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Running title: Prediction of Alzheimer’s disease risk 

Abstract 

Background: The identification of subjects at high risk for Alzheimer’s disease is important 

for prognosis and early intervention. We investigated the polygenic architecture of 

Alzheimer’s disease (AD) and the accuracy of AD prediction models, including and 

excluding the polygenic component in the model. 

Methods: This study used genotype data from the powerful dataset comprising 17,008 cases 

and 37,154 controls obtained from the International Genomics of Alzheimer’s Project 

(IGAP). Polygenic score analysis tested whether the alleles identified to associate with 

disease in one sample set were significantly enriched in the cases relative to the controls in an 

independent sample. The disease prediction accuracy was investigated by means of 

sensitivity, specificity, Area Under the receiver operating characteristic Curve (AUC) and 

positive predictive value (PPV). 

Results: We observed significant evidence for a polygenic component enriched in 

Alzheimer’s disease (p=4.9x10
-26

). This enrichment remained significant after APOE and 

other genome-wide associated regions were excluded (p=3.4x10
-19

). The best prediction 

accuracy AUC=78% was achieved by a logistic regression model with APOE, the polygenic 

score as predictors and age. When looking at the genetic component only, the PPV was 81%, 

increasing to 82% when age was added as a predictor. Setting the total normalised polygenic 

score of greater than 0.91, the positive predictive value has reached 90%. 

Conclusion: Polygenic score has strong predictive utility of Alzheimer’s disease risk and is a 

valuable research tool in experimental designs, e.g. for selecting Alzheimer’s disease patients 

into clinical trials. 
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Introduction 

Genome-wide association (GWA) studies have proved a powerful method to identify 

susceptibility alleles for complex diseases. The most powerful currently undertaken study, 

provided by the International Genomics of Alzheimer’s Project (IGAP), has identified over 

twenty AD susceptibility loci (Lambert et al., 2013). GWA study datasets can be used to 

determine a polygenic contribution of common SNPs that show disease association but fail to 

meet the accepted P-value threshold for genome-wide significance (p<5x10
-8

). Recent studies 

confirm that the estimated heritability detected in AD GWA studies (24-35%) (Lee et al., 

2013) increases substantially when weak effect loci are also considered. This strongly implies 

that a large proportion of the genetic signal must lie below the genome wide significance 

threshold. 

 

The Polygenic score (PS) approach encompasses more of the causal variance, as a genetic 

risk score is calculated based not solely on genome-wide significant polymorphisms, but on 

all nominally associated variants at a defined significance threshold (typically thousands of 

variants). This type of analysis has recently shown significant polygenic contribution in other 

complex genetic diseases. For example in Parkinson disease, a polygenic basis was confirmed 

and shown to correlate with age at disease onset (Escott-Price et al., 2014). The method can 

also be used to identify overlap in genetic determinants between related disorders, e.g. 

schizophrenia and bipolar disorder; depression and anxiety (Demirkan et al., 2011). While 

the polygenic method undoubtedly introduces noise by including some variants that are not 
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involved in disease susceptibility (i.e. false positives), this is more than offset by the 

increased power to identify those at highest/lowest risk of disease. Trait differences between 

those with highest/lowest polygenic risk scores have also been identified. For example, in a 

study of the Lothian Birth Cohort, increased polygenic risk of schizophrenia was associated 

with lower cognitive ability at age 70 and greater relative decline in general cognitive ability 

between the ages of 11 and 70 (McIntosh et al., 2013).  

 

We investigated the polygenic architecture of Alzheimer’s disease using the powerful IGAP 

GWA dataset (Lambert et al., 2013). The IGAP dataset was split into two independent 

subsets before the polygenic contribution to AD was investigated by assessing whether score 

alleles identified in one subset were significantly enriched in cases from another subset.  

 

We also investigated the prediction accuracy of the model, which includes the number of 4 

and 2 alleles at the APOE gene, a PS component based upon genome-wide significant 

(GWS) loci, and a PS component constructed using all independent markers within the 

dataset including statistically not-significant SNPs.  Furthermore we looked at the utility of 

the PS when the analysis was restricted to subjects with 2 and 3 alleles only. As age is a 

strong predictor of AD, we tested the prediction models in samples stratified by age. To test 

the sensitivity of the prediction models to population differences we ran the same analyses for 

subjects from UK, USA and Germany separately. 

 

Materials and Methods 

We used the discovery dataset reported by the IGAP consortium (Lambert et al., 2013) , 

comprising of 17,008 AD cases and 37,154 controls. This sample of AD cases and controls 

comprises 4 data sets taken from GWA studies performed by GERAD, EADI, CHARGE and 
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ADGC (Lambert et al., 2013). Full details of each study including the samples and methods 

utilised are provided elsewhere (Harold et al., 2009, Lambert et al., 2009, Seshadri et al., 

2010, Hollingworth et al., 2011, Naj et al., 2011). Each of the 4 datasets were imputed with 

either Impute2(Howie et al., 2009) or MACH(Li et al., 2010) software, using the 1000 

genomes data (release Dec2010) as a reference panel. 

 

Polygenic score analysis 

We followed the approach previously described by the International Schizophrenia 

Consortium (International Schizophrenia et al., 2009). The PS analysis requires two 

independent datasets. For the first, result data is sufficient as this dataset is used to select the 

SNPs, the risk score alleles and their genetic effects. The second dataset is used to test 

whether the polygenic risk scores differ in cases and controls and requires the genotypes for 

each individual. The meta-analysed results data of the EADI, CHARGE and ADGC consortia 

(13,831 cases and 29,877 controls, hereafter referred to as IGAP.noGERAD) was used for 

SNP selection. We used the individual genotypes of the GERAD consortium (Harold et al., 

2009) data (3,177 cases and 7,277 controls), we used the GERAD data as the test sample. 

We included only autosomal SNPs that passed stringent quality control criteria, i.e. minor 

allele frequencies (MAF) ≥0.01 and imputation quality score greater than or equal to 0.5 in 

each study. This resulted in 6,928,531 SNPs, which were present in at least 40% of the AD 

cases and 40% of the controls, being included in the analysis. The summary statistics across 

the 3 datasets were combined using fixed-effects inverse variance-weighted meta-analysis.  

Using GERAD study data we performed a) random linkage disequilibrium (LD) pruning 

using r
2
>0.2, and b) “intelligent” pruning (--clump option in PLINK (Purcell et al., 2007) 
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genetic analysis tool) using the same r
2
 parameter and a physical distance threshold for 

clumping SNPs of 1Mb. The random LD pruning resulted in 401,584 SNPs that are in 

relative linkage equilibrium (r
2
≤0.2) and common between GERAD and IGAP.noGERAD 

datasets. The “intelligent” pruning allows to capture SNPs which are most (even if not-

significantly) associated with the disease in an LD block. This “intelligent” pruning identified 

538,363 independent SNPs that were most significantly associated with AD in 

IGAP.noGERAD data. We selected markers, based upon significance thresholds, to construct 

a polygenic score in the GERAD data. The PS was calculated from the effect size (β)-

weighted sum of associated alleles within each subject. PS were normalised by subtracting 

the mean and dividing by the standard deviation.  

We assessed a variety of significance thresholds for the selection of markers for PS 

construction; overlapping panels of markers were used (e.g. significant at p≤0.01, 0.05, 0.1, 

…, 1 in the IGAP.noGERAD) in the construction of a subject-level score in GERAD 

case/control sample. The ability of each panel-based score distribution to distinguish those 

with disease from cognitively normal individuals was assessed using logistic regression 

analysis while adjusting for three principal components (Harold et al., 2009), reflecting 

underlying stratification in the sample due to population and/or genotyping technique 

differences. Age was not included as a covariate in the logistic regression models as it had 

already been accounted for as a covariate in the IGAP.noGERAD meta-analyses. 

 

Analysis of predictive accuracy 

To find the best predictors of the AD, we tested a variety of regression models. For this 

analysis we used the genotyped (rather than imputed) SNP data as we note that the prediction 
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accuracy is sensitive to the number of missing genotypes, which is often exacerbated by the 

uncertainty of imputation.  

Since the genotyped data at the APOE locus contained only proxy SNPs for the APOE-4 and 

APOE-2 variants (rs429358 and rs7412), we limited our analysis to those individuals (3,049 

cases and 1,554 controls) for whom we had APOE genotype data. For the other 21 GWS 

SNPs (Lambert et al., 2013), proxies with r
2
 greater than 0.8 were available for 11 SNPs in 

the GERAD data, for an additional 7 loci we had genotyped markers that were in modest LD 

(r
2
 between 0.5 and 0.8) with a GWS marker. Two GWS SNPs in the SLC24A4/RIN3 and 

CD33 loci had proxies with r
2
~0.3 (Supplementary Table 1). We excluded the DSG2 gene as 

this association did not replicate in IGAP stage 2(Lambert et al., 2013), and the best proxy to 

the putative GWS SNP was in low LD (r
2
=0.06) in the GERAD sample. 

We calculated sensitivity, specificity, area under the receiver operating characteristic curve 

(AUC) and positive and negative  predictive values (PPV and NPV) by comparing the 

observed case/control status and the predicted probability estimated by logistic regression 

models using the prediction() and performance() functions in R-statistical software. We used 

as predictors a number of explanatory variables including APOE-4, APOE-2, age, PS based 

upon 20 GWS SNP proxies, and PS calculated using SNPs with AD association p-values 

ranging from 0.0001 till 0.9 in the IGAP.noGERAD sample (APOE and GWAS loci were 

excluded, see Supplementary Table 1). We performed similar analyses on imputed data 

however the prediction accuracy using this dataset was marginally lower due to noise 

introduced through a number of missing values as a result of genotypes imputed with low 

certainty (results are not shown). To test the sensitivity of our results to possible bias due to 

age and population stratification, we ran the same models in subsamples stratified by 



8 
 

geographical region (UK, USA and Germany), and age groups <60, 60-69, 70-79, 80-89 and 

90+. 

 

Results 

Polygenic risk score analysis 

In this study we investigated whether the PS alleles identified in one AD GWA study were 

significantly enriched in the cases relative to the controls of an independent AD dataset. Our 

analysis revealed significant evidence for an overall enrichment of the AD polygenic risk 

score alleles of the IGAP.noGEARD data in the independent GEARD (Harold et al., 2009) 

cohort of 3,177 AD cases and 7,277 controls from the UK, Europe and USA (Table 1). The 

pattern of the PS association was similar to those seen in studies of other complex diseases 

shown to have a polygenic signal (International Schizophrenia et al., 2009, Stergiakouli et al., 

2012, Heilmann et al., 2013, Michailidou et al., 2013). Our most significant evidence for 

association was observed when SNPs with a selection threshold (PT) of p≤0.5 in the 

IGAP.noGERAD sample were included. The p-values for a significant enrichment in the 

polygenic score ranged from 3.9x10
-20

 to 4.9x10
-26

 dependent on the PT used (Table 1). For 

all significant associations the B-coefficients were positive, indicating that a higher polygenic 

score in the IGAP.noGERAD discovery dataset corresponds to a higher score in the 

independent GERAD replication dataset and provides evidence for a polygenic contribution 

to the development of Alzheimer’s disease.  

Since the 538,363 independent SNPs that we used to identify AD polygenic risk score alleles 

included those most significantly associated with the disease, it is plausible that our results 

are artificially biased by SNPs whose evidence for association is a consequence of LD with a 
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known genome-wide significant SNPs. To investigate this possibility we repeated our 

analysis using identical analysis thresholds but excluding all 5,006 SNPs that, after LD 

pruning, were present at the 24 genomic regions previously reported to be strongly associated 

with AD (Lambert et al., 2013, Escott-Price et al., 2014). The regions were defined as 

±500KB of both sides of the GWA SNPs (Lambert et al., 2013) or GWA genes (Escott-Price 

et al., 2014) and between 44,400KB-46,500KB on chromosome 19 for the APOE locus 

(Supplementary Table 1). Given that each of these excluded regions is likely to contain at 

least one true AD susceptibility allele, this approach is highly conservative. Nevertheless, this 

analysis again revealed significant evidence that individuals with higher polygenic risk scores 

had greater probability of AD, with our most significant result p=3.4x10
-19

 (Table 2).  

Moreover, we obtained analogous results when we used an alternative method of LD pruning, 

which ignores the strength to which SNPs are associated with AD, and thus excludes SNPs 

from the 24 associated regions (Supplementary Table 2). These analyses suggest that our 

findings are not dependent on either the previously identified susceptibility loci or the SNPs 

that are associated with AD merely as a consequence of LD with the GWS loci. 

 

Analysis of predictive accuracy 

The identification of subjects at high risk for Alzheimer’s disease is important for prognosis 

and early intervention. We used logistic regression analysis to establish predictive values 

(sensitivity, specificity, AUC, PPV, NPV) of genetic risk factors in GERAD data. The results 

of this analysis are summarised in Table 3. A highly significant (p<10
-94

) overall outcome 

was obtained for all measures of predictive accuracy (Table 3). The APOE-4 allele is the 

strongest known genetic risk factor for AD. In the presence of APOE-4 alleles, the 

sensitivity was 0.59, the specificity 0.75 and the AUC=0.678. Inclusion of the numbers of 
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APOE-2 alleles in the logistic regression model slightly increases all prediction accuracy 

values, in particular, the AUC increased to 0.688. As expected, prediction accuracy was 

further enhanced (AUC=0.715) when we added the polygenic score variable based upon 

proxies for the 20 GWS SNPs, where the weights of the SNP risk alleles were identified from 

the independent dataset IGAP.noGERAD (Supplementary Figure 1) .  

We further investigated whether the PS based on risk alleles of small effect identified in one 

study (IGAP.noGERAD) were improving the prediction accuracy in an independent dataset 

(GERAD). For this we used PS calculated excluding the known AD associated regions 

(Supplementary Table 2). The best prediction accuracy (AUC=0.75) was achieved when we 

included the PS for SNPs with AD association p-values<0.5. The values of sensitivity and 

specificity (the proportion of cases and controls, respectively, which were correctly 

predicted) were about 0.69 when estimated with the minimized difference threshold 

MDT=0.64 (see Supplemental Figure 2).  If we reduce the probability threshold to 0.47, the 

percentage of correctly identified cases increases to 0.9, at a cost of specificity (0.35) (see 

Supplemental Figure 2). To investigate possible population differences in the prediction of 

AD risk, we looked at UK, German and USA subjects separately. The pattern of predictive 

modelling results was similar to the main analyses results in all strata (Supplementary Table 

3). Interestingly, the prediction in the USA strata was extremely good (the best 

AUC=0.95%). This might be due to the fact that the majority of subjects (about 80%) in the 

training set were of USA origin in contrast to 17% in the test set. 

Another way to look at the utility of the PS as a predictor for AD, is to exclude the strongest 

predictor, namely the 4 allele, from the analysis. There were 1242 cases and 1160 controls in 

the sample without 4 allele. When looking at these individuals only, the AUC was 65.0% 

when we included the PSs based upon proxies for the 20 GWS SNPs and for SNPs with AD 
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association p-values<0.5, increasing to 65.8% when the number of 2 alleles was added as a 

predictor. Similar accuracy was achieved (64.5% and 65.8%) when we ran the analysis on the 

whole sample without 4 as a predictor. 

As expected, our results show that inclusion of age in the regression model further improved 

the prediction accuracy (AUC=0.78), see Table 3 and Supplementary Figure 2. In the context 

of practical application, e.g. in experimental designs comparing cases with high or low 

polygenic risk AD, age has to be taken into account. Supplementary Table 4 presents the 

results of the genetic predictive modelling stratified by age groups.  The results of the 

stratified analyses have shown similar pattern of prediction accuracy. As before, the best 

accuracy in each strata was achieved when the numbers of APOE-4, APOE-2 alleles, the 

PS variable based upon proxies for the 20 GWS SNPs, and the PS for SNPs with AD 

association p-values<0.5 were included as predictors. The AUC value was ranging from 73% 

to 79%, with the highest in the 60-69 age group (Supplementary Table 4). The best prediction 

in this age group might indicate that this particular age group has the strongest common 

genetic effect, with the younger age group (<60) potentially due to Mendelian forms of the 

disorder, and the older age groups confounded by general ageing effects.  

With regard to the practical use of PS in the identification of subjects at high risk for AD, we 

investigated the prediction accuracy of the genetic component in terms of positive predictive 

value (PPV), the percentage of patients with a positive prediction who actually have the 

disease. To achieve PPV of 0.9, i.e. have 90% of predicted cases to actually be cases, the 

prediction probability threshold has to be set to 0.87. This prediction probability threshold 

captured cases with normalised total PS of greater than 0.91. The total PS combines effects of 

4, 2, 20 GWAS proxy SNPs and AD associated SNPs (p<0.5), which comprised the best 

prediction model in our analysis. 
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Discussion 

The molecular genetic data reported in this study provides strong support for a large 

polygenic contribution to the overall heritable risk of Alzheimer’s disease. This implies that 

the genetic architecture of AD includes many common variants of small effect that is likely to 

reflect a large number of susceptibility genes and a complex set of biological pathways 

related to disease. The AD PS alleles identified in the GERAD cohort are not significantly 

enriched (minimum p=0.14) in an independent GWA study for Parkinson’s disease 

(Moskvina et al., 2013) indicating that the identified polygenic component of AD is disease 

specific.  

Further studies are required if we are to progress from the knowledge that there is a polygenic 

contribution to AD, to understanding the specific genetic factors that comprise the polygenic 

component. Increasing the discovery sample size will allow more loci with increasingly small 

individual effect sizes to pass the threshold of genome-wide significance, and should 

substantially refine the polygenic scores derived here. Moreover, as we have previously 

shown, using approaches such as gene pathways analyses it is possible to utilise the captured 

polygenic signal and identify genes or biological systems relevant to AD (International 

Genomics of Alzheimer's Disease, 2014).  

It is possible that our findings are influenced by rare AD susceptibility variants that are in LD 

with the common alleles analysed in this study. The ongoing efforts of studies performing 

exome and whole genome sequencing in large numbers of AD case/control cohorts will allow 

us to establish the haplotype structure of common and rare alleles an in turn, to understand 

which loci are subject to ‘synthetic association’(Dickson et al., 2010). Moreover, as 

previously demonstrated in other complex diseases (Purcell et al., 2014), future PS analysis 
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of variants identified by exome/genome sequencing are expected to further inform our 

understanding of the genetic underpinnings of AD. 

One possible limitation of this study that the population structure in the training set is only 

moderately representative of the test set, due to differences in proportions of subjects from 

different countries.  

In conclusion, the derived polygenic scores have demonstrated utility for calculating an 

individual level genetic risk profile that can predict disease development. Measures of 

polygenic burden could prove useful in distinguishing AD patients whose disease liability is 

most likely to carry a large or small genetic component. This utility of the developed 

polygenic score is increased among subjects of 60-69 years of age, which is a desirable target 

group for identification and preventative intervention of AD. Identifying these individuals 

would benefit study recruitment into clinical trials and could facilitate a better understanding 

of how gene-gene and gene-environment interactions increase risk for AD.  
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Table 1. Results of polygenic score analysis based upon a set of independent SNPs (at r
2
≤0.2) 

pruned to retain those most significantly associated with the disease. 

PT* Effect SE p R
2
 NSNPs 

0.01 0.283 0.0308 3.9E-20 0.016 16,749 

0.05 0.311 0.0308 5.9E-24 0.019 61,552 

0.1 0.321 0.0309 2.6E-25 0.020 107,834 

0.2 0.327 0.0309 3.6E-26 0.021 185,737 

0.3 0.317 0.0308 7.9E-25 0.020 251,850 

0.4 0.323 0.0308 1.0E-25 0.020 308,780 

0.5 0.327 0.0310 4.9E-26 0.021 359,500 

0.6 0.326 0.0310 6.2E-26 0.021 404,626 

0.7 0.325 0.0309 9.3E-26 0.020 444,663 

0.8 0.328 0.0310 4.1E-26 0.021 480,271 

0.9 0.323 0.0309 1.9E-25 0.020 511,297 

1 0.321 0.0309 3.0E-25 0.020 538,362 

  

*Selection threshold of ‘score’ SNPs taken from the IGAP.noGERAD discovery sample. 

 

 

 

  



15 
 

Table 2. Results of polygenic score analysis based upon a set of relatively independent SNPs 

(at r
2
≤0.2) pruned to retain those most significantly associated with the disease, excluding the 

genome-wide associated loci. (Exact positions of the excluded regions are given in 

Supplementary Table 1.) 

 

PT* Effect SE p R
2
 NSNPs 

0.01 0.154 0.0304 4.01x10
-7

 0.005 16,412 

0.05 0.232 0.0305 2.50x10
-14

 0.011 60,750 

0.1 0.256 0.0307 5.92x10
-17

 0.013 106,587 

0.2 0.270 0.0307 1.23x10
-18

 0.014 183,808 

0.3 0.263 0.0305 6.47x10
-18

 0.014 249,314 

0.4 0.271 0.0306 7.26x10
-19

 0.014 305,741 

0.5 0.275 0.0307 3.45x10
-19

 0.015 356,033 

0.6 0.274 0.0307 4.66x10
-19

 0.015 400,785 

0.7 0.273 0.0307 6.76x10
-19

 0.014 440,473 

0.8 0.276 0.0308 2.93x10
-19

 0.015 475,769 

0.9 0.271 0.0307 1.13x10
-18

 0.014 506,532 

1 0.269 0.0307 1.67x10
-18

 0.014 533,356 

  

*Selection threshold of ‘score’ SNPs taken from the IGAP.noGERAD discovery sample. 
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Table 3. Predictive accuracy for 3,049 AD cases vs 1,554 controls. The PS’ were constructed using independent SNPs associated with AD in 

IGAP.noGERAD at different significance levels (MODEL column), excluding APOE and 20 GWAS regions (see Supplementary Table 2). 

Numbers of SNPs participating in the predictive model are given in column N SNPs. 

MODEL N SNPs Sensitivity Specificity AUC PPV* NPV** 

4 1 0.593 0.746 0.678 0.821 0.483 

4 + 2 2 0.593 0.746 0.688 0.821 0.483 

4 + 2+ 20 GWAS SNPs + PS p<0.0001 130 0.669 0.669 0.717 0.798 0.507 

4 + 2+ 20 GWAS SNPs + PS p<0.001 549 0.668 0.668 0.720 0.798 0.506 

4 + 2+ 20 GWAS SNPs + PS p<0.01 3388 0.672 0.672 0.729 0.801 0.511 

4 + 2+ 20 GWAS SNPs + PS p<0.05 13273 0.677 0.677 0.738 0.804 0.516 

4 + 2+ 20 GWAS SNPs + PS p<0.1 23676 0.682 0.682 0.740 0.808 0.522 

4 + 2+ 20 GWAS SNPs + PS p<0.2 42273 0.683 0.683 0.743 0.808 0.523 

4 + 2+ 20 GWAS SNPs + PS p<0.3 58963 0.684 0.683 0.744 0.809 0.524 

4 + 2+ 20 GWAS SNPs + PS p<0.4 73941 0.684 0.684 0.744 0.809 0.525 

4 + 2+ 20 GWAS SNPs + PS p<0.5 87605 0.686 0.686 0.745 0.811 0.527 

4 + 2+ 20 GWAS SNPs + PS p<0.6 99724 0.685 0.685 0.745 0.810 0.526 

4 + 2+ 20 GWAS SNPs + PS p<0.7 110431 0.685 0.685 0.745 0.810 0.525 

4 + 2+ 20 GWAS SNPs + PS p<0.8 119616 0.683 0.683 0.745 0.809 0.523 

4 + 2+ 20 GWAS SNPs + PS p<0.9 127585 0.684 0.684 0.745 0.809 0.524 

4 + 2+ 20 GWAS SNPs + PS p<0.5+age 87605 0.702 0.701 0.781 0.822 0.545 

 

* Positive Predictive Value 

** Negative Predictive Value
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Supplemental Figure 1. ROC curves for predictive models with different predictors for risk of 

Alzheimer’s disease. 
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Supplemental Figure 2. Sensitivity-Specificity plot for the best predictive model which 

includes e4, e2, the polygenic score variable based upon proxies for the 20 GWS SNPs and 

the PS for SNPs with AD association p-values<0.5. 

 


