Fig. 10 shows is not the void volume as seen in
the other figures in this paper, but the portion of space
associated to matter in the 3D model. This was done
to show that further developments of the ISA method
will lead to the study of a porous material as a whole,
thus, also taking into consideration the aggregates that
are here neglected.

Fig. 10 Virtual reproduction of asphalt coring (100 mm diam-
eter).

5.3 Analysis of the specific surface area of the
reconstructed virtual samples

From the point of view of stochastic geometry, it is pos-
sible to analyse a subset W ⊂ R3 of a random model Ξ
(see subsection 2.3) to define its basic characteristics,
e.g. the volume density, VV , and the specific surface,
SV . The subscript V is used to indicate that the analy-
sis is based on a chosen sampling window corresponding
to the subset W and with volume V (W ). As reported
in [18], the volume of the portion of Ξ lying in the ob-
servation window W is a random variable with expec-

tation EV (Ξ ∩W ) = VV V (W ), where V (Ξ ∩W ) is the
volume of Ξ restricted to the chosen observation win-
dow. In a similar way, the specific surface (or surface
density) can be defined as the density of the random
surface measure [18]. In particular, if S(Ξ ∩W ) is the
surface area of Ξ restricted to W it is possible to write
that ES(Ξ ∩W ) = SV V (W ).
In this paper, the analysis is focused on the porous
space, therefore, these properties are evaluated for the
air voids. In particular, when the observation window
W is the whole sample the volume fraction is dimen-
sionless and represents the air void content of the vir-
tual or real specimen. The calculation of the specific
surface area is also based on the air voids and can be
performed either by using 3D models directly or by us-
ing mathematical methods such as those explained in
[18]. Since the aim of this study is to provide a first
validation of the ISA method, the value of SV is here
calculated by elaborating a number of 3D virtual mod-
els as this is theoretically simpler. For the analysis of
the aspects described above, five 3D models for five ran-
dom air void contents in the interval from 5% to 30%
were generated in order not to influence the compari-
son. The values shown in the figures described below
represent the average of the results obtained for each
value of air void content.
The results of the calculation of the specific surface area
are gathered in Fig. 11, where it is shown that the vir-
tual and real samples lie close to one another and have
a linear behaviour (the observation window is the cylin-
der corresponding to the whole sample). The reliability
of this calculation, however, is limited to the X-ray CT
scans of the real samples available to the authors, thus,
further investigations should be performed to check how
well this method is able to reproduce different kinds of
asphalt mixtures.
In the field of construction materials, a slightly different
method is generally used to describe the properties of
air voids systems, as the void surface area, S(Ξ∩W ), is
divided by the total air volume, V (Ξ), rather than by
the volume of the observation window W [1] [15]. For
completeness this parameter was also calculated and
shown in Fig. 12. The comparison between Fig. 11 and
Fig. 12 shows that the virtual models have realistic fea-
tures when compared to the real asphalt samples used
in this study.
The data shown in Fig. 11 and Fig. 12 allows a fur-
ther discussion of the behaviour of air voids in granular
materials. In fact, it can be observed that the surface
of the voids increases with the air voids content when
compared to the total volume, however, when this pa-
rameter is compared to the volume of the voids it shows
a decreasing trend. This decreasing trend is not caused



10 A. Chiarelli et al.

by decreasing values of the surface or the volume of the
voids, but it is the result of two reasons: a) large objects
(in this case, voids) always have smaller specific surface
areas (meant as the ratio between area and volume of
voids) due to the reduced number of objects in a certain
volume, and b) larger voids are more interconnected so
there are less surfaces in such voids. Generally speaking,
it can be observed that high values of specific surface
area defined as in Fig. 12 correspond to fine air void
systems [1] [15].
Finally, it is relevant to add that the specific surface is
not able to describe the size distribution of the air voids,
i.e. it cannot describe the number of void particles with
a given volume as it is a single index used by the indus-
try to quickly characterise the properties of multi-size
granular materials [15]. However, this parameter can be
used as an indicator of the air void distribution for void
systems with a similar total air void content [1].

Fig. 11 Surface of void space divided by volume of the obser-
vation window vs. Air void content.

Fig. 12 Surface of void space divided by volume of the void
space vs. Air void content.

5.4 Analysis of the matter space in real and virtual
samples

As the observations about Fig. 10 made in subsection
5.2 are only qualitative, it is interesting to calculate
some quantitative data to perform a preliminary char-
acterisation of the portion of space associated to mat-
ter in the 3D models. For this purpose the Euclidean
distance transform [19], EDT, was used to analyse the
matter space. For each matter point the EDT yields the
distance to the nearest void point. Therefore, the EDT
was used to assess if the distance of matter from the
voids in the generated models was compatible to the
same metric applied to real samples.
This approach was applied to all points in every layer of
the virtual models, thus, the results do not depend on
additional assumptions made by the authors. In Fig. 13,
the maximum and average distances of the “matter”
points from the void boundaries are represented for a
number of real and virtual samples. By observing the
data shown in Fig. 13 it can be concluded that the
virtual samples fall on the curve interpolating the re-
sults for the real samples with very small deviations.
The fitting curves calculated from the data from real
samples were found by using a power law with two pa-
rameters (robust least-squares regression, R2 = 0.9961
and R2 = 0.9789 for the average and maximum curves,
respectively).
It is relevant to add that in order to allow this kind
of comparison the input files or binary images need to
have the same resolution, otherwise a relative indicator
(e.g. distance over maximum distance) should be used.

Fig. 13 Distance of points in the matter space from the closest
boundary.
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6 Conclusions

In this paper we presented the analysis of a stochas-
tic model based on geometric principles that can be
used to build virtual representations of the porous space
of granular material. The following conclusions can be
drawn:

– The Intersected Stacked Air voids (ISA) method can
be used to generate representations of the porous
space of granular materials with realistic features.

– The comparison, qualitative and quantitative, with
real samples provides validation of the approach anal-
ysed in this paper.

– Both continuous and isolated voids can be gener-
ated the latter becoming the most common as the
void ratio decreases, as found in genuine samples of
asphalt.

– The void size distribution of the anisotropic virtual
samples can be modeled with a Weibull probability
distribution.

– Meshed versions of the virtual porous space can be
created for computational modelling, e.g. computa-
tional fluid-dynamics (CFD).
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